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Fermi Surface in Tungsten
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The results of nonrelativistic, augmented-plane-wave energy-band calculations have been used to cal-
culate the Fermi surface in body-centered cubic tungsten, neglecting spin-orbit coupling. The resulting
Fermi surface is very similar to one proposed earlier by Lomer for group-VI transition metals and agrees
qualitatively with the available experimental results. Spin-orbit coupling is found to have little effect on the
basic Fermi-surface topology in tungsten and its consequences can be understood qualitatively in terms of a
simplified tight-binding calculation. Within the energy range of the tungsten 5d bands, the electronic density
of states contains four distinct peaks, three of which lie below the tungsten Fermi energy. Assuming a
rigid-band model, the present energy-band results have been used to predict the Fermi surface in the

group-V transition metals.

I. INTRODUCTION

UNGSTEN is one of the first transition metals to
become available in high-purity, single-crystal
form. As a result, most of the experimental techniques
for studying the electronic properties of metals have
been applied to tungsten. These have included measure-
ments of the anomalous skin effect,! magnetoresis-
tance,?~® the magnetoacoustic effect,® the de Haas—van
Alphen effect,”® Azbel’-Kaner cyclotron resonance,!®-!!
and the Gantmakher size effect.!? The majority of the
experimental results, as well as their interpretation,
remain unpublished. The objectives of the present in-
vestigation are: (i) to calculate a model Fermi surface
for body-centered cubic tungsten from the results of
nonrelativistic augmented-plane-wave (APW) energy-
band calculations; (ii) to determine semiempirically the
effects of spin-orbit coupling on this model Fermi
surface; (iil) to compare this calculated Fermi surface
and other electronic properties with the available ex-
perimental results.
Interest in the energy-band structure of tungsten
dates back to calculations by Manning and Chodorow'
in the late thirties using the cellular method. More

(1;6EZ') Fawcett and D. Griffiths, J. Phys. Chem. Solids 23, 1631

2E. Justi and H. Scheffers, Physik. Z. 37, 700 (1936).

3 E. Fawcett, Phys. Rev. Letters 7, 370 (1961); E. Fawcett,
Phys. Rev. 128, 154 (1962).

4N. V. Volkenshtein, V. N. Kachinskii, and L. S. Starostina,
Zh. Eksperim i Teor. Fiz. 45, 43 (1963) [ English transl.: Soviet
Phys—JETP 18, 32 (1964)].

® E. Fawcett and W. A. Reed, Phys. Rev. 134, A723 (1964).

6 J. A. Rayne and H. Sell, Phys. Rev. Letters 8, 199 (1962);
J. A. Rayne, Phys. Rev. 133, A1104 (1964); C. K. Jones and J. A.
Rayne, Proceedings of the Ninth International Conference on
Low Temperature Physics, Columbus, 1964 (to be published).

7G. B. Brandt and J. A. Rayne, Phys. Letters g, 148 (1962);
Phys. Rev. 132, 1945 (1963).

8D. Sparlin and J. A. Marcus, Bull. Am. Phys. Soc. 8, 258
(1963); 9, 250 (1964).

?R. F. Girvan and A. V. Gold (private communication).
(136}23). Fawcett and W. M. Walsh, Jr., Phys. Rev. Letters 8, 476

W, M. Walsh, Jr., Phys. Rev. Letters 12, 161 (1964).

12W. M. Walsh, Jr. and C. C. Grimes, Phys. Rev. Letters 13,
523 (1964).

(1;’3%. F. Manning and M. I. Chodorow, Phys. Rev. 56, 789

recently, a Fermi surface for the chromium-group
metals has been proposed by Lomer.** This model Fermi
surface has been based primarily on Wood’s APW
calculations for iron.!” Recently, Lomer has revised
this model Fermi surface (Lomer II) and limited its
application to molybdenum.’® This revised Fermi sur-
face is sketched in Fig. 1. It consists of two main,
closed surfaces that have been described as an electron
“jack” centered at the origin of the Brillouin-zone I'
and hole ‘“octahedra” at the symmetry points H. The
electron ““jack’ consists of an octahedral body connected
to six ball-like protrusions along the (100) or T'H
directions. Within the ‘“necks” which join the octa-
hedral body to the balls are the electron ‘lenses.”
Neglecting spin-orbit coupling, these ‘‘lenses” contact
the “necks” in the (100) and (110) planes. In this
approximation, the electron “jack” at I' contacts the
hole “octahedra” at H along the (100) directions in the
Brillouin zone. Finally, this model predicts small hole
pockets at N. In his original model (Lomer I), Lomer
overlooked the presence of the ball-like protrusions on
the electron surface at I' and assumed that this surface
tapered smoothly along the (100) directions.

In the present investigation, two fairly complete
APW calculations have been carried out for tungsten,
using slightly different crystal potentials. The results
of these two calculations differ mainly in the calculated
s-d energy separation and the 54 bandwidths. These
5d band widths vary from approximately 0.8 to 1.0
Ry, the latter value agreeing quite well with that found
by Manning and Chodorow.!* The present energy-band
results are quite similar to those obtained by Manning
and Chodorow, except that they found that the bottom
of the 6s conduction band was above the bottom of the
5d bands while the present results indicate that it lies
about 0.1 Ry below the 5 bands.

