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Calculation of the Thei-ideal Conductivity of Pure Superconducting Lead~
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A calculation of the thermal conductivity of normal and superconducting lead has been performed. A
semiempirical model for the density of phonon states and the electron-phonon coupling constants is used.
The calculation is based on the strong-coupling theory worked out by Tewordt and one of the authors (V.A.).
It is found that the quasiparticle limit of this theory is valid for the calculation. The results are in fair
agreement with experiment. A physical explanation for the anornalously large drop in the thermal conduc-
tivity of superconducting lead is suggested.

I. INTRODUCTIOÃ

HK thermal conductivity of pure superconducting
lead has been considered anomalous for many

years. 'Ihe experimental situation is summarized in

Fig. 1. For typical weak-coupling superconductors like
tin and indium the curve of the reduced thermal con-
ductivity (E,/E ) against reduced temperature (T/T, )
has a small limiting slope of about 1.5. For the strong-
coupling superconductors lead and mercury the drop in
the thermal conductivity is more precipitous. Recent
experiments' on lead yield a limiting slope of about 9.

The strong-coupling superconductors are character-
ized by large electron-phonon matrix elements, and by
peaks at low energies in the density of phonon states to
which the electrons are coupled. Recently, ' it has been
possible to show unambiguously that these distinguish-
ing characteristics are responsible for the anomalously
large values in lead and mercury of the ratio of the
energy gap at O'K to the critical temperature, and for
the anomalous thermodynamic properties of these
metals. It has often been speculated that the smaller
thermal conductivity of these strong-coupling super-
conductors is another consequence of their unusual
electron-phonon interactions. However, just how this
idea might explain the great reduction in thermal
conductivity has heretofore been unclear.

In this work we report on a calculation, crude but
containing all the essential physics, of the thermal con-
ductivity of superconducting and normal lead. The
results are in satisfactory agreement with experiment.
Since the calculation is crude, the agreement is less
important than the physical explanation, which we
believe to be correct, that emerges from the calculation.
This explanation is discussed below.

Our calculation is based on a theory worked out by
L. Tewordt and one of the present authors. ' The
general theory is here supplemented by a specific model
(discussed in the next section) for the phonon spectrum

Above A is a constant discussed later, Dt(&e, T) is the
real part of the Eliashberg gap function, "T is the
temperature, P is 1/krtT where kit is Boltzmann's con-
stant, and I', (nt, T) is the quasiparticle lifetime which is
related to the parameters of the Eliashberg theory
according to"

(pZ, I'(tp) =2Z ( '—6,')—26theZt. (2)

Equation (1) has the same general form as is obtained
from a phenomenological Boltzmann equation. ' There
is however an important diBerence inasmuch as the
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F&G. 1. Reduced conductivity versus reduced temperature.
Experimental points for In from Tewordt (Ref. 6), that for Pb
from Watson and Graham (Ref. 1).

and electron-phonon coupling constants in lead. We
find that, even near the critical temperature, long-lived
particlelike excitations exist for the energies important
in thermal conduction. In this quasiparticle limit the
general formula PEq. (2.17)j obtained in Ref. 3
reduces to'

teIi te' hP (r—d, T)]'"
sech'-'Pa&. (1)

Zti', (cd, T)
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virtual effects of phonons in causing the superconduct-
ing transition have not been approximated by a model
potential but treated on the same footing as the real
transitions that scatter quasiparticles. As a result the
large value of the energy gap (in units of k&T,) is in
principle, and practice, contained in Eq. (1).

