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Contribution to Internal Friction from a Dislocation Pileup
with Application to Defos~ed Single Crystals
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The contribution to the internal friction resulting from a group of dislocations confined to a single slip
plane, and forced against a barrier, is calculated. Application of the result to the long-range-stress theory of
work hardening, in conjunction with the Seeger theory of the Bordoni peak, suggests that, in deformed
single crystals, an internal friction peak of constant magnitude should be observed throughout stage II
of the stress-strain curve.

I. INTRODUCTION
' 'N most problems in dislocation theory, it is usual to
~ - treat each dislocation independently and to describe
the e6ect of mutual interactions by an average internal
stress proportional to the square root of the dislocation
density. ' Although this procedure has never been justi-
fied in detail, intuitively it appears to be reasonable as
long as the dislocation density is low and approximately
homogeneous, or as long as the correlations in the mo-
tion of diferent dislocations are relatively unimportant.
Accordingly, we believe the approximation should
furnish an adequate description of the e6ect of inter-
actions in, say, undeformed single crystals, or in the
intracellular regions in deformed polycrystals. ' By con-
trast, an obvious case where such a procedure mould be
unjustified is provided by the classical example of a
dislocation pileup. '

The above remarks are of immediate relevance here
in relation to the change in the internal friction of a
solid with increasing plastic deformation. It is well
known that cold working of polycrystals produces a
characteristic attenuation peak, the Bordoni peak, 4 as a
function of temperature. Its origin has been attributed.
to a specific aspect of dislocation motion by Seeger, '
while later Pare' has pointed, out that the action of
internal stresses is necessary in order that the Seeger
mechanism correctly describe the observed temperature
variation of the attenuation. Moreover, it has been
shown' that one can account qualitatively for the change
in magnitude of the peak with increasing deformation,
if the square of the internal stress is assumed pro-
portional to an average dislocation density in the
manner prescribed above. Consequently it appears that,
in deformed. potycrystals at least, one can obtain a
consistent (albeit not necessarily correct) picture of the
eGect of deformation upon the attenuation.

The same claim cannot be made at present in relation

' H. G. van Bueren, Imperfections in Crystals (North-Holland
Publishing Company, Amsterdam, 1961),p. 146.

~ J. E. Bailey, Phil. Mag. 8, 223 (1963).' J.D. Eshelby, F. C. Frank, and F. R. N. Nabarro, Phil. Nag.
2, 351 (1951).' D. H. Niblett and J. Wilks, Advan. Phys. 9, 1 (1960).' A. Seeger, Phil. Mag. 1, 651 (1956).' V. K. Pard, J. AppL Phys. 32 332 (1961).' A. D. Brsilsford, Phys. Rev. 137, A1562 i1965i.

to our understanding of the eEect of deformation on the
internal friction in single crystals, mainly because es-
sentially no systematic experimental work at all' has
been done on this topic. But of almost equal importance
is the fact that even if any experimental data. were
available, there may be as yet no theory with which it
might be compared. To appreciate this remark, it is
sufhcient to note that essential features of the long-
range-stress theory of linear work hardening are the
presence of dislocation pileups and the role of their
mutual interaction. Thus if the description of the de-
formed state implied by this theory is correct, any
model based upon isolated dislocations under an internal
stress is clearly inadequate for a complete description of
the internal friction.

The purpose of the present paper is to alleviate the
above deficiency in the theory. The internal friction of
an isolated pileup is investigated in detail and the re-
sults are applied to single crystals deformed in stage II
of the stress-strain curve. It is shown that the long-
range-stress theory, in conjunction with Seeger's mech-
anism for the origin of the Bordoni peak, leads to the
prediction of the existence of a Bordoni peak, in single
crystals, whose magnitude is independent of the amount
of predeformation in the region of linear work hardening.

Concomitant with the theoretical comparison be-
tween the expected attenua, tion in deformed single
crystals and deformed polycrystals, it was also hoped
that the work to be presented might further resolve the
conQict between the "forest" and the long-range-stress
theories of linear work hardening. ' "Unfortunately, it
appears that such is not the case, for we will show tha. t
the former theory also leads to the same predicted
independence of the Bordoni peak of the amount of
deformation. However, we should emphasize that this
does not detract from the desirability of future experi-
mental work on the topic discussed in this paper, since
the further data would be of assistance in atteInpting to

8 We refer here specifically to the relation between the internal
friction and the degree of deformation as contained in a stress-
strain curve. Experimental investigation of the internal friction in
stage II deformation is planned for the near future I D. O.
Thompson (private communication) j.