The Fermi surface for tungsten which results from
the present nonrelativistic APW calculations agrees
qualitatively with the Lomer II model shown in Fig. 1.
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Fi16. 1. A three-dimensional stretch of Lomer’s revised Fermi
surface for chromium-group metals.

However, there has been some reluctance to apply the
Lomer II model Fermi surface for chromium-group
metals to tungsten, mainly because the low-field de
Haas-van Alphen results for molybdenum and tungsten
differ significantly.” This has been attributed to an
enhanced spin-orbit coupling in the latter element.”:!6
However, the data from de Haas—van Alphen measure-
ments on tungsten by Sparlin and Marcus® and their
interpretation by Sparlin'’ are consistent with the
Lomer II model Fermi surface. According to Sparlin,
the Fermi surfaces for molybdenum and tungsten differ
in two respects: First, the dimensions of the hole pockets
at N are smaller in tungsten than in molybdenum.
Second, the extremal areas for orbits associated with the
‘““lenses” in tungsten have not been observed, whereas
they have been measured in molybdenum. Sparlin and
Marcus have inferred the re-entrant nature of the
electron surface at I' from their analysis of the de Haas—
van Alphen results and introduced the term electron
“jack.”

The most striking experimental verification of the
Lomer IT model Fermi surface in tungsten is a conse-
quence of the size-effect experiments by Walsh and
Grimes,'? who mapped out the extremal linear dimen-
sions of portions of the electron ‘“jack’ and the entire
hole “octahedron” in a (110) plane. Walsh and Grimes
have shown that the electron ‘‘jack” at I' fails to contact
the hole “octahedra” at H, as the nonrelativistic energy-

7D. M. Sparlin, thesis, Northwestern University, 1964
(unpublished).

L. F. MATTHEISS

band results predict. Rather, these electron and hole
surfaces are separated by a gap equal approximately
to 59, the T'H distance. This splitting has been attrib-
uted to the effects of spin-orbit coupling.!® Using a
simplified model, it has been possible to use the meas-
ured separation between the electron “‘jack” and hole
“octahedra” to estimate the 54 spin-orbit coupling
parameter £54 in metallic tungsten to be approximately
0.03 Ry (0.4 eV). Another consequence of spin-orbit
coupling is that it could cause the “lenses” to disappear
in tungsten.

A brief description of the present calculation is con-
tained in the following section, including a discussion of
the approximate crystal potentials which have been
used. The results of these APW calculations are pre-
sented in Sec. III, including for each calculation, E (k)
curves along symmetry directions in the Brillouin zone,
a density-of-states, and the resulting Fermi surface.
In Sec. IV, a brief description of the simplified model
used to estimate the effects of spin-orbit coupling is
presented. In Sec. V, a Fermi-surface model for the
group-V transition metals vanadium (V), niobium
(Nb), and tantalum (Ta) is proposed. The final section
contains a discussion of the present energy-band results
and comparisons with experiment.

II. DESCRIPTION OF THE CALCULATION

The present nonrelativistic energy-band calculations
for body-centered cubic tungsten have been carried
out using the APW method,”® as programmed for the
IBM computers by Wood.!s The crystal potential has
been approximated by a ‘“muffin-tin” potential, which
is calculated by superimposing atomic potentials in a
manner that has been described earlier in connection
with an energy-band study of the 3d transition series.
Exchange has been treated approximately using
Slater’s free-electron exchange approximation.?

Instead of using the self-consistent atomic Hartree-
Fock charge densities that have been used previously in
calculations for the 3d transition series, the present cal-
culations utilize potentials which have been obtained
from Hartree-Fock-Slater charge densities, as provided
by Herman and Skillman.”2 Unpublished calculations
by the author indicate that equivalent results are
obtained in the 3d transition series using potentials
which are derived from either atomic Hartree-Fock or
Hartree-Fock-Slater charge densities.

The potentials used in the present calculations have
been obtained using an assumed atomic configuration
of (5d)%(6s)! for tungsten, which is probably close to
that in the solid. Two fairly complete calculations have
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TaBLE I. An abbreviated tabulation of the potentials used in
the present calculations for tungsten. The radial distance r is
tabulated in terms of r/ry (where 70=0.005272 a.u.) and V(r) is
in Ry. For both potentials, the APW sphere radius R,=2.59 a.u.;
the constant value of the potential between the APW spheres
equals 1.466 and 1.181 Ry for V; and V,, respectively.

r/ro —Va(r) —Va(r)
1 27256.823 27211.528
2 13229.229 13194.117
3 8568.264 8540.645
4 6248.878 6226.470
6 3950.230 3933.161
8 2818.407 2803.394
10 2149.628 2136.018
12 1710.687 1698.456
16 1174.998 1165.263
20 865.262 857.146
24 666.864 659.589
28 530.645 523.922
36 358.680 353.076
44 257.127 252.636
52 191.808 188.103
60 147.461 144.138
76 92.926 89.944
92 62.301 59.723
108 43.921 41.796
124 32.750 30.523
156 19.067 17.849
188 12.350 11.368
220 8.505 7.670
252 6.121 5.408
316 3.527 3.009
380 2.310 1.920
444 1.727 1.408
508 1.483 1.197

been carried through using two slightly different poten-
tials, Vi(r) and Vo(r). These potentials differ only in
the exchange contribution to the potential. In V,(r),
the exchange potential in V,(r) has been reduced by
309%. This has been done in order to vary the 6s-5d
energy separation in the simplest possible manner with-
out modifying the potential drastically.

