
MAGN ETOACOUSTI C ABSORPTION AND FER M I SURFACE IN K A f857

Our average value of 4 is seen to be lower than the
limiting value of C =0.375 for spherical Fermi surfaces.

The values of I'y and C reported. in this work on the
magnetoacoustic absorption in potassium are believed
to represent, within the indicated experimental error,
the trend in the dimensions of the Fermi surface in
potassium. The adequacy of the independent-particle
model in the nearly free-electron approximation for
predicting the electronic structure of this alkali metal is
clearly supported by this study.
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Data of White and Woods for the thermal resistivity W of the transition metals show that g for Fe, Co,
and Ni displays an anomalous persistent temperature dependence in the region just below and through the
Debye temperature. Since S' for the nonferromagnetic transition metals is approximately constant in this
region, it is reasonable to attribute the additional temperature dependence to the well-known spin-disorder
scattering of conduction electrons. It is shown, however, that a model which treats the magnetic d electrons
as localized and neglects s-d transitions cannot account for the anomalous behavior of g, while a model
which treats magnon-induced s-d interband transitions presents a plausible explanation.

1. INTRODUCTION

HE band character of the electrons in the un6lled
d shells of the nonferromagnetic transition metals

plays an essential role in electron transport processes. "
At all but the very lowest temperatures the major con-
tributor to the ideal electrical resistivity p and the ideal
thermal resistivity 5" is phonon scattering of s con-
duction electrons into holes in the d band. ' Even at the
lowest temperatures there is evidence (although not
conclusive) that the d electrons are involved in Baber-
type4 scattering of conduction electrons.

The earliest treatment of the anomalous electrical
resistivity of ferromagnetic transition metals was given
by Mott who assumed, by analogy with the nonferro-
magnetic metals, that the role of the d band was to act
as a trap with a high density of states into which the s
conduction electrons could be scattered by phonons and
lost from the current. As the d electrons are responsible
for the magnetic properties of these metals, the number
of holes in the d band is dependent on the magneti-
zation. Although Mott's model had some of the quali-
tative features displayed by the real metals —namely,

*This work was supported by U. S. Air Force Once of Scientific
Research Grant No. AF-196-63.' N. F. Mott, Proc. Phys. Soc. {London) 47, 571 (1935); N. F.
Mott, Proc. Roy. Soc. (London) A153, 699 (1936).

~ A. H. Wilson, Proc. Roy. Soc. (London) A167, 580 (1938).' L. Colquitt, Jr., J. Appl. Phys. (to be published).
4 W. G. Baber, Proc. Roy. Soc. (London) A158, 383 {1937).

that p increases more rapidly, as a function of tempera-
ture, than for nonferromagnetic metals below the Curie
temperature T„and above T, is linear —it could not
account for some of the detailed behavior of p near and
above T..~'

Vonsovski' recognized that an important scattering
mechanism was being omitted and pointed out that the
exchange interaction between s and d electrons may
also give rise to a signihcant resistivity term. Kasuya'
developed the theory of s-d exchange interactions and
subsequently calculated the contribution of this
mechanism to p. ' The d electrons were, however,
treated as localized, an approximation which excludes
the possibility of interband transitions. We will refer
to this as the single-band model. As the exchange inter-
action may be represented as an

effective

spin-
dependent interaction between the conduction electrons
and the localized d electrons (magnetic system), the
resulting contribution to p is called the spin-disorder
resistivity p,g. Unfortunately, it is dificult to compare
the detailed behavior of p ~ as predicted by this theory
with experimental results because it is dificult to

' B. R. Coles, Advan. Phys. 7, 40 {1958).
6 P. G. deGennes and J. Friedel, J. Phys. Chem. Solids 4, 71

(1958).' R. J. Weiss and A. S. Marotta, J. Phys. Chem. Solids 9, 302
(1959).' S. V. Vonsovski, Zh. Eksperim. i Teor. Fiz. 18, 219 {1948).

9 T. Kasuya, Progr. Theoret. Phys. (Kyoto) 16, 45 {1956).
~o T. Kasuya, Progr. Theoret. Phys. (Kyoto) 16, 58 (1956);

23, 227 (1959).
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separate the contribution due to phonon scattering of
conduction electrons in any reliable way except in the
high-temperature region where p ~ is a large fraction
of the total resistivity. Nonetheless, there is reasonable
evidence of the importance of the s-d exchange inter-
action to the anomalous resistivity of the ferromagnetic
transition metals. However, it is also clear that the d
electrons are not strictly localized and whether or not
interband transitions may be omitted with impunity
remains a moot question.