In order to bring out the physical origins of the large

limiting slope of the reduced thermal conductivity of
lead it is helpful to have a formal expression for this
slope. Such an expression follows at once from (1).The
conductivity in the normal state is obtained from this
equation by setting 6 equal to zero. Forming the ratio
E,/E and taking the derivative at the critical tempera-

ture, one easily obtains

Bt gq

dcvaPP'(co, T,)-(sech P2 ~)8/8t lnLI'„(u, T)/I', (co,2')], q

chal'P '(&u T,) sech'-,'P, ru

(3)

where we have taken the temperature derivative of Aj2

outside the integration because it is essentially constant
in the relevant region of co. The following three factors
appear to be responsible for the large slope in lead as
contrasted with weak coupling materials:

(1) The larger value of the ratio 26(0)/kBT, (4.3 for
lead as opposed to 3.5 for materials well described by
the 8CS theory) has as its corollary a larger value of the
slope —/8&8(P.d&)'~ ~ r (14.1 for lead, 9.4 for BCS).The
more rapid opening up of the energy gap in lead means
physically that the heat-carrying quasiparticles are
more rapidly frozen out. This is the most obvious cause
of the reduced thermal conductivity but we see that
taken by itself it by no means suflices to explain the
large effect.

(2) The quasiparticle lifetime (I' ') decreases more
rapidly with frequency in lead than in weak coupling
materials. This effect has its origin in the small density
of low frequency phonons in lead and is discussed
further in the last section. Here it suKces to note that
the ratio of integrals multiplying 8/R(DP) in (3) is the
larger the more rapidly I' ' decreases e ith frequency. In
loose physical terms one can say that in all materials
the advent of the energy gap suppresses the carriers
that are most weakly damped, and are thus most
efBcient in carrying energy. In lead our calculations indi-
cate that this suppression is particularly effective. For
the ratio of integrals mentioned we find a value of about
1.1. For the model of Debye phonons and "jellium"
matrix elements worked out by Tewordts the ratio is
about 0.5.

(3) The ratio I'„(~,T)/I'. (co,T) decreases for lead
when T decreases below T, so that the last ratio of
integrals in (3) is positive. The sign of this term appears
to be connected with the coherence factors that go into

a calculation of the relaxation rate for a quasiparticle
in a superconductor. In our model the dominant relaxa-
tion process is one in which two quasiparticle excitations
annihilate, emitting a phonon. This gives a positive sign.
The other two kinds of processes (scattering of quasi-
particles with phonon emission and absorption) give the
opposite sign, as is discussed in more detail later. Our
calculation gives for the term in question the value 3.5.
Working backwards from the final slope obtained in
Ref. 6 one can conclude that for the model used in this
reference the ratio is negative and approximately —0.9.

Although no one of the three factors discussed above
is large enough to account for the effect, taken together
they change the slope (of 1.6) obtained in Tewordt's
model (in which the virtual processes are accounted for
by the BCS model and the real processes by a Debye
spectrum of longitudinal phonons coupled to the elec-
trons by "jellium" matrix elements) to the large value
11.As will be seen there is no reason to trust our model
of lead to better than 20% so tha, t the agreement must
be regarded as sa,tisfactory.

In the next section we brieQy discuss and criticize the
model we have used. The calculations are the topic of
Sec. III. The last section contains some further discus-
sion of the results. In the Appendix, corrections to the
scattering rate due to the disequilibrium of other modes
(so called "scattering in" c,orrections) are estimated and
found to be small.

II. THE MODEL

The calculation has as its primary ingredients the
frequency distributions of phonons of polarization
XLF&, (&o)] and the coupling constants aq(co). We use,
with no further adjustments, a model introduced re-
cently by Swihart, Scalapino, and %ada. ' This model is
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FIG. 2. phonon
spectrum used in
present calculation.

For the reasons given above we believe that the
physical arguments given in the Introduction will
survive a better model. When a better spectrum is
available, further calculations to test this belief are
planned.

III. CALCULATIONS
2.I5 4.4

in lO cY

' J.R. SchrieBer, D. J. Scalapino, and J.W. Wilkins, Phys. Rev.
Letters 10, 336 {1963).

II W. L. McMillan and J. M. Rowell, phys. Rev. Letters 14, 108
{1965).

a slight modification of that used by Schrieffer, Scala-
pino, and Wilkins. The distribution functions are taken
to be cut-off Lorentzians whose positions and widths are
chosen semiempirically. (Details are given in the
Appendix. ) The coupling constants are taken to be
independent of frequency and equal. The value is ad-
justed to 6t the gap edge of O'K in absolute units. This
model has been shown in Ref. 8 to give excel)ent agree-
ment with tunneling data. 'The critical temperature has
been calculated in Ref. 2 by numerically solving the
Eliashberg equations using the model for Fx(co) and
px(cu) and extrapolating the curve of Lhi(62, T)]2 to
zero. The critical temperature so calculated is in excel-
lent agreement with experiment.