An abbreviated tabulation of the two potentials
V1(r) and V.(r) which have been used in the present
calculations for tungsten is presented in Table I. In this
table, the radial distance 7 is tabulated in terms of /7,
where 79=0.005272 atomic units (a.u.) for tungsten.
This radial mesh corresponds to the one used by Herman
and Skillman,? being proportional to the inverse cube-
root of the atomic number Z.

The lattice constant for tungsten which has been
used in these calculations is the room-temperature value
tabulated by Pearson® of 5.9811 a.u. (3.1651 A). The
lattice constant at 4.2°K has been estimated to be
approximately 5.973 a.u. (3.161 A),”? using the thermal-
expansion data of Nix and MacNair.*

III. RESULTS

The Brillouin zone for the body-centered cubic
Bravais lattice is shown in Fig. 2. In this figure as well

% W. B. Pearson, A Handbook of Lattice Spacings and Structures
of Metals and Alloys (Pergamon Press, Inc., New York, 1958).
#F. C. Nix and D. MacNair, Phys. Rev. 61, 74 (1942).
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F16. 2. The Brillouin zone for the body-centered cubic structure
with symmetry points and lines labeled in accordance with the
standard notation.

as in the following discussions, the notation due to
Bouckaert, Smoluchowski, and Wigner? is used to
label symmetry points and lines and the corresponding
irreducible representations.

Two extensive APW calculations have been carried
out for tungsten using the potentials V1(r) and V,(r)
of Table I. The results of these calculations, which will
be referred to either as W; and W, or E;(k) and E,(k),
are shown in Figs. 3 and 4, respectively. Here, the
energy bands E;(k) and E,(k) are plotted along sym-
metry directions in the Brillouin zone for tungsten.
These APW results have been obtained at a total of 55
points in 1/48 of the Brillouin zone. The W, results are
listed in Table II. The calculations have been carried
out for k values which are distributed on a uniform mesh
in the Brillouin zone such that the entire zone is sub-
divided into 1024 cubic subzones, each having edge
dimensions (r/4a).

The Sd-band states are readily distinguished in
Figs. 3 and 4. At the symmetry points, they correspond
to the following states: T'yq, I'gsr; Has, Hiz; N3, Ny,
N1, N3, Ny; Ps, P, It is clear from Fig. 4 that the 5d
bandwidth is approximately 0.8 Ry. The state with T
symmetry represents the bottom of the 6s conduction
band in both cases, while V1’ represents a 6p-type state.
The ordering of states at symmetry points in the
Brillouin zone in Figs. 3 and 4 is identical with that
obtained by Wood for iron,'s who found a 3d bandwidth
slightly less than 0.5 Ry. The main differences between
the results shown in Figs. 3 and 4 are the 5 bandwidth
and the relative position of E(Ny/) with respect to the
Fermi energy.

The energy-band results can be used to calculate a
density-of-states for tungsten. However, due to the

% L. P. Bouckaert, R. Smoluchowski, and E. Wigner, Phys.
Rev. 50, 58 (1936).
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TasLE II. Energy-band results for tungsten obtained using the potential V(r) of Table I. Energies are in Ry, the zero of energy co-
inciding with the constant potential between the APW spheres, 1.466 Ry. The eigenvalues are identified using the notation of Bouckaert,

Smoluchowski, and Wigner.