In a recent study of p for Fe, Co, Ni, and Gd at low
temperatures, where spin waves are a good approxi-
mation of the magnetic spin system, Qoodings" has
shown that magnon-induced s-d interband transitions
may comprise the major part of p ~ above approxi-
mately 20'K.

In this paper we take up the effects of magnon-
induced s-d transitions on the thermal resistivity. Al-
though the eBects of spin-disorder scattering on p has
been the subject of many investigations, little attention
has been given to the associated phenomena of the
thermal resistivity and it does not seem to have been
realized. that the single-band model is apparently in-
adequate to account for the experimentally observed
behavior of 8' for Fe, Co, and Ni in the region near the
Debye temperature, e~.

A review of the data of White and Woods~ shows that
the temperature dependence of 8' for the ferromagnetic
metals is similar to that of the nonferromagnetic metals
over the range 20'K to approximately T O~n/2, in-
creasing roughly as T'. However, above T=8&/2, W
for the nonferromagnetic metals undergoes a change of
slope, becoming constant and reaching its full value
near T= e~. 8' for Fe, Co, and Ni„on the other hand,
undergoes a change of slope near T 8 /2abut main-
tains a persistent temperature dependence through the
Debye temperature. Above this region the situation is
not clear because there does not seem to be data for W
extending to high temperatures. As the only difference
between these two types of systems is that the ferro-
magnetic metals have an additional scattering mechan-
ism, the difference in the behavior of 8' may be rea-
sonably attributed to the spin-disorder scattering. A
rough estimate of the persistent temperature depend-
ence above T/8&=0. 5 may be given by the parameter

gW=(W(T/8n= 1)—W(T/O~g&=0 5)j/
W(T/On= 0.5) . (1)

For the nonferromagnetic transition metals 68' is
approximately 0.05 as compared to 0.3 for Fe, Co, and
Ni. It is easily shown, however, that TV ~ for these
ferromagnetic metals computed on the single-band
model is constant over the range 20 to 300'K and
cannot therefore account for the persistent temperature

"D.A. Goodings, Phys. Rev. 132, 542 (1963).» G. K. White and S.B.Woods, Phil. Trans. Roy. Soc. London
A251, 273 (1958).

dependence observed experimentally. Moreover, a rep-
resentative calculation for Ni shows that TV „=0.02
cm deg/W which is only 3%%uo of W~~~(T/8+=0. 5).
See Appendix A. Clearly, then, a modification of the
single-band model must be considered if the anomalous
behavior of 5' is to be understood.

It is informative to brie6y inspect the approximations
made in the development of the s-d interaction theory. '

In the Hamiltonian of the systexn of conduction
electrons (in our case s electrons), tightly bound elec-
trons (in our base d electrons), and ions, the terms
which give rise to the spin-disorder resistivities are the
exchange interaction between s and d electrons. In
second quantization notation these terms are repre-
sented by

where t~, I2, t3, and I4 refer to s and d states and v and p
to the corresponding spin states.

Restricting our consideration to terms which give
rise to an eGective s-electron-spin —d-electron-spin inter-
action, only the terms for which at least one f refer to
an s state and one t to a d state are important. In the
Ref. 9 two important approximations were made:

(a) the d states are represented by localized atomic
functions,

(b) terms which represent transitions of conduction
electrons into undlled d states were neglected.

The terms for which tj and t2 are s and d states and t3
and $4 are s and d states give rise to the well-known
Kasuya s-d interaction Hamiltonian. In this paper we
consider the relaxation of the above constra, ints in two
separate cases.

Case 1: In order to assess the importance of the
localized d approximation we attempt to take account
of the band character of the d electrons by use of an
arti6ce. The d electrons are assumed to be separable
into two types, localized and nearly free. Transitions
of the type s ~ dg are admitted but not s ~d~, ~;..d.
In this way we construct a two-band model of the
conduction electrons and allow Mott type s ~ d tran-
sitions. In this paper, however, we will only consider
magnon-induced transitions.

Case Z: The localized d electron approximation is
retained but s —+ d localized transitions are admitted.
These transitions give rise to Anderson-Clogston co-
valent admixtures. "Such a model has been considered
by Kondo" in an investigation of the g shift and
anomalous Hall e8ect in Gd.

Clearly an accurate treatment of the problem lies
somewhere between the two cases sited above. How-
ever, it is our concern in this investigation only to

"P.W. Anderson and A. M. Clogston, 3ull. Am. phys. Soc. 6,124 (1961),P. W. Anderson, Phys. Rev. 124, 41 (1961).'4 J. Rondo, Progr. Theoret. Phys. (Kyoto) 28, 846 (1962).
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point out what we feel is the cause for the anomalous
behavior of W.