P. B. Hirsch, Relation Between the Structgre and Mechanical
Properties of Metals (H. M. Stationery Office, London, 1963),
p. 48.

' A. Seeger, see Ref. 9, p. 1.
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identify unambiguously the origin of the Bordoni peak
itself.

The paper is divided as follows. Section II contains a
treatment of the internal friction associated with a
single pileup, while the application of the results to
single crystals deformed in stage II is presented in Sec.
III. Finally, Sec. IV contains a qualitative comparison
of this work with the behavior of the internal friction to
be expected on the basis of forest theories of work
hardening.

II. THEORY

Suppose there are n identical dislocations, in a single
slip plane, which are forced against a rigid. barrier by the
action of a constant external stress. Specifically, a
coordinate system is chosen such that the dislocations
lie parallel to the y axis in the region, 0(x&L, of the
plane a=0, with the barrier at x=0. In this section the
contribution to the internal friction from this array is
determined.

In the static case described above, it is clear that the
extent of the pileup L0 will be determined by the magni-
tude of the constant stress frp. Thus under the inQuence
of an additional time-dependent stress cr~, there will be
not only a redistribution of the dislocations within the
length Lp, but also a variation in the extent of the
pileup itself. To demonstrate this explicitly, we define a
continuous density p(x, L,t) such that p(x,L,t)bx is the
number of dislocations between x and x+bx at time t,
when the pileup terminates at a distance I. from the
barrier. Then, since dislocations are neither generated
nor lost, the density p is determined by the continuity
equation

Bp Bp dL BI—+ —+—=o
Bt BL dt Bx

Poisson's ratio, and b the magnitude of the Burgers
vector.

Equa, tion (1) is suKciently complex that it is propi-
tious to examine first the solution when 0~——0. In this
instance, L=I 0, and the distribution is determined by
the condition I=0. Even then the problem is not trivial.
However, on the basis of general arguments by Cottrell, "
w'e note that the configurational entropy of a rigid
dislocation (such as are assumed here) is negligible
compared with its self-energy. Since the latter is also
proportional to A, it is reasonable to seek an approxi-
mate solution of (2) by neglecting the diffusion current,
a procedure equivalent to finding the minimum in the
internal energy (i.e. , F=O) rather than in the free
energy. The former problem has been solved previ-
ously' " but we will present an alternative treatment
here in order to estimate the error involved in the neg-
lect of the configurational entropy.

Kith o~=0, the condition that the current should
vanish may also be written in the form

R (8') sin8'd8'
+y+XS(8) = O,

(cos8—cos8')
(6)

by substituting x= (Lo/2) (1—cos8), p(x) =—Lo 'R(8), and

(cos8—cos8') '= —2 P (sinr8 cosr8')/sin8. (9)
I

Thus Eq. (6) reduces to

p= (~OL,/A); z= (2~r/AbL~),

S(8)=R ' csc8(8R/88),

in (3). (We assume the Einstein relation D=~Tp is
applicable. ) For X=O, the solution of (6) may be found
bv noting the expansion"

where I is the dislocation current. If we define p and D
as an efI'ective mobility and dift'usion coefFicient, respec-
tively (see Sec. III), then

x P A „sinr8 =y sin8, (10)

I(x,t) =Fpp D(8p/8x), —

where F is the force on a dislocation at x, namely,

(2) where

A, = (2/gr) R(8) sin8 cosr8d8.
0

i p(x'L t)
dx (Ko+(Ty) .

(x—x')
These have the general solution

R sin8= (2n/x. )(1+(y/2n) cos8), (12)

A=A.=Gb/2n.
for screw dislocations, and

A —=A.=A,/(1 —v)

(4)

for edge dislocations, 6 being the shear modulus, v

Here fr i is a small, harmonically time-varying stress, and
L~ is the length of the dislocation segments parallel to
the y axis. (As usual, end eifects have been neglected. )
The remaining parameter A in (3) is given by

the constant of integration being determined by the
condition that the total number of dislocations be equal
to n.