4(a/m)k Band 1 Band 2 Band 3 Band 4 Band 5 Band 6
r(0,0,0) 1 0341 25’ 0.746 25’ 0.746 25’ 0.746 12 0.957 12 0.957
A(1,0,0) 1 0.366 5 0.745 5 0.745 2’ 0.759 2 0.920 1 0973
A(2,0,0) 1 0434 5 0.746 5 0.746 2’ 0.795 2 0.828 1 1.013
A(3,0,0) 1 0.517 2 0.717 5 0.762 5 0.762 2" 0.850 1 1.067
A(4,0,0) 1 0.571 2 0.610 5 0.804 5 0.804 2’ 0.923 1 1.131
A(5,0,0) 2 0.520 1 0.552 5 0.877 5 0.877 2’ 1.006 1 1.225
A(6,0,0) 2 0452 1 0484 5 0.981 5 0.981 2’ 1.086 1 1.356
A(7,0,0) 2 0410 1 0421 5 1.099 5 1.099 2’ 1.147 1 149
11(8,0,0) 12 0.396 12 0.396 25 1.169 25’ 1.169 25 1.169 15 1.554
>(1,1,0) 1 0.389 2 0.716 1 0.737 3 0.797 1 0923 4 0.960
(2,1,0) + 0448 - 0.699 + 0.726 — 0854 + 0871 + 0.997
(3,1,0) + 0.514 + 0.695 —  0.704 + 0.831 —  0.923 + 1.057
(4,1,0) + 0.551 + 0.629 —  0.737 + 0.844 —  1.002 + 1.142
(5,1,0) + 0.521 + 0.573 —  0.803 + 0.867 —  1.085 + 1.260
(6,1,0) + 0.467 + 0.503 — 0.898 + 0.938 - 1154 + 141
G(7,1,0) 1 0428 4 0441 3 1011 1 1.038 2 1179 4 1.538
>(2,2,0) 1 0473 2 0.655 1 0.729 1 0927 3 0939 4 0976
(3,2,0) + 0.487 —  0.638 + 0.751 + 0921 - 1.027 + 1.028
(4,2,0) + 0495 —  0.655 + 0.718 + 00911 -  1.115 + 1.144
(5,2,0) + 0.498 ~+ 0.651 — 0.707 + 0.867 —  1.181 + 1304
G(6,2,0) 1 0.487 4 0.568 3 0.79 1 0.877 2 1.202 4 145
>(3,3,0) 1 0.458 2 0.602 1 0.856 1 0975 4 1.006 3 1.128
(4,3,0) + 0455 —  0.601 + 0.854 +  0.969 + 1.104 — 1.203
¢(5,3,0) 1 0.467 3 0.637 4 0.761 1 0.901 2 1.226 4 1249
N (4,4,0) 1 0435 2 0.582 17 0.976 1 0978 4 1.023 3 1.235
A(1,1,1) 1 0411 3 0.709 3 0.709 1 0.840 3 0.942 3 0.942
(2,1,1) + 0.466 +  0.688 —  0.688 —  0.894 + 0.910 + 0.988
3,1,1) + 0.522 —  0.657 + 0.705 —  0.851 + 0.985 + 1.053
11 + 0.561 —  0.603 + 0734 — 0851 +  1.032 + 1164
(5,1,1) — 0.541 + 0.569 + 0.746 —  0.904 + 1078 + 1317
(6,1,1) — 0.488 + 0516 + 0.809 —  0.997 + 1.123 + 149
F(7,1,1) 3 0.453 3 0453 1 0.908 3 1.110 3 1.110 3 1.635
(2,2,1) + 0.499 —  0.647 + 0.686 + 0.935 — 0976 + 1.004
(3.21) 0.508 0.628 0.718 0.921 1.019 1.104
(4,2,1) 0.514 0.623 0.727 0.910 1.064 1.232
(5,2,1) 0.522 0.626 0.688 0.911 1.113 1.40
(6,2,1) + 0514 —  0.573 + 0714 + 0955 1.132 — 1.539
(3.3.1) + 0484 —  0.599 + 0808 + 0971 —  1.009 + 1203
4,3,1) 0.473 0.596 0.827 0.964 1.060 1.291
(5,3,1) + 0.491 + 0.623 —  0.752 + 0928 - 1122 — 1378
D(4,4,1) 1 0.461 4 0.582 3 0914 1 0.986 2 1.026 3 1.312
A(2,2,2) 1 0.559 3 0.629 3 0.629 3 0970 3 0970 1 1.113
(3,2,2) + 0.556 — 0.616 + 0.674 —  0.955 + 1.015 + 1.224
(4.2,2) + 0.544 —  0.609 + 0.720 — 0946 + 104 + 1.347
(5,2,2) + 0.567 —  0.600 + 0.680 —  0.967 + 1056 + 151
F(6,2,2) 3 0.586 3 0.586 1 0.629 3 1.032 3 1.032 1 1.672
(3,3,2) + 0.553 —  0.596 + 0.722 + 0987 — 1.014 + 1335
(4,3,2) 0.531 0.599 0.762 0.987 1.037 1.43
(5,3,2) + 0.539 + 0.619 - 0.722 + 0.980 —  1.049 — 1524
D(44.2) 1 0.530 4 0587 3 0.809 1 1.004 2 1.030 3 145
A(3,3,3) 3 0.605 3 0.605 1 0.681 3 1.016 3 1.016 1 145
(4,3,3) + 0.575 —  0.633 + 0.710 —  1.015 + 1.031 + 1.549
F(5,3,3) 1 0.554 3 0.676 3 0.676 3 1.020 3 1.020 1 1.652
D(4,4,3) 4 0.606 1 0.610 3 0717 1 1.025 2 1.033 3 1.596
P(444) 4 0.647 4 0.647 4 0.647 3 1.033 3 1.033 4 1725

limited number of points in the Brillouin zone at which
calculations have been carried out, this density-of-
states would be necessarily crude. In order to obtain a
more meaningful density of states, a simple interpola-
tion scheme has been devised. This scheme approxi-
mates the nth-band eigenvalue for an energy-band state
whose wave vector lies within a given cubic subzone by
a weighted average of the nth-band APW eigenvalues
at the cube corners. This method is such that along a
cube edge, the interpolation is linear, on a cube face, it

is planar, and at the cube center, the weighting factors
are equal.

This interpolation scheme is admittedly poor along
symmetry directions and in symmetry planes because
it does not allow states with different symmetry to cross.
However, as the mesh is reduced, a large proportion of
wave vectors fall at general points in the Brillouin zone
where such crossings are forbidden. Therefore, the
results of such an interpolation scheme are expected to
reproduce the gross features of the actual density of
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states. However, some of the peaks and singularities
in the actual density of states may be broadened or
washed out completely in the interpolation procedure.

The results of the density-of-states calculations for
W; and W, are shown in Figs. 5 and 6, respectively.
These figures result from calculations involving 221,
184 points in the Brillouin zone. Decreasing the total
number of points to 65, 536 causes little change in the
results. From Figs. 5 and 6, the Fermi energies for W,

and W, are 0.850 and 1.155 Ry, respectively, as indi-
cated by the dashed horizontal lines of Figs. 3 and 4,
respectively.