In Sec. 2 the method by which the thermal resistivity
is obtained is discussed, namely by the application of
the variational principle to the Boltzmann equation.
Although this method is more completely described in
another work, " we present it here in the interest of
continuity but principally in order to introduce a
systematized notation developed by Goodings that we
shall adopt. Although we shall be concerned principally
with the thermal resistivity at low temperatures (which
requires the consideration of inelastic scattering proc-
esses) we also present the results for the electrical
resistivity.

In Sec. 3 the results of Sec. 2 are applied to the two-
band model of the conduction electron and p ~ and
W „are computed at low temperatures where spin
waves are a good approximation of the magnetic
system. Our results for p ~ are different from those of
Goodings in that inelastic scattering effects are included.
W „is shown to reduce to Kasuya's result at lowest
temperatures —as it must when s —+ d transitions are
frozen out—but increases by an order of magnitude as
the temperature is increased above a critical value
determined by the momentum gap between the s and
d Fermi surfaces. Using this momentum gap as a
parameter, W ~ made be made to reproduce the tem-
perature dependence of W observed experimentally
near the Debye temperature.

In Sec. 4, p,~ and 8' ~ are computed for case II
of our approximation. It is shown that although the
Anderson-Clogston s-d admixtures may effect the
necessary temperature dependence of W ~ to repro-
duce the slope of W observed near T=0~~, the esti-
mates of the s-d exchange interaction require are an
order of magnitude too large.

2. THE VAlRIATIONAL METHOD

The Boltzmann equation may be written in the
general linear form

&(k)+Z I-(k k')Lk(k') —8(k)j=0, (2)

where X)(k) represents the rate of change of the dis-
tribution function of conduction electrons due to
external fields and the second term represents the rate
of change of the distribution function due to scattering
processes. $(k) is a measure of the change of the
distribution function from its zero field, equilibrium
value, fo(k), and is defined by the equation

&fo(k)
f(k) = fo(k) —kT&(k)

~a
If we define the quantity

&o=-Z &(k)5(k)

and substitute the explicit dependence of S(k) on the
external Gelds, we obtain the relation

kT~, =Q ee(k) f,(k) S

1——P LE(k)—E(kp))8(k) f&(k) V(T), (5)
k

where f~(k)= f(k) —fo(k), E(k), and 8(k) are the
energy and velocity of a electron with momentum hk;
8 and VT are the external electric Geld and thermal
gradient.

Equation (5) may further be written as

kTeo=VJ a V(1/T—)Q VT, (6)

when J and Q are the current density and heat flux,
respectively. Thus, the electrical and thermal con-
ductivities are given by

a= (kT/V&')s'o,

E'=kTSo/oV(grad„T)'.

(7)

(g)

e(k) =e(E)LE(k)—E(ko)) co~,
where p is the angle between V'T and k.

A. The Scattering Mechanism and Notation

In Secs. 3 and 4 the above results are applied to
scattering of conduction electrons through an exchange
interaction of the form

X-—2+G(r—R„)s S„, (12)

where 8 is the spin of a conduction electron at r and
8 is the spin of a magnetic ion at R„. lt is assumed
that below approximately T= 300'K, spin waves are a
good approximation of the magnetic system and that
the important scattering processes are those in which

If we define an integral invariant 8 in terms of a
variational function C (k) as

d =—2 P S(k)C (k)—q P L(k -+ k') LC (k') —C (k)$o. (9)
k,k'

It can be shown that 8' is stationary with respect to
small variations R (k) provided C (k) satisfies the
Bojtzmann Eq. (2) and L(k ~ k') =I.(k' ~ k). Thus
I&go and has its maximum value when C(k) =g(k).
The stationary property of 8' insures a reasonable
approximation of o and k when the function C(k) is
chosen to have a form which is approximately the same
as the exact solution. For the electrical conductivity,
the variational function is chosen to have the form

C (k) =C (Eo) cos8, (10)

where 8 is the angle between 8 and k. For the thermal
resistivity, the appropriate variational function is taken
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a conduction electron is scattered from the Bloch state
Pp to fp with an accompanying spin Rip and absorption
or emission of a single magnon.

As we will be concerned with conduction electrons in
two bands, an s and a d band, in Sec. 3, it is convenient
at this point to introduce a band index 0.. The integral
invariant d defined by Eq. (9) is rewritten as

S=2 P S(ka+)C (ka+)

I.(kay ~ k'a' —)

The point of this development is that if we dehne the
quantities

S.=2 g n(ka)C (ka),

2Z = Q L(ka +k'-a) $C (k',a)—C (ka) jP, (18)
k,k', spin

OR..= P L(ka~k'a')[C(k, a)j',
k, k', spin

k,ks, a, a'
OR...= g L(ka p k'a')C (k,a)C (k',a'), (20)

XLC'(k'a' —)—C'(ka+) j'
+2 P S(ka—)C(ka —)

k, a

L(ka —~ k'a'+)

XLC (k'a'+) —C (ka —)]', (13)

where the & represent the spin quantum number of
the conduction electrons.