Although (12) is the general solution in the region
0&x&Lp it does not satisfy as yet all the physical

"A. H. Cottrell, Dislocations and Plastic Flow in Crystals
(Clarendon Press, Oxford, 1961},p. 39.

~ G. Leibfried, Z. Angew. Phys. 6, 251 (1954}."P.M. Morse and H. Feshbach, Method of Theoretical Physics
(Mcoraw-Hill Book Company, Inc. , New York, 1953},p. 556.
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p(L) =0

Then (13) implies, by virtue of (7) and (12), that

Lo= (2nA/o, ),

(13)

(14)

constraints on the problem. For since the stress a dis-
tance d from a dislocation varies as d—', if p (Lo) (—=R(~))
is nonzero the stress acting in the slip plane tends to
infinity in the region near x= Lo immediately exterior
to the pileup. As this must be excluded on physical
grounds, we must impose the additional general bound-
ary condition

Thus
q(O, L,t)= 0; n(L, L,t)=0,

(Bn/8x). i==,0

(22)

(23)

Here the first follows from the definition (21), the second
from (18) and the fact that the total number of dis-
locations is fixed, and the third, (23), is a re-e, xpression
of Eq. (13).Now since the solution for rt (or pi) can only
depend upon x through the combination (x/L), after
integrating (19)between 0 and x, we set x= L(1—cos8)/2
as before, it(x) —=X(8), and find

R(8)= (2n/vr) cot(8/2),

p(x&Lo) = (2n/xLo) ( (Lo/x) 1)'i2. —
cos&' —cosgor

(16) =i &urnP sin8, (24)
whereThe above results are not new, They are of primary

interest here in estimating the error involved in their
approximate derivation from (6). From (7) and (8) we
obtain

~
P,S/y ~

= (xT/nAbLi) csc'8. As expected, this is
largest near the barrier (where the density varies most
rapidly) and at the termination of the pileup (where the
density is small). However, with n 20, Li 10 ' cm,
the factor (xT/nAbL&) is only 10 '. Thus apart from
a small region near the extreme ends of the pileup, we
find

~
XS/y~ &&1. This justifies the procedure leading to

(16).By a similar argument one can validate our neglect
of the diffusion current in the ensuing analysis.

We now consider the time-dependent equation (1),
from which we wish to derive ultimately the dislocation
strain to first order in O.l. The boundary conditions, for
general L, are that the total number of dislocations
equal the fixed number n, that (13)be satisfied, and that

(25)

(26)

n= (o iLo/27rA),

P—(OQl/o 1L0)'

and
r = (nA/pbL&oo2) . (27)

In obtaining (24) it has been assumed that explicitly
time-dependent quantities vary like exp (icut) The.
physical significance of r as a relaxation time will be-
come evident in the further discussion leading to
Eq. (39).

In order to solve (24), we note from (22) that a
possible expansion of $(8) is provided by a series in
sin(r8), where r is an integer. It is convenient to write
this in the form

(28)Ã (8) =n{g A „sin(r8)+P sin8) .

-1 .[8.i (8')/88']d8'
(15) i&sr X (8)+cot (8/2) — —a (1+&)

I(O,t) =0, (17)

since the barrier is assumed to be rigid. %e look for a
solution of the form

Then, by direct substitution in (24), one finds that the
unknown coeKcients A „are determined by the following
equations:

p= po(x,L)+pi(x, L,t), (1+t'oo r)A i—(icor/2) A 2 ——1, (29)

where po is defined by (16) and pi is assumed to be of
order (oi/ao). Since l=L Lo is at least of first or—der in
o i, we obtain then, after linearizing (1), the equation

Bp&/8t+8(bI)/&x= —(Bpo/BL)(dl/dt), (19)

(r+icor)A, (iver/2) (A,+i+—A, i) =0, (r& 2) . (30)

These are independent of P. However, the latter is
determined by (23), which in these variables becomes
the relation

where Z ( 1)"rA.=P—
r=1

(31)

bI=IJ,bLlPO A {p,/(x —x')) dx' —(o,+ (o ot/Lp))

(20)

the diffusion current having been neglected. For con-
venience, we now define an auxiliary function p by the
equation

Hence (31) determines the change in length of the
pileup once the coefficients A„are known.