Using the energy-band results tabulated in Table II,
the nonrelativistic Fermi surfaces for W; and W3 have
been calculated in the (100) and (110) planes, and these
are shown in Figs. 7(b) and 7(c), respectively. For com-
parison, the corresponding Fermi surface which results
from Wood’s iron calculations is drawn [ 7 (a) ], assuming
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six occupied electronic states per atom. In computing
the Fermi surfaces in Figs. 7(a), 7(b), and 7(c), graphical
interpolation has been used along symmetry and non-
symmetry lines in the (100) and (110) planes to map
out the Fermi surfaces as precisely as possible.
Convergence studies indicate that the APW eigen-
values for tungsten converge at approximately the same
rate that Wood found in iron.!s Sufficient APW basis
functions have been included in the present calculations
for tungsten to ensure convergence to 0.001 or 0.002 Ry
at symmetry points, along symmetry lines, and in
symmetry planes in the Brillouin zone. For convenience,
the number of basis functions has been restricted for
calculations at general points in the Brillouin zone such

that these eigenvalues converge to approximately
0.004 Ry.

IV. SPIN-ORBIT COUPLING

The size-effect results of Walsh and Grimes indicate
that the electron ‘“jack” and hole “octahedron” are
separated by a gap along (100) which is equal to
approximately 5%, the T'H distance. This gap has been
attributed to spin-orbit splitting of the A; state at the
Fermi energy in tungsten.!®* By means of a simplified
tight-binding calculation involving the present W;

energy bands, it has been possible to estimate the 5d
spin-orbit coupling parameter in metallic tungsten to
be approximately 0.03 Ry (0.4 eV). A similar approach
has been used by Friedel et al. to study spin-orbit effects
in the face-centered cubic transition metals.?6

The effects of spin-orbit coupling on the W energy
bands along A are shown in Fig. 8. In Fig. 8(a), the
nonrelativistic results of Fig. 3 are replotted, using the
double-group notation to label the various states.?”
From Fig. 8(a), it is clear that four energy bands cross
the Fermi energy, three with A; and one with Ag sym-
metry. The upper and lower A states would also cross
the Fermi energy if they were not repelled by s-d mixing.

It is possible to obtain a semiquantitative estimate
of these spin-orbit effects by assuming tight-binding 54
wave functions for the Ay, Aj; and A, states. If it is
further assumed that these 5d wave functions have the
same radial function Psq(r), then the spin-orbit effects
can be described in terms of a single spin-orbit param-
eter £50. Along (001), the Ay, As, and A, tight-binding
wave functions can be characterized by the poly-
nomials xy(Ax), 2z, yz(As), and (x2—9?)(A,), respec-

2 J. Friedel, P. Lenglart, and G. Leman, J. Phys. Chem. Solids
25, 781 (1964).
27 R. J. Elliott, Phys. Rev. 96, 280 (1954).
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Fi1G. 6. Density of states for tungsten based on the W results.

tively. Using the coupling coefficients tabulated by
Koster ef al.2® to form functions which transform irre-
ducibly under the double-group, it is straightforward to
calculate diagonal and off-diagonal matrix elements of
the spin-orbit operator Hy,=£(r)l-s among these func-
tions. Neglecting off-diagonal matrix elements, it is
found that

E(A7)=E(As)+3¢54,
E(As)=E(As)—3&sa.

The corresponding calculation at I' (or H) yields the
result

¢Y)

E(7+)=E(T2s)+£sq,
E(Ts+)=E(ys))—3&sa.

The Hamiltonian matrix for the A; states has the
following form when £;45%0:

@

E(Ay) (V2/2)&5a — 54
V2/2)Esa E(As)+38sa (V2/2)Esa. 3)
—&sq (V2/2)&sa E(A,)

By means of a unitary transformation, this matrix can

8 G. F. Koster, J. O. Dimmick, R. G. Wheeler, and H. Statz,
Properties of the Thirty-Two Point Groups (MIT Press,
Cambridge, Massachusetts, 1963).

be reduced to its proper form at I' (or H):

E(T95)+£5a 0 0
0 E@)—%8a (/6/2)sa|. (4)
0 (V6/2)&sa E(Ty)

The first row and column represent the I'7+ state, while
the remaining two rows and columns correspond to
I'y+ states. The corresponding matrix for the Ag states
is complicated by s-d mixing. Since the Ag states do not
cross, it is reasonable to assume that the effects due to
off-diagonal spin-orbit matrix elements connecting the
central Ag state with the upper and lower ones cancel
approximately and can be neglected.

The three-by-three secular determinant for the A;
states has been solved as a function of £54. It has been
found that the gap Ak between the central Ag and A;
states at the Fermi energy is 59, the I'H distance when
&5q is approximately 0.03 Ry. The results are shown in
Fig. 8(b).

The upper A7 state barely crosses the Fermi energy
when £;2~0.03 Ry. This state produces the ‘““lenses”
within the “necks” of the electron “jack.” Spin-orbit
coupling reduces the size of these ‘“lenses,” separates
these “lenses” from the “necks” in the (100) and (110)
planes, and could cause the “lenses” to disappear
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B — N FiG. 7. Central (100) and (110)
cross sections of the chromium-
(c) (a, b, ¢)- and vanadium-(d, e, f)-
group Fermi surfaces, calculated

using energy bands for iron
(a') d)) wl(b; e); and Wz(C, f)y
respectively.

entirely in tungsten. However, spin-orbit coupling is not
expected to have any other important consequences in
tungsten as far as the topology of the Fermi surface is
concerned.