Kasuya took account of the spin dependence of the
energy of conduction electrons in a molecular-6eld
approximation. This spin dependence entered his results
through the parameter xo which is dehned in Appendix
A and indicated as being negligible above approxi-
mately T=20'K. Hence, we assume it is a good ap-
proximation to replace each pair of spin-dependent
functions by the single spin-independent functions
C (k,a), $(k,a), E(k,a), fp(k, a) and S (k,a). L(kaa -+
k'a'W), however, has been shown by Goodings to be
given by

kT Bfp Bfp
I.(k a~k'a'w)=P csch

2 BEy BEpp 2aTi

AS
x (G..(q) l'6 . &PE(k)—E(k')~E j, (14)

Eh

where E~ is the energy of a spin wave of wave vector q
and G .(k—k') is given by

k, k', spin

then Eq. (16), becomes

8=2S,+2K)s—(2„+OR„) (Z p—s+ORss)+2OR, s (21)

and the problem of computing the electrical and thermal
resistivities from Eqs. (7) s.nd (9) is reduced to evalu-
ating the above defined "basic integrals. "

Finally, it is necessary to write Eq. (21) in a form
such that d is unchanged if C(k,s) and C(k,d) are
multiplied by arbitrary constants c, and c&. In this way,
if we replace C(k,s) and C(k,d) in Eq. (21) by c,C(k,s)
and csC(k, d) and require that (Bd/Bc,)= (Bd/Bcs)=0
we obtain 8 in the form

(&-+OR-) &s'+2OR.s&.&s+ (&sp+ORsp) &,'
(22)

(2.,+OR„) (Z sd+ORps) —OR,P

3. THE ITINERANT d-ELECTRON MODEL

The mechanics of the calculation of the electrical
and thermal resistivities has been set up in Sec. 2 so
that all that remains is to describe the model to be used
and discuss the approximations employed to evaluate
the basic integrals.

In this section we treat a fraction of the d electrons
to be itinerant and the conduction electrons are repre-
sented by two overlapping, spherical bands at the
Fermi energy, an s band and a d band with eGective
masses es, and mg, respectively, that is

G. (k—k') =- exp/i (k k') rg—
0

Xppp. .*(r)gp (r)G(r)dr, (15)

E(k,s) = issues/2ppp„

E(k,d) = Ask'/2ppps. (24)

with 0 representing the atomic volume and Np(r) the
Bloch character of the conduction electrons. The im-
portant feature of the Eq. (14) is that the spin depend-
ence of L(ka+ -+k'a'W) is in the delta functions of
momentum and energy. Consequently, Eq. (13) may
be written in terms of the spin independent functions as

@=4p g)(ka)C (ka) —-,'Q L(ka —p k'a')
k, ks, a, a', spin

X[C (k'a') —C (ka) j'. (16)

The standard approximations are made that the
exchange interaction defined in Eq. (12) is replaced by
a delta function and the energy of spin wave of wave
vector q is E~= Dg'. One of the major approximations
made in this study is that umklapp processes are not
considered. Using these approximations, the basic
integrals may be easiIy evaluated. In Appendix 3 2
is computed for the thermal resistivity as an illustrative
example. The other integrals are computed in a similar
fashion and the results are as follows.
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Defining the functions

a42n Q R qm
csch' Iq

'"dq
6 0 2kT& 2kT&

(25)

Kasuya. This can be done by requiring n&=0 which
removes the itinerant d electrons from the conduction
band. From Eqs. (7) and (22) p is then given by

p= (Vh/AT)(z. ,/n, '). (35)
Q R ~m

csch'~ ~q '"dq (26)
»» t 2kT& (2AT

Substituting for Z„and S, from Eqs. (27) and (30),
Eq. (35) becomes

where Q is the radius of a sphere whose volume is equal
to the first Brillouin zone, kp, and k~„are the Fermi
momenta for s and d electrons, respectively, and a is
the nearest-neighbor atomic distance, we obtain the
expressions for the electrical resistivity.

where

3n VS»n, G„2) kT ' ~AT

8 N s k» ED& ' ED@)

Jg(x) =
0 (e*—1)(1—e—*)

(36)

(37)

p2nS V'kT
G .'nA '$0',

k Nkk»4a4

4g5V'kT
5K Gaa' nana4 a ~g

Xhkg. kg. ,a'

2nSV»AT
Oit...= iG...2n.n..c.c..