Figure 2 shows the phonon spectrum used in these
calculations. We note that there are no longitudinal
phonons below 7 millielectron volts (meV) and no
phonons whatever below 2.15 meV. Although the model
is extremely crude we believe it to have a certain
validity even for our region of interest which is energies
of a few times the critical temperature (in energy units
0.6 meV) of lead. McMillan and Rowell2 have been able
to invert the Eliashberg gap equations so that, using
the electron density of states from tunneling, they can
empirically determine Q&, a&2(co)F&(co). They find that
their result generally agrees with the model. In par-
ticular it is essentially zero for small co. This is explained
as follows. ' Because of the large sound velocity of the
longitudinal mode, the density of longitudinal phonons
is smaller than that of transverse phonons by a factor
of 30 for low frequencies. However, transverse phonons
can interact with electrons only by means of umklapp
processes. Since small q phonons cannot participate in
umklapp processes, aP(ca)F, (co) (t for transverse) is zero
for small co. The point of deviation of Pxu&P(co)F&(a&)
from zero may thus be interpreted as the frequency of
onset of umklapp processes. McMillan's curve is of
course not smooth. However for our purposes the addi-
tional details are not likely to be relevant. Only the
average effect of high energy virtual phonons enters into
the parameter d, &. The other important quantity, the
width F does depend on the coupling to low frequency
phonons. These have, however, not been resolved by
McMillan's method, at least in the results so far
published.

The distribution functions and coupling constants
described above, together with a pseudopotential to
simulate the screened Coulomb repulsion, have been
used in Ref. 2 to calculate the functions 62(co,T),
62(co,T), Zi(~, T), Z2(~, T). Dr. J. C. Swihart has very
kindly supplied us with tabulated values of these func-
tions as well as with calculated values in the normal
state of Zi (s&, T) and Z2„(~,T) We h.ave used these
functions for several values near the critical temperature
to evaluate the quadratures LEq. (2.17) of I]:

(4)

where

and
g„((o,T) = —22rLZ2„(~, T)]-'

I
I
I
I
I
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I
I
I
I
I

II gl(gl)
I 2.5
einlQ IV

1.5

Fro. 3. F {cy)/cg at
0.978T,.

'0 N. W. Ashcroft and J. W. Wilkins {to be published).

g (I T) ~~[fmZ(~ T)L~2 g2]1/2] —i

X(1+( '—
I
~I)2/I~2 —~2I) (6)

In the above, 6= d, j+~A2 and Z=Z&+iZ2. The quantity
A in (4), which cancels out of the reduced thermal
conductivity but is needed for absolute comparisons
with experiment, is given by

A =X(0)v22/242rkgg,

with 1V(0) the density of states at the Fermi surface for
one spin, and e~ the Fermi velocity. In principle, band
effects, as opposed to electron phonon effects, should be
included in (7).

The result of the numerical calculations for the
reduced conductivity is given in Fig. 1. As mentioned
in the Introduction we obtain a limiting slope of 11.

It is interesting to calculate in absolute units the
value of the thermal conductivity given by the present
model. Using free electron values appropriate to the
density of lead in (7) we obtain from (4) and (5) the
value 9 W/cm 'K. Recent theoretical work by Ashcrof t
and Wilkins" leads to a band mass m*=1.12m and a
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FIG. 4. h(~), Z(co) at 0.989T,. 6 in 10 ' eV; Z dimensionless.

density of states 70% of the free value. Making correc-
tions for these band effects we obtain a value of
5.6 W/cm 'K. The experimental value is 5.1 W/cm 'K.
The degree of agreement is no doubt fortuitous. "What
is relevant is that there is no disagreement as to orders
of magnitude. It is also reasonable that the calculated
conductivity should be too high, as some phonons
which limit the conductivity have certainly been
omitted.