V. FERMI SURFACE IN VANADIUM-
GROUP METALS

The fact that the three model Fermi surfaces in
Figs. 7(a), 7(b), and 7(c) are qualitatively similar con-
firms Lomer’s suggestion that the basic Fermi-surface
topology for the chromium or group-VI transition
metals is relatively insensitive to small changes in the
band structure.! In the case of the group-V transition
metals, the situation is somewhat more delicate since
the Fermi energy is expected to fall near the energy-
band state with I'ss» symmetry, E(Iss). Small changes
in the band structure could lead to vastly different
Fermi surfaces. Experimental data for the group-V
transition metals is limited, due to the lack of pure
single crystals.

Nevertheless, it seems worthwhile to discuss the
Fermi surface for group-V transition metals which
results from the present nonrelativistic energy-band
calculations for tungsten, especially since it is re-
markably similar to the corresponding Fermi surface
which is obtained from Wood’s iron calculations.!s
Assuming a rigid-band model, the Fermi energies for
the vanadium-group metals (as predicted from the
present tungsten and previous iron calculations) lie
slightly below E(T's5/). The corresponding Fermi surfaces

are shown in Figs. 7(d), 7(e), and 7(f). These represent
central sections of the (100) and (110) planes in the
body-centered cubic Brillouin zone.

The topology of this Fermi surface is evident from
the three-dimensional drawing in Fig. 9. The inner and

£sg=0 £5g=003RyY
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Fic. 8. Results of a simplified spin-orbit calculation along A
for tungsten with £53=0 and 0.03 Ry.



FERMI SURFACE

Fic. 9. Proposed Fermi
surface for the vanadium-
group transition metals.

(a)

outer hole sheets are indicated in Figs. 9(a) and 9(b),
respectively. The outer sheet consists of hole tubes
along the (100) axes plus large ellipsoids at N. The iron
results predict that these ellipsoids at NV are joined by
necks along TV to the outer hole surface. Otherwise,
the three calculations predict qualitatively similar
results.

From Figs. 7(d), 7(e), and 7(f) there are points of
accidental degeneracy in the (100) and (110) planes
where the inner closed hole sheet at I' contacts the
outer, multiply connected hole surface. These de-
generacies will be removed by spin-orbit coupling.
However, they could lead to magnetic breakdown in
vanadium or niobium, where the spin-orbit coupling
parameter is smaller.

In the previous section, it was shown that spin-orbit
coupling reduces the sixfold I's;» degeneracy, and splits
this state into a doubly (I'7+) and a fourfold (')
degenerate state. From Eq. (2), the energy of the I's+
state E(Tg+)=E(T'25)—3&5q4 if the off-diagonal matrix
element connecting the two I'y+ states is neglected.
Therefore, spin-orbit splitting of the I's; state, which is
presumably of the order of 0.03 Ry for the 54 transi-
tion metals, could push I's+ below the Fermi energy in
tantalum. In terms of Figs. 7(d), 7(e), and 7(f), this
would extend the dotted region into I', producing a
Fermi surface which consists of closed hole surfaces
about V and H in the Brillouin zone.

Preliminary magnetoresistance measurements on
tantalum by Fawcett and Reed indicate the likelihood
of open orbits along the (100) directions, though this
conclusion is only tentative at the present time In
terms of the present model Fermi surface for the group-V
transition metals, these results imply that I's+ remains

 E. Fawcett and W. A. Reed (private communication).
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above the Fermi energy in tantalum, and the Fermi-
surface topology is qualitatively similar to that shown
in Figs. 7(d), 7(e), 7(f), 9(a), and 9(b) with the acci-
dental degeneracies removed by spin-orbit coupling. In
addition, recent high-field Hall-effect measurements in
normal niobium by Reed, Fawcett, and Kim?3 show that
the density of carriers equals one hole per atom, a
result which is also consistent with this model.

VI. DISCUSSION OF THE RESULTS

The nonrelativistic energy bands for tungsten are
very similar to those found previously using the APW
method for the body-centered cubic 3d transition
metals,!®% aside from a substantial increase in the d
bandwidth. This increased bandwidth can be attributed
to increased overlap of the 5d functions. Comparing the
Hartree-Fock-Slater atomic 3d and 5d wave functions
for chromium and tungsten, respectively,? we find that
the 5d radial functions are more extended than the
relatively compact 3d functions. In order to determine
the relative bandwidths for the 3d, 4d, and 5d group-VI
transition metals, limited APW calculations have been
performed for (nonmagnetic) chromium and molyb-
denum, assuming (d)3(s)! atomic configurations and
using the methods described in Sec. II to calculate the
corresponding potentials. Taking the energy difference
Ay=E(H:)— E(H12) as a measure of the d bandwidth,
Ag4 values of 0.51, 0.68, 0.77, and 1.04 Ry are obtained
for Cr(3d), Mo(4d), W1(5d), and W, (5d), respectively.
The large difference between the W; and W, 54 band-
widths indicates the extent to which this parameter
depends on the potential.