N kk». 'k »..2a'&

&((—Rp'+a'(k» '+k», ')Rg'j,

&a= 3~Vegan/ a,

and for the thermal resistivity

2xSV'kT
2 .= (kT)' G. 'n.'4.'

iVhkp 4u4

2
X 4&Pa'k» '—-go'+ —$0'

3 3

4n-SV'kT
OR =(kT)' — G .'n.n C '

Ekkp kp, o,'
4

y —gp+ —Rg'
3 3

2xSV'kT
OR = (kT)' G 'nn 44 ~

EkkI.k p,e'

(27)

(2g)

(29)

(30)

(31)

(32)

This expression is identical to that obtained by Kasuya
using the total balance method of solving the Boltzmann
equation. When Goodings reduced his expression for p
to a single-band, conduction-electron model he found
that his expression diGered from Kasuya's by a factor
of ~3, a fact which he attributed to the variational
method. As the method used in this investigation is the
same as that of Goodings except that inelastic scattering
effects have been included, it is now clear that this
factor arose as a result of having omitted inelastic
scattering.

Further, we find that the Lorentz number is given by

k'n'Q' ~3(&-') f Q ~'-+ 1A(&-')- -'
, +ll I

——, , (»)
32e'k», 2 J2(& ') kk», & 3 6 J2(t ')

which reduces to Kasuya's expression in the low-
temperature region and to Lo (n2/3)(k'/e) in ——the
high-temperature limit.

A. Comparison w'ith Experimental Results

This section is restricted to consideration of the
thermal resistivity as our results for the electrical
resistivity are essentially the same as those obtained
by Gooding except that we have considered the eGects
of inelastic scattering as well as elastic scattering.

Calculations of 5' have been performed for Fe, Co,
and Ni using the Eqs. (9), (22), (25), (26), and (31)
then (34) and the results are displayed in Figs. 1 and 2.

2 2
R0' a'(k» '+k»—,')R—g' — Ro'——

3 3
' "

3
FIG. i. Computed

curves of W,~ for
Fe on a two-band
model along with ex-
perimental results of
White and Woods of
the ideal thermal re-
sistivity near one-
half the Debye tem-
perature. The values
given to the left of
the curves are the
parameter

a I k», k»e [. -

7r'

+ a'(k» '+k» ')R~' — (33)
3

O

Cl
(34)50.= (2''/9) k'T(grad, T)Vn.d C. ,

20 Ioo
T (K)

where n is the density of states at the Fermi energy,
the Fermi velocity of electrons in the 0. band, V is

the sample volume, and Ã the number of atoms in the
sample.

Before making an analysis of the experimental data,
it is of interest to compare our results with those of

~ I I ~

700
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O.OI ~ a a a 1

20 lOO

T ('v, )

Fro. 2. Computed
curves of S'mal for
Co and Ni on a two-
band model along
with experimental
results of White and
Woods of the ideal
thermal resistivity
near one-half the
Debye temperature.
The values given to
the left of the curve
are the parameter
a [kr„kr„(.—

The essential features of the thermal resistivity on
the two band model may be simply summed up although
5" is 'obtained from a somewhat unwieldy expression.
Just as with Mott's original model, the d band acts as
a trap with a high density of states into which the s
electrons are scattered. Above some characteristic tem-
perature T which depends on the momentum gap
between the s and d band Fermi spheres, the contri-

"L.R. Walker, G. K. Wertheim, and V. Jaccarino, Phys. Rev.
Letters 6, 98 (2961).

'6 See, for example, J. M. Ziman, EIectrons end Phonoos {Oxford
University Press, ¹wYork, 1960), p. 127."F.Keffer, Hendbgch der Physik, edited by S.Flugge (Springer-
Verlag, Berlin, to be published). The values of D/k used in this
calculation were taken from an earlier edition and differ slightly
from the published values.

'g Charlotte E. Moore, Natl. Bur. Std. (U. S.) Circ. No. 467
(1952), Vol. 2. For example, for Fe, 2G,Q' is approximately the
difference in energy between the 3d'4s'F and M'4S'Il terms of
Fe I, S' being the unpaired d-electron spin in these terms.

'~ K. Yosida, Phys. Rev. 106, 893 (2957).