For the superconductor the calculation was performed
using the form (6). Because Z2 and Ds are small in the
region of interest, Eqs. (4) and (6) are accurately ap-
proximated by Eqs. (1) and (2) as was verified by
explicit calculation at one temperature. The goodness
of the quasiparticle approximation is illustrated in
Fig. 3. For purposes of reference a plot of the functions

h~, ~g, Z~, and Z~ at a temperature of 0.989T, is given
in Fig. 4. One feature that is worth noting is that Z
which is the amplitude for the quasiparticle state to be
contained in the bare state, is quite small. Thus even
though the quasiparticles dominate the long time be-
havior which is relevant for the thermal conductivity,
the renormalization effects are not small. These effects
are of course automatically included in our calculation.
In Fig. 5 the co dependence of the ratio I',/I'„at the
temperature T=0.989T, is displayed. It is seen that the
ratio is approximately constant and equal to unity. The
absence of s& dependence of the ratio I',/I'„near T, was
also a feature of Tewordt's calculation as is illustrated
in the figure. An important difference (as was empha-

FIG. 7. Temperature dependence of
F„/I', at co =0.6X10 ' eV.
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the ratio I'„/I', is illustrated in Fig. 7. The positive slope
near T, was noted in the paragraph marked (3) in the
Introduction.

IV. DISCUSSION

As has already been emphasized, the effect we are
concerned with in this paper hinges on the frequency
and temperature dependence of the relaxation rate of a
quasiparticle. The relaxation processes have been ex-
tensively discussed by Tewordt. Figure 8 illustrates the
possible processes. The processes marked 1 and 2 corre-
spond to the scattering of a quasiparticle into another
quasiparticle state with the emission or absorption
of a phonon. As is well known, a sum of one-body
operators can also cause two quasiparticles to annihilate,

FIG. 6. Lifetime as function of co for T=0.989T,.

sized in the paragraph marked (2) in the Introduction]
is the co dependence of LF(~)) '. This is shown (again
for T=0.99T,) in Fig. 6. As can be seen this function
drops o6' considerably more rapidly in our model than
in the Debye model. The temperature dependence of

FIG. 5.F,(co)jF„(a))
0.989T, for present
spectrum and for I'n (ce)
Debye spectrum.
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"The agreement can be made less embarassingly good by
using the value determined semiempirically in Ref. 8 of E(0)
=0.88K (0)f„,.

FIG. 8. Relaxation of
quasiparticles by inter-
action with phon ons.
Processes 1 and 2 repre-
sent scattering of a
quasiparticle into an-
other by phonon emis-
sion or absorption. Proc-
ess 3 represents annihi-
lation of quasiparticles
to form a ground state
pair.

Ei
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forming a ground state pair and emitting energy (in our
case as a phonon). This process is represented by the
arrows marked 3 in Fig. 8. (Here we have chosen to
represent the initial second quasiparticle with energy
E' as a final particle with energy E'.—) For our purposes
we are interested in excitation energies of a few kT, (i.e.,
in the neighborhood of 1 meV), and temperatures near
T,. At these temperatures very few phonons are
thermally excited because the phonons have energies
greater than 2 meV. Phono@ absorption processes are
therefore negligible. Phonon emission processes of the

type 2 are also negligible because there are no phonons
available with small enough energies. The dominant
processes are thus of type 3. Let us first discuss the
frequency dependence at the critical temperature. The
analogue in the normal state of processes of type 3 are
those in which particles above the Fermi surface are
scattered into particle states below the Fermi surface.
This process is governed by the availability of final
states, i.e., we expect the frequency dependence roughly
to correspond to a Fermi factor f(8.(coo co)) whe—re coo is
a characteristic phonon frequency and ~ is the excita-
tion energy. Taking coo 2 meV, P, 0.5 meV we see that
the relaxation rate is expected to fall by one order of
magnitude as ~ is increased from zero to 1 meV. Refer-
ence to Fig. 5 shows that very roughly this is indeed so.