The neglect of relativistic effects in the present energy-

®W. A. Reed, E. Fawcett, and Y. B. Kim (to be published).
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Fic. 10. Central (110)
section of the tungsten
< Fermi surface, comparing
\ the experimental dimen-
) sions (solid lines) with those
! calculated from the iron
b (2), W1 (b), and Ws ()
/ energy bands  (dashed
lines).
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band calculations for tungsten represents a serious
deficiency. Herman and Skillman have indicated the
importance of mass-velocity and Darwin corrections
in the heavier atoms.”? Herman ef al. have shown that
these corrections for the outermost s and p electrons
can be very large in tetrahedrally bonded semicon-
ductors.3! Clearly, these same corrections represent an
important factor in determining the correct s-d energy
separation in metallic tungsten as well. Owing to the
ad hoc nature of the potentials which have been used in
the present calculations for tungsten, the uncertainty
in the nonrelativistic s-d energy separation is comparable
in magnitude with these relativistic corrections. In view
of this situation, it is reasonable to neglect these
relativistic corrections. However, it is necessary to keep
in mind that any detailed agreement between theory
and experiment could be fortuitous, owing to cancella-
tion of errors.

It would be interesting to apply the Slater-Koster
tight-binding interpolation scheme® to tungsten since
the simplified treatment of spin-orbit coupling that is
described in Sec. IV could then be applied at more
general points in the Brillouin zone. Our attempts to
apply this method to the tungsten energy bands indi-
cate that a large number of parameters would be re-
quired in order to obtain an accurate fit. For example,
if five tight-binding parameters are chosen to fit the
state with A; symmetry at T, H, and three evenly
spaced points along A in the W, calculations, the tight-
binding results at the remaining points along A differ
from the APW results by as much as 0.01 Ry. This
implies that either a large number of tight-binding
parameters are required to fit the tungsten 5d bands or
the shape of the A; band is affected by 6p-5d interac-
tions. The latter alternative would complicate the
simplified treatment of spin-orbit coupling that is
presented in Sec. IV and vitiate our estimate of the
spin-orbit parameter £5q4.

3 F. Herman, C. D. Kuglin, K. F. Cuff, and R. L. Kortum,
Phys. Rev. Letters 11, 541 (1963).

3 ], C. Slater and G. F. Koster, Phys. Rev. 94, 1498 (1954).

(c)

Comparisons between the theoretically and experi-
mentally determined Fermi surfaces in tungsten do not
test critically the accuracy of the present calculations.
This is clear from Figs. 7(a), 7(b), and 7(c), where the
nonrelativistic Fermi surface is found to be rather
insensitive to the d bandwidth. There are some features
of the Fermi surface which provide indirect information
about the 5 bandwidth and the s-d energy separation
in tungsten. However, accurate relativistic calculations,
including spin-orbit coupling, would be required in order
to extract this information reliably.

The most useful experimental information about the
larger pieces of Fermi surface in tungsten have been
obtained by Walsh and Grimes, using the size-effect
technique.”? Their results, which map out the linear
dimensions of portions of the electron “jack’” and the
entire hole “octahedron” in a (110) plane in tungsten,
are indicated by the solid lines in Fig. 10. These size-
effect results are in excellent agreement with the recent
magnetoacoustic data of Jones and Rayne.® The
ellipsoids at N are also drawn in with solid lines in
Fig. 10, using the dimensions obtained by Sparlin from
his de Haas-van Alphen results.'” The dashed lines in
Fig. 10(a) represent the Fermi surface for chromium-
group metals that is obtained from Wood’s iron cal-
culations.’®* The corresponding dashed lines in Figs.
10(b) and 10(c) are the Fermi surfaces obtained from
the present W; and W, calculations, respectively.

The agreement between the measured and calculated
Fermi surface dimensions in the (110) plane is fairly
good. As described in Sec. IV, the fact that the electron
“jack” and hole “octahedra’ fail to touch along A is
readily explained in terms of spin-orbit coupling. Spin-
orbit coupling also causes the “lenses” inside the ‘“‘necks”
of the electron “jack” (which are omitted from Fig. 10)
to be reduced in size and perhaps removed entirely in
tungsten.

The dimensions of the hole ellipsoids at N are de-
termined by the energy difference between E(Ny)
and the Fermi energy. Since Ny’ is primarily a 6p state,
this energy difference depends on the energy separation
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between the s-p and d bands. In the W; calculation,
E(Ny) is approximately 0.13 Ry above the Fermi
energy and the dimensions of these ellipsoids are large.
In the W, calculation, this energy difference has been
reduced to 0.025 Ry with a corresponding reduction in
the ellipsoid dimensions. Sparlin has deduced that the
major axis of these ellipsoids is along (100), with the
minor axes along (110).17 This result is consistent with
the present calculations, which also predict that the
larger and smaller of the minor axes are in the 'V and
HAN directions, respectively.

Assuming parabolic bands and using experimentally
determined cyclotron masses, Sparlin has estimated
that E(Ny) is approximately 0.28 eV (0.02 Ry) above
the Fermi energy in tungsten. Using either the W, or
W, energy-band results, a surface of constant energy
which is 0.02 Ry below E(N,/) predicts axes for the
general ellipsoids which are within a few percent of the
values obtained by Sparlin.