The values for the physical parameters used are given
in Table I. The values for kp, and EI were obtained
assuming one s electron per atom, " the ratio of the
density of states ez/n, from electronic speci6c-heat
data, "the values of the effective spin s, and D/k were
taken from low-temperature magnetization data. "
Reliable estimates of the parameters G... G,g, and Ggg

are dificult to obtain. Atomic spectra data' indicate
values in the range 0.2 —+0.5 eV while estimates ob-
tained by assuming the Heisenberg exchange Hamil-
tonian as given by the indirect coupling theories of
Kasuya and Vosida" give G„ 1—3 eV for G(r—R )
taken to be a square well of radii 3.0/kj and 5.0/k~
[the 8-function approximation of G(r —R ) gives a
negative nearest-neighbor exchange integral). Esti-
mates obtained from measurements of p above the
Curie temperature by using a single-band model yield
values of G„=0.7 eV. ' Clearly because of the ap-
proximations in. the theory, G., is best treated as a
variable parameter. In this work we take, for con-
venience,

G„=G,g= Gyp=0. 5 eV.

bution to the thermal resistivity due to magnon-induced
s-d transitions, W ~(s-d), is constant and a,n order of
ng/n, larger than the contribution from intraband
processes. Below T, W ~(s-d) decays exponentially
as s-d transitions become frozen out and at the lowest
temperatures W ~=W ~(s-s), the contribution from
intraband s~s scattering. For the purposes of dis-
cussion it is convenient to de6ne a cross-over region in
which t/V ~ ~ T" with n=2. The position of this region
on the temperature scale is shown in Fig. 1 to depend
on the parameter u(kz, —kp, ). This fact may be used
to explain the persistent temperature dependence of 8'
observed experimentally in the region T/O~o) 0.5 where
the contribution from phonon scattering of conduction
electrons is constant. By fitting the "knee" of the
calculated 8' ~ curves into this region an upper limit
for the parameters u(k|,—kr, ) and mq/m, may be
established. The results are presented in Table II.
Because of the neglect of umklapp processes and the
assumption of spherical energy bands, these estimates
are regarded as no more than some average Fermi-
surface property.

At the lowest temperatures, the fact that TV ~
=W ~(s-s) can be used. to obtain an upper limit for
the parameter G„. The experimental data of White
and Woods show that at temperatures as low as 20'K,
W~T and we may conclude that W)W „(s-s).
Using the values in Table I for the physical parameters
and expressions (36) and (38) we obtain the limits

TmLE L Values of physical parameters used in this calculation.

T/N Bp D/ka~ Gas
( )(10~cm') kz,o (eV) nd/n+ ('K) .S (eV)

God Gdd
(eV) (eV)

Fe
Co
Ni

1.18
1.10
1.09

3.37 7.1 10.0 545 1.06 O.S
3.47 7.3 10.3 638 0.77 0.5
3.46 7.3 15.3 701 0.27 0.5

0.5 0.5
0.5 0.5
0.5 0.5

G.,&0.52, 0.95, 0.80

for Fe, Co, and Ni, respectively.
These results are signihcant and very important to

an interpretation of the electrical resistivity at low
temperatures and shed some light on the localized d
electron approximation. At temperatures less than 10'K
p is proportional. to T' for Fe, Co, and Ni~. This
behavior has been attributed to the spin-disorder re-
sistivity. However, there are other transition metals,
viz. , lV, Pd, Pt, Nd, which also display a T' dependence
in this region. These metals are not ferromagnetic and
the T' dependence is probably due to electron-electron
scattering. 4 It is believed' that it is a good approxi-
mation to treat the d electrons in these metals as being
in a band. This is important to the electron-electron
scattering processes because signi6cant contributions
to p are made when s electrons are scattered by the
more "massive" d electrons conserving momentum
while decreasing the electron current. It has been
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Tmx.z II. Estimates of upper limits for the physical parameters
obtained from thermal-resistivity data, .

27VmSG ' kT 4 (2kT ) &

2x'krak'TE~ k~'D y-0 (Dk&'3

Metal

Fe
Co¹i 0.6

0.4
0.6

12.2
11.6
18.5

4r(4+ p) 2kT -H r(3+ p)
X Z(3yp)+

2+& DPI ~ 3 2'+&

2 I'(5+p)
XZ(2+p) —— Z(4+p), (41)

3 2'+&
shown~ that in order that p ~ be the sole cause of the
T' dependence in Fe, Co, and Ni, G„must be 3.2, 2.0,
and 9.0 eV," respectively. As the estimates for the
upper limit for G„ from the low-temperature 8" data
are less, another process must then contribute to the
T' dependence of p. If these processes are taken to be
electron-electron scattering, this is evidence of the
correctness of the two band model for the conduction
electrons.

4. THE EFFECTS OF s-d ADMIXTURES ON
A SINGLE BAND MODEL

In this section, the localized d electron approximation
is retained and the conduction electrons are taken to
lie in a spherical s band. The processes which give rise
to s-d transitions on a two-band model are treated here
by second-order perturbation theory. They give rise to
a shift in energy of the s electrons through processes in
which an s electron is transferred to a d orbital and back
into a diferent s state. Kondo'4 has shown that in
second quantization notation this energy may be rep-
resented by the effective spin-spin Hamiltonian

X-„o QAP2(cos——8&~ )s, Seal, .+aj.„
k, jr.'