Now we consider the temperature dependence of the
ratio P,/P„. Processes of type 3 have going with
them the coherence factor -', $1—(ea' —LP)/EE'j where
6=Ii /2m 4ii an—d E= (e'+&')U' correspond to the de-
caying particle, and e' (positive or negative) and
E'=+a"+6' to the second quasiparticle entering the
process. "As a result of averaging over positive and neg-
ative a' the coherence factor reduces' to -', (1+LB/EE').
The temperature dependence of I',/I' is contained in
distribution functions and in A. For the quantity
8/Bt lnr I',/I'„j, i, which enters the expression (3) for
the limiting slope, only the dependence on 5 survives.
Consider the e6ect of slightly reducing the temperature
(or increasing 6). Clearly the coherence factor increases.
The quantity 5 also enters the expression for F, through
density of state factors and as the lower limit (E+LL)
for integration over phonon energies. Because the
phonon energies are large on the scale of 6 these eAects
are unimportant. The increase in the coherence factor
therefore implies an increase in I',/F„as T is decreased
below T,. This is in agreement with our detailed calcul-
ation. As mentioned in the introduction it appears that
in the Debye model the opposite temperature depen-
dence is obtained. In this connection it is probably rele-
vant that the coherence factors for processes 1 and 2,
after averaging over e', are -', (1—c9/EE').

"For a physical discussion of the origin of the coherence factors,
see J. R. Schrie8er, Theory of 5epercondletieity (%. A. Benjamin,
Inc. , New York, 1964), Secs. 3-5. In the quasiparticle limit of the
strong coupling theory the coherence factors contain Z~. I See
Ref. 6, Kq. (3.5)j.The physical argument given above is however
unchanged.

In summary, the two effects described above together
with the rapid increase of 6~2, as the temperature is
reduced below the critical temperature, appear to us to
be responsible for the large limiting slope of the reduced
thermal conductivity of lead. Although our model con-
tains these effects it has certain obvious weaknesses. We
have seen that the absolute value of the thermal con-
ductivity at the critical temperature has approximately
the correct value. At lower temperatures, however, the
complete absence of low-frequency phonons will result
in the thermal conductivity of the normal state not
approaching the 1 ' increase of the Bloch theory but
instead increasing exponentially. In spite of such defects,
there is no reason to suppose that the basic conclusions
of this paper will be altered by a more accurate calcula-
tion. Indeed the crudeness of our model has had as a
compensating advantage the absence of any adjustable
parameters.

In closing, we would like to make two general com-
ments. The first concerns the Martin-KadanoB theory"
of the thermal conductivity of pure superconductors. In
this theory, which had the great merit of being the first
to give a positive limiting slope, the temperature and
frequency dependence of the lifetimes in the normal and
superconducting states are neglected and the two life-
times are set equal. These ad hoc approximations
greatly simplify the evaluation of the limiting slope.
Indeed from 3 we see that the second term of (3) is zero
and the 6rst (assuming a BCS dependence for 6) gives
the simple result

—(E,/E„), i ——-', (8m /75 (3))(3/2x') l.4.
dt

This is in excellent general agreement with the weak
coupling superconductors. It is unfortunate but true
that this agreement is fortuitous. As we have seen even
in the weak coupling limit, the frequency and tempera-
ture dependence are separately important though their
eEects tend to cancel. Much of the eGect for the strong
materials appears to come from the fact that this cancell-
ation no longer occurs.