ENERGY (RYDBERGS)

According to Fig. 7, the dimensions and shape of the
hole “octahedron” at H are relatively insensitive to the
details of the band structure. This is not true for the
electron “jack” at I'. Changes in the s-d energy separa-
tion and the d bandwidth affect the relative sizes of the
octahedral body and the balls which make up this
“jack.” It is found that the position of the ‘“neck”
along A is approximately proportional to the d band-
width. The size-effect results suggest that a plane
through a “neck” intersects the A axis at a distance from
T which is 279, of the T'H distance. In terms of the
present nonrelativistic results, this implies that the
actual 54 bandwidth in tungsten is closer to that
predicted by the W, rather than the W, calculations.

An accurate calculation of the cyclotron masses for
orbits on the larger pieces of Fermi surface in tungsten
is difficult due to the small number of points in the
Brillouin zone at which energy-band results have been
obtained. Although graphical interpolation is adequate
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for estimating Fermi-surface dimensions and areas in a
given plane, the rate of change of area is more difficult
to estimate using these techniques.

An approximate calculation of the cyclotron mass
has been made for the extremal orbit around the hole
“octahedron” at H with the magnetic field in a (100)
direction. The calculated values for m./m, are found to
be 0.93 and 0.82 for W; and W, respectively, with an
estimated error of about 109}. These masses have been
measured by Walsh® and Sparlin,’” who find values of
1.02 and 1.06-1.11, respectively. By comparison,
Wood’s energy bands for iron predict m./m¢=>1.63.
Whether the discrepancies between the calculated and
experimental values for this cyclotron mass are due to
the neglect of relativistic effects, overestimation of the
5d bandwidth, or electron-phonon effects is still
uncertain.

The similarity between the density of states for W,
(Fig. 5) and W, (Fig. 6) suggests that the gross features
of the density-of-states curves for body-centered cubic
transition metals are only slightly affected by appre-
ciable changes in the d bandwidth. This similarity is
further reflected by the density-of-states curve for
iron which is shown in Fig. 11. This density of states
has been calculated using the interpolation procedure
that is described in Sec. IIT and Wood’s energy-band
results. This density of states for iron is similar to one
obtained by Wohlfarth and Cornwell,* which also was
based on Wood’s results. However, Wohlfarth and
Cornwell fitted these results using the tight-binding
interpolation scheme. Using thirty parameters to
represent the 4s, 4p, and 3d bands, Wohlfarth and
Cornwell have calculated a density of states which
exhibits many sharp peaks. Most of this fine structure
in the density of states has been presumably lost in the
present calculation as a result of the relatively crude
interpolation procedures that have been used.

Assuming a rigid-band density-of-states model for
the body-centered cubic transition metals, the combined
results of Figs. 5, 6, and 11 suggest that there are three
peaks in the density of states below the Fermi energy
for the group-VI transition metals. Above the Iermi

% W. M. Walsh, Jr. (private communication).
# E. P. Wohlfarth and J. F. Cornwell, Phys. Rev. Letters 7,
342 (1961).
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energy, there is a relatively broad peak, with a fairly
sharp spike near the top of the d band. Measurements
of the specific-heat coefficients v for the 3d, 4d, and 5d
transition metals and alloys by Cheng ef al.,** Morin and
Maita,? and Bucher ef al.,*" respectively, indicate the
presence of the first peak in the density of states below
the group-VI Fermi energy. Outside this range, struc-
ture changes prevent any detailed comparisons with
experiment.

In the case of tungsten, a recent measurement of vy
by Maita, using a sample with a resistivity ratio of
20 000, has been reported by Geballe.®® Maita finds
v=2.0X10"* cal/mole~! deg—2, which corresponds to a
density of states at the Fermi energy NV (0)=0.18 states
of one spin/eV atom. This result is in fair agreement
with the values of approximately 0.28 and 0.16 states
of one spin/eV atom that are obtained from the present
W, and W, calculations, respectively.

In conclusion, the fact that these nonrelativistic
energy-band results for tungsten are in good qualitative
agreement with experiment leads to the hope that
approximate energy bands and Fermi surfaces for other
5d transition metals can be calculated nonrelativis-
tically. However, preliminary calculations for hexagonal
rhenium indicate a rather complicated Fermi surface
which could be severely modified by spin-orbit and
other relativistic corrections.

Note added in proof. The results of relativistic energy-
band calculations for tungsten, [T. L. Loucks, Phys.
Rev. Letters 14, 693 (1965)], are in good qualitative
agreement with the present results.

ACKNOWLEDGMENTS

The author is grateful to W. M. Walsh, Jr. and
J. H. Condon for helpful discussions regarding the
experimental results and their interpretation. He is
indebted to J. H. Wood for providing the APW pro-
grams that have been used in this investigation.

3 C. H. Cheng, C. T. Wei, and P. A. Beck, Phys. Rev. 120,
426 (1960).

3 F. J. Morin and J. P. Maita, Phys. Rev. 129, 1115 (1963).

3 E. Bucher, F. Heiniger, and J. Muller, Proceedings of the
Ninth International Conference on Low Temperature Physics,
Columbus, 1964 (to be published).

38 T. H. Geballe, Rev. Mod. Phys. 36, 134 (1964).



)
{5
i
)
)
d
'
'

Fic. 1. A three-dimensional stretch of Lomer’s revised Fermi
surface for chromium-group metals.



Fr16. 7. Central (100) and (110)
cross sections of the chromium-
(a, b, c)- and vanadium-(d, e, f)-
group Fermi surfaces, calculated
using energy bands for iron
(a'y d)a Wl(bs e): and Wz(C, f)r
respectively.
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group transition metals,