Since we cannot ofIer a mathematically rigorous solu-
tion of (29) et seq. it is expedient to remind oneself of the
purpose of the above analysis. Fundamentally, we are
interested in the strain resulting from the pileup. Apart
from a constant this is

q(x, L,t) = p,dx. (21)
L

e~= —(b/V) xL,p(x)dx, (32)
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Similarly, when the higher approximates A «(" and A «(3)

(given explicitly in the Appendix), obtained by setting
A,=O for r&4 or 5, respectively, are used to calculate
the internal friction, no significant differences arise, as
we show in Fig. 1. Moreover, the same comments are
applicable to the real part of A«, which essentia11y
duplicates that obtained from (36). Hence we believe
that, in all its qualitative aspects, the internal-friction
parameters for the pileup may be estimated from the
approximate relation

e„e„—'= (m
—ae„'/n) (1+ mar)-'. (37)

where V is the sample volume. Moreover, after a little
algebra one finds from the definitions (18), (21), and
(28) that this is simply

e,= e„'[1—(ma/n)A&j, (33)

where again, apart from the constant noted above, e„'
is the strain associated with the pileup for 0«=0, viz. ,

e~'= —(nbl. gl.o/4V) . (34)

/The factor of 4 in the denominator in (34) arises be-
cause the center of gravity of the array is at 1.0/4. ]
Thus we see from (33) that only A q is of interest for the
internal friction.

In addition we note that, since the total number of
dislocations is finite ( 20), the upper limit of summa-
tion in (28), presently undesignated, should really be
fixed at r=n. For we cannot have more degrees of
freedom (coeflicients A„) than there are dislocations.
But if the sequence A „is terminated, Eqs. (29) and (30)
become a finite set of simultaneous linear algebraic
equations which can be solved readily. Of course, they
should be solved by setting A»=0, A»=0, and subse-
quently determining A «and hence e~. However it is less
laborious to terminate the sequence at the lowest pos-
sible integer, then determine A», repeat for the next
lowest integer, calculate A«again and so on and then
compare the results to see if termination errors are
signi6cant. This latter procedure is the one we have
adopted. For example, the lowest integer for termina-
tion is r=3, since otherwise one cannot satisfy (29),
(30), and (31) simultaneously. Thus with A, =O for
r&3 we 6nd a 6rst approximate to A«, namely A«(«&,

given by

A g&"= (2+ia)/(2 (3a'/4)+—Bia},

where a=a&r. The imaginary part of (35), which is pro-
portional to the attenuation produced by the pileup, in
this approximation, is illustrated by the full curve in
Fig. j.. It yields a result which is not diBerent, in any
essential way, from that obtained from the simple
relaxation expression

(1+ia) '. (36)

Pro. 1. Comparison between the calculated values of AI and the
simple relaxation result described in the text.
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I'«G. 2. Variation of the in-phase and out-of-phase components
of the extent of the pileup with increasing frequency. The parame-
ter a is defined by a =~r.

In like fashion one can obtain successive approximates
to the parameter I8. For example, to lowest order we
obtain

P&'&= —2/L2 —(3u'/4)+3iaj. (38)

For interest, the real and imaginary parts of this ex-
pression are shown in Fig. 2. At low frequencies (a 0),
p&'& —+ (—1), which gives the correct result, to first
order, for the change in length associated with a static
stress a&, as one may verify from (14) and. (26). This
feature is retained in the higher approximates we have
calculated. In addition we note that P is complex. The
signi6cance of the imaginary part is that the function po
in (18) incorporates just that part of the change in the
density of the dislocations with time which can be
described by the same distribution function as in the
static case. However, the necessary change in length of
the pileup cannot take place instantaneously. Hence the
imaginary part of P describes that part of the attenua-
tion which is associated with this rearrangement.