Finally, a comment on the theory' on which this
calculation is based seems appropriate. This theory was
motivated to some extent by the feeling that the quasi-
particle approximation (in the sense of lifetimes being
small compared to excitation energies) might break
down for thermal conduction in lead. The present cal-
culations indicate that no such breakdown occurs.
However, the virtual eEects of high-energy phonons are
important for thermal conduction. These are con-
sistently treated by the theory of Ref. 3 and not by a
phenomenological Boltzmann equation.
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APPENDIX

%e give here an estimate of the size of the "scattering
in" contributions arising from electron-phonon scatter-
ing. The terms arising from electron-electron scattering
have not been considered; however, we believe them to
be small. Ke need to know the electron-phonon coupling
matrix element and the phonon spectrum. In the cal-
culations, these were the same as those used by Swihart,
Scalapino, and %ada. ' The coupling matrix element was
represented by a constant, cP=1.264 and the phonon
spectrum was given by

&) (~)=~)
(~ ~ x)p+ (~ x)2 (cp x)2+ (cdpx)2

A~(cd) =
cc'(2/2. 3)(0.125)

2cp ( cp)

cp, =3, cpp=3. 75, etc. The main correction to $ comes
from A~(cp)((cp~ —cp) since

of (A2). Thus, the contribution from longitudinal

phonons will be neglected. If we assume that g(cp) is not
very diferent from gp(cp), (i.e.

( [g(cp)]/[gp(cp)] (
&1.5),

we see that the second term in integrand of (A2) is small

compared with the erst term ia the integrand. Hence,
we neglect it. Now, we approximate F (cp) by P(cp):

P (cp) ) = (2/2. 3)[0.125b (3—cd')+0.55 (3.75—cp),)
+8 (4.4—cp),)+0.5b (5.05—cp),)

+0.1255 (5.8—cp),)], (A3)

where the arguments are all measured in 10 ' eV. (A2)
can now be written

k(~) =b(~)[1+2'~.(~)&(~.—~)]—=g(~)f(~), (A4)

where gp (cp) = gp (cd)f(cp),

=0
j cp —cpP [ &cp," (A1)

$(cdp cp) 1(
$(cpy —cp) 7

where Aq normalized F~ to unit, and or" in millielectron
volts are co~'=4.4, ~2'=0.75, co~'=8.5, ~2'=0.5, co3"

=3~2". These were chosen so as to give the correct gap
at T=O and to give agreement with results of tunneling
experiments.

The total contribution from both scattering out and
scattering in terms is given by [Eq. (3.30) of I].

Q2

g(~)=gp(~) 1- «P(~),)
2cdf( cd) &—

X (f (pp), cp) (1+Fed)—,)g (pp cp),)—
+f(—~x—~) V(~))g(~+~~)) (A2)

where gp is g„or g, of Eq. (5) or (6).Let us consider at
present only the normal state. We note that gp(cp) is odd
in cp. The calculation shows that forJcp~ &0.7, it de-
creases monotonically with co. For T=0.59X10 ' eV,
gp(1.25)~—92.5, gp(2)~ —45.2, and gp(4) = —9.8. The
arguments of go are in units of 10 ' eV. For the energies
of importance to thermal conduction, the Lorentzian
centered at co =8.5, contributes negligibly to the solution

for cp= 1 and less for cp& 1 assuming
~
g(cp)/gp(cp)

~

&1.5.
The i=3, 4, 5 terms are smaller than i=2 term by an
order of magnitude and so will be neglected. The i =2
term will be treated as a perturbation. (A3) can now be
easily solved. To first order in Ap(cp) $p(cps —cp),

1+A c (cp) fp (cp y
—cp)

~( )=&.( )
1—A 1(cp)gp (cpy —cp)A c (cpy —cp) (p (cp)

+~ ()4(.—) . (A5)

For cp = 1, we 6nd $ (1)~0.96)p(1) while ((0.5)—0.98$p(0.5). In both cases, gp(cp)]p(cp, —cp) —0.01
Thus, we ind that for the important energies
[](~c)]/[g(~p)]=[gp(»)]/[]p(~p)]. Now, (A1) may
be solved by iteration. gp(cp') never appears in this
iteration series for ~cp'~ &10 ' eV for cp&1.25 10 ' eV.
gp(cp) for such values of cp is approxima, tely the same
for superconducting and normal phases. Hence, we can
also conclude that [$ (cp)]/[$, (cp)]=[) p(cp)]/[p. p(cd)]
for the important frequencies. Thus, we see that the
correction to E, and E„from the scattering in term is
quite small.