(39)

3m VmSG,Q (2kT ' 2kT
pmag=

~ P Cy
4 She'Z (k 'D, Dk, ')

I'(3+p)
X Z(2+p), (40)

where A is a measure of the s-d admixtures, I'2 is a
Legendre polynomial of second order, 8~I, is the angle
between the wave vector k and k, 8, and Sg are the
spins of a conduction electron and a magnetic ion,
respectively, and ap and aI,+ are destruction and
creation operators for the s electron Bloch states g»
and f~, respectively.

This term has the same form as the s-d exchange
interaction. Thus, with the inclusion of s-d admixtures,
the calculation for p and 8' proceeds as in Sec. 3 with
G„&0& replaced by G.,&+—APq(cos8&z ). The resulting
expressions for p and 8' are given by

where F and Z are gamma and Riemann zeta functions,
respectively, and

Cp ——(1—A/G, )'
Ci= 3A/G„(1 —A/G„),
Cs=A/4G„( —3+11A/G„),
C~= —(9/g) (A/G-)'
C4= (9/64) (A/G„)'.

(42)

I.5" $0

FIG. 3. Computed
curves of 8',~ on a
single-band model
with the inclusion of
s-d admixtures for
various values of the
parameter /=A/J,
where A and J are
the s-d admixture
and s-d exchange
parameters, respec-
tively.

I.O-

D 5
gp

~

CO

0
4I
lL

p
CO

In obtaining Eqs. (40) and (41) the zone boundary
corrections were neglected and Q replaced by ~ as
this is a good approximation below T= 300 K.

In Fig. 3, 8', is sketched for various values of the
parameter A/G„= f, usi—ng the physical parameters in
Table I. The most important feature of these results
is that the inclusion of s-d admixtures (I)0) depresses
the thermal resistivity below the value obtained in the
case I =0 because of the effective antiferromagnetic
coupling caused by these admixtures. Consequently,
although s-d admixture e6'ects the necessary tempera-
ture dependence of 8' ~ at low temperatures, viz. ,8' ~O.T"with 0.75&/&1.0, the value of G„must be
an order of magnitude larger than the estimate obtained
in Sec. 3 on a two-band model if W',I is to account for
the temperature dependence observed near T=0.5eD.
Values of G„=5.0 eV and f&0.75 must, however, be
ruled out for the following reasons. Above T„s-d
admixtures enhance the effects of the s-d exchaneg
interaction on p and a value of 5 CV for G„would

+ D. A. Goodings, J. Appl, Phys. 34, 1370 (1963).~ In Ref. 20 the estimate of G„ for I quoted as 0.9 eV is in
error and should be 9.0 eV.

,06-
26 52 l04 l56 208 260

T( K)
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APPENDIX A

In this section the spin-disorder thermal resistivity
is computed on the single-band model of conduction
electrons. Kasuya has obtained expressions for p and
the Lorentz number, I., due to spin-disorder scattering
at low temperatures from which lV,N may be obtained.
Hence we take

3m m SG„' qo
p= PJo(t '—

,xo)
8 Ee' AEp kp

(A1)

produce a spin-disorder electrical resistivity an order
of magnitude larger than the total p observed experi-
mentally. "Moreover, in the lowest temperature region
if one attributes the T' dependence of p to p „ the
parameter G„of Kasuya's model must be replaced by
G„(1—A/G„) —call this 6„.As it was mentioned earlier,
in order that pT, t ~=p ~ at the lowest temperatures,
6'„must be 9 eV for Ni, while the estimates obtained
above require

G„=G„(1—f') =1 eV,

for G„=5 eV and. &=0.7.
While in the case f = 1, Eqs. (40) and (42) show that

p ~ is proportional to T' at the lowest temperatures.
Thus if I' is in the range 0.75(t'& 1, the T' dependence
of pTot,,~ observed at the lowest temperatures becomes
anomalous on the single-conduction-band model.

When Eqs. (A1) and (A2) are substituted into Eq. (A4)
the expression for 8' may at first appear formidable.
However, in the temperature region of concern, viz. ,
from 20 to 300'K, and using the parameter values
appropriate to Ni it becomes quite tame. Using the
values for the physical parameter from Table I we
obtain

t '=2280'K/T. (A5)

APPENDIX B: EVALUATION OF THE BASIC
INTEGRAL Z„FOR THE THERMAL

RESISTIVITY

Using Eqs. (17) and (21) and the sums over k to
integrals over the energy E(k) and the solid angle 0,
I.„may be written as

orosok T)
G, ,o(0) csch

Nk) + o 2kT

XB(k—k'~q)dada' P n, (E)n, (E')