The whole burden of this section has been to attempt
a rigorous treatment of the internal friction arising from
an isolated pileup. The end result is Eq. (37). On the
basis of the static properties of a pileup, one might
conjecture that the answer should be similar to that
obtained from a single dislocation of strength nb.
Inasmuch as (37) describes a simple relaxation, this
surmise is correct. But, on the other hand, the depend-
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ence of r upon Lo (or op) indicates that in the present
model the relaxation involves simultaneous readjust-
ment over the whole pileup, an eGect which is outside
the scope of such a simple picture.

zzaT=D~'(gpLz exp( 2ee/~—T)}b' (39)

That is, we assume a fixed double-kink generation rate
per unit length equal to gp exp( —2ee/aT), where oe ls
the kink self-energy, and then multiply the total rate for
a length Lz by the square of the jump distance (~b). It
is tacitly assumed, of course, that once generated the
kinks propagate instantaneously to the opposite ends of
the length I.~. We have ignored the possibilities that
kinks may recombine, by diGusion, after their genera-
tion" or that, because of entropy considerations, the
generation over a fixed length may be other than linear
in the length considered. "Moreover in suggesting (39),
we have tacitly introduced a Peierls' stress through the
energy eI,. While it is generally accepted that the latter
has negligible inQuence on the Qow stress of fcc metals, '4

nevertheless it will be of prime importance in de-
termining relatively minor dislocation rearrangements,
such as are involved here, in an internal-friction
experiment.

We can now calculate the relaxation time associated

14 A. Seeger, Dislocations and Mechanical I'roperties of Crystals
Uohn Wiley & Sons, Inc. , New York, 1957), p. 243.

~1 J. Lothe and J. P. Birth, Phys. Rev. 115, 543 (1959).' D. 0.Thompson (private communication).

IIL APPLICATION

In this section we shall investigate the eGect of
deformation on the internal friction of fcc single crystals.
The discussion will be confined completely to the
deformation range stage II, where linear work harden-
ing is observed.

Since the long-range-stress theory has already been.
reviewed extensively, "' we shall not enter into a
detailed discussion here. For the present purpose it
suKces to note that, in stage II, groups of dislocation
rings are assumed to be piled up against barriers formed
by Lomer-Cottrell dislocations lying along the close-
packed L110j directions in the slip plane.

If the curvature of the dislocation rings is ignored, an
assumption which is invariably made in practice, each
part of the ring can be considered independently. The
physical model is then equivalent to that discussed in
Sec. II.We must first determine the eGective mobility p.
Now in the early presentation of a theory of the Bordoni
peak, Seeger' proposed that dislocations lying parallel
to close-packed directions were enabled to advance by
the generation of double kinks. Thus since Pare's
modifications, ' which are only pertinent to pinned
dislocations, are not important here, we can construct
an effective diffusion coefficient (and hence a znobility)
by the following relation:

where 8zi is the work hardening in stage II, e~ is some
reference strain, and c the actual strain in the sample.
Similarly, from slip-line observations, "

Lz= A/(e —e*),

where A 10 cm. Thus we obtain finally

r z=co~ exp( —2oe/~T),

where the "attempt frequency" co& is given by

(42)

(43)

co~= (8zzoA'b'/nAaT)g pb. (44)

The most significant aspect of this result is its inde-
pendence of the amount of deformation e. To estimate
the magnitude of zo~ we require a value of gpb In pri.n-
ciple the latter quantity could be obtained from the
attempt frequency of the Bordoni peak in deformed
polycrystals, according to a previous study. 7 Unfortu-
nately, as we have pointed out, present experimental
information indicates no more than that, if got}=geo~,
where co& is the Debye frequency, then p lies between
6&&10-' and 1X10 '. Accordingly one can fix (44) only
within a very wide range. Specifically, we find that if
(8zz/G) 4)& 10 ', A 10 ' cm, n 20, and T= 100'K
then, for Cu, ~@lies within the limits10" to 10' rad sec '.
This frequency range is significantly higher than that for
the Bordoni peak in polycrystals' (roughly 10' to 10"
rad sec ') but, in view of the assumptions which have
been made, it is difBcult to assess the uncertainty to
attach to these estimates.