Bf Bf ) 1/2

LC (k', s) —C (k,s)]'
BE BE'J

Xb(E E'WEq)dEdE—', (B1)

Thus over the range of concern t—' is suKciently larger
than unity to be replaned by oo in the J„(t ',xo) func-
tions. Similarly, if we follow Kasuya and set H, =SG..
and take G„ to be approximately 0.5 eV and using
table, we obtain

xo ——0.19'K/T,

and xo is sufBciently less than unity to be replaced by
zero in the J„functions. In this way it is found that
W ~=0.02 cm deg/W for Ni.

ka' or qo)' Jo(&',xo) Jo(& ',xo) ' where n, (E) is the density of states in the s band and
(A2) Bo. o~o has been replaced by (8x'/o)B(k —k'&q). Inte-

grating over dE' restricts E'= EWEq and we may write

J„(t ',xo)=
(e*—1)(1—e-*)

(A3)

The expression for the thermal resistivity is that ob-
tained by using the definition of I.and thus,

8'= p/I T. (A4)

where qo is the radius of a sphere whose volume is equal
to the first Brillouin zone, kp the Fermi momentum
and Ep the Fermi energy of conduction electron, Dq'
the energy of a spin wave of wave vector q, 3 a reduced
temperature k~T/Dq', xo——(1/s)L(H, /Eo) (qo/ko) O', H,
the exchange energy of a conduction electron in the
molecular field of the magnetic system, E the number
of atoms per unit volume, S the spin of a magnetic ion,
G„ the s-d exchange parameter, and. J„(t-',xo) the
transport integrals defined by

E—Ep Eq

kT 2kT

It is convenient to define the function

(B3)

E(V,Eo) —=

2kT

1

cosh'+ cosh'
I 2kT

which has the following important properties: (a) It is
even and peaked about y= 0. (b) It has an approximate
width of E, or kT, whichever is greater. It is reasonable
to assume that n, (E) and 4,. (E) are slowly varying with
respect to F yL( )E,E oijn the neighborhood of y= 0 and

(
Bfo Bfo)"' 1 ——1

cosh'+ cosh, (B2)
BEBE'/ ., 2kT 2kT

where
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may be approximated by a Taylor expansion about
E=Ep truncated after the second term. In this way
the energy function in the integral of Eq. (31) may be
written as

n. (E')n. (E)LC, (E')—C, (E)j2
I

=n,'4 ' 4E '(cos8'+cos8)'&-'E '

I zG. 4. Contour
used for the evaluate
of F integrals.

Complex y plorte

Imy*271'

—Rey
Re 7"+

X (cos'8—cos'8') +y'k'T' (cos8' —cos8)'

l

&E, (cos'8 —cos'8') +terms odd in y
C 8

dp leaves integrals of the type

Lcoshy+ coshE, /2k Tj (811)

+terms envolving products of 4.' and n, '. (85)

When the integration over dE is performed, the terms
in Eq. (81) odd in p vanish and the terms with + sign
vanish after sum over spin directions. We further
employ the approximation that terms envolving
products of first derivation of 4, and n, are negligible
with respect to the remaining terms Thu. s Eq. (31)
reduces to

to be computed. These are easily evaluated by evalu-

ating the integrals

pm+2d~

Lcoshy+ coshE, /2k Tj
in the complex plane around the contour C given in
Fig. 4. In this way Fo and F2 are found to be given by

n8$kT (Eq
g G„'(0) csch~ n, '4,' F(y,E,)

Ek ~ ~2kT

2(E,/2kT)
r,=

sinh (E,/2k T)
(312)

where
XPE '(I'+2J+I)+(ykT)2(J')]dE, (86) 2 (E,/2kT)' w (E,/2kT)

r,=- + . (313)
3 sinh(E, /2kT) sinh(E, /2kT)

2x 1 1I= — cos'tN (k—k'Tq)dQdQ'=—
3 kp'q

2x 1 1
cos'8'8 (k—k'W q)dQdQ' =—

3 kp, 'q

1
cos8 cos8'8 (k—k'Wq)dQdQ' =—

3 kp, '

(87)

(38)

Substituting Eqs. (812) and (813) into Eq. (86),
converting sum over q to integral and simplifying yields
the result

s sv'(kT)'
&8s—— ~aN (0)ne+s3,VM p,4

Q(E & (E
csch'~ 4k p 'qdq

t 2kT E2kT
g 2

X — +—,(89)
kg, ' q

(cos8' —cos8)'8 (k—k'~q)d QdQ'

2m.

q. (810)
3 kp4

+— csch' dq

csch' qdq

where Q is the radius of a sphere whose volume is equal
Changing the variable dE of integration in Eq. (36) to to the first, Brillouin zone.