We shall now calculate the magnitude of the internal
friction. This is defined quantitatively by the decrement
6, which is the ratio of the energy dissipated per radian
to the maximum stored energy. 4 Thus, with the stress-
strain law (41),

5= (8zz/2or( oz ~') Re aq~Ht. (45)

Collecting together then Eqs. (25), (33), and (37), after
multiplying by a factor of 4 to include the contribu-
tion from all sides of a piled-up set of loops (assumed
square-shaped), we find that, for X, pileups per unit
volume, the result is

6= (28zzbn'AXoLz/o o')eor/(1+zoor') . (46)

Hence, substituting for A from (4), and using the
alternative' approximate form for ao,

o p~ (Gbn/2zr) (XQz) '"

with a pileup. In the relation

T = (gpLz b'uo /nAzzT) exp( 2ee/&T) ~ (40)

obtained from (27) and (39), we insert the parameters
from the theory'4 of the Qow stress af. Thus we identify
ao with the long-range stress from diGerent pileups and
set

(To=0'r=8zz(o o ) ~
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we arrive at the following estimate 6, for the relaxation
strength,

b, kr(err/G). (48)

This again is independent of the amount of deformation,
and has the value 6, 0.05, or approximately three
times the value obtained from the observed Bordoni peak
in polycrystalline Cu after 3% tensile deformation. '"

IV. DISCUSSION

The major result of the foregoing analysis may be
summarized as follows: If the Seeger-Pare mechanism
is the correct description of the origin of the Bordoni
peak in deformed polycrystals, and if simultaneously the
long-range-stress theory is appropriate to linear work
hardening, then a necessary corollary is that a Bordoni
peak of constant magnitude should be observed in single
crystals deformed in stage II.

The question which immediately springs to mind then
is, how does this compare with the internal friction
which is predicted on the basis of the forest theory of
linear work hardening. Unfortunately this presents a
very dificult problem, mainly because the theory is
based not upon any specific dislocation configuration
but rather upon a general three-dimensional network.
Thus, for lack of anything better, we can here only
follow convention and assume each dislocation segment
moves independently, despite an indirect inference to
the contrary. ' However, granted the assumption, it is a
straightforward matter to determine the consequence.
For we have shown previously that in the Seeger-Pare
mechanism of the Bordoni peak, the relaxation strength
depends only upon the ratio b= (o,b'L/2eq), where 0, is
the internal stress. Since, in a three-dimensional net-
work, fT; rx I ', the parameter 8 is constant for all
deformations, and we would again surmise that a
Bordoni peak of constant magnitude is predicted.
Consequently, apart from the inference noted above,
there appears no reason to believe that observation of
the attenuation in deformed. single crystals will dis-
tinguish between the two theories of linear work
hardening.

We have already indicated in Sec. I that presently
there is no experimental evidence with which to compare
these predictions. And, in view of the conclusion we have

"L.J.Bruner and B.M. Mecs, Phys. Rev. 129, 1525 {1963).

just reached, it is legitimate to inquire what purpose
would be served by doing the relevant experiments in
the future. In our opinion this lies solely in helping to
resolve the origin of the Bordoni peak itself. While so
many of the models"' "for this phenomenon presently
relate only to properties of the peak alone, it appears
that here at least is one aspect which ultimately
encroaches upon other provinces of the theory of the
plastic deformation of solids. As such, the data obtained
from future experiments mould be of great help in
attempting to correctly identify the 8ordoni-peak
mechanism.

To conclude we should mention the experimental
setup to which all the foregoing theory is presumed to be
applicable. We have applied both the pertinent models
as if the sample were under a continuous load. Qf course
this would present the experimentalist with a very
dificult task. However, since there is no appreciable
reverse plastic fiow upon unloading, " we believe the
theory should be applicable with only minor numerical
modification (to account for some stress relaxation, for
example), to the attenuation of deformed single crystals
that are subsequently unloaded before measurement.
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APPENDIX

We present here explicit expressions for the ap-
proximates A j('& and A~&@ which were obtained by the
procedure described in the text. These are

Ai"&= (6—(3a'/4)+Sia)/
(6—5a'+11ia —i(a'/2)), (A1)

and
(24—(15a'/2)+iaL26 —(a'/2)j)

Ag(3) =
(24—(61a'/2)+ (Sa4/16)+iaLSO —(25a'/4'l]}

(A2)

where a= co7. Calculated values of the real part of these
functions are illustrated in Fig. 1.

"A. D. Brailsford, Phys. Rev. 122, 778 {1961).
'9 J. J. Gilman, Phil. Mag. 7, 1779 {1962).


