
thus
I r/
~expt &~expt/' V

K. v

but from Eqs. (A4) and (A10), a'= v, and so

/
Kvs = Kg =K

where K' is the ratio given in line 8 of Table II.

iVote added ia proof Th. e assumption of incontpressible

gas flow with zero slip is implicit in Eq. (A1). In ana-
A12)

lyzing the relative gas-ffow measurements, the validity

of this assumption does not aBect the evaluation of K„;
approximate calculations for K, show that the inclusion

of slip corrections does not appea, r to eliminate the

"length eGect. "
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Position- and Time-Dependent Diffusion Modes for Electrons in Gases
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The pure-diAusion (6eld-free) distribution function for electrons in a gas enclosed by absorbing walls is
obtained. The distribution is described in terms of spatial modes, each of which decays exponentially with
time. Special emphasis is placed on the lowest modes which explicitly display the diffusion cooling" effect
for electrons.

I. INTRODUCTION

HIS paper deals with the pure-diffusion (Geld-free)
energy distributions for electrons in a gas and

enclosed by absorbing walls. The present study is an
extension of previous work' by the author on the spatial
dependence of distribution functions for electrons in
the presence of electric fields. The purpose of the pres-
ent work is to describe the manner in which the distri-
bution function for electrons, which are initially 1zot in
thermal equilibrium with the gas, changes with time and
position owing to collisions between the electrons and
the gas atoms and to diffusion of the electrons to the
walls. This descritpion is given in terms of spatial
modes, each of which decays exponentially with time.
It will be shown that in general the electrons never
come into equilibrium with the gas but have a terminal
energy that is lower than the thermal energy of the gas.
This effect, which has been called "difIusion cooling, "'
is displayed by the lowest modes, i.e., the modes with
the longest decay times. For simplicity the interaction
between the electrons and atoms is taken as elastic and
only the plane-parallel geometry is considered. The
entire mode system is given for the case of an energy-
independent collision frequency while only the lowest
modes are obtained for the case of an energy-independ-
ent collision cross section.

II. CONSTANT COLLISION FREQUENCY

The starting point for the present discussion is the
Boltzmann equations for f"(r v, t) and f'(r, v, t). These

' J. H. Parker, Jr. , Phys. Rev. 132, 2096 (1963}.' M. A, Biondi, Phys. Rev. 93, 1136 (1954).

functions represent, respectively, the isotropic and non-
isotropic parts of the electron distribution function,
e

i.e.)

f(r,v, t) = f"(r, v, t)+f'(r, v, t) v

where r is the position vector and v is the electron
velocity. The Boltzmann equations for f' and f', with
the collision frequency independent of energy, are'

Bf0 2mv 8 Bf0 1 20 '"
~3/2 0+PP V, fl

+vf = Vr )

where m is the electron mass, M the a,tomic mass, e the
electron kinetic energy, v the momentum-transfer
collision frequency, and T the gas temperature. It will
be assumed that f' varies sufficiently slowly so that Eq.
(2) can be written as

vf'= —(20/m)'"V f" (3)

The conditions under which this approximation is valid
will. be discussed at the end of this section. %hen Eq.
(3) is combined with Eq. (1), the resulting equation for
'is

8 8f0 3E M Bf'
0
—0/0 00/"-f0+$2' + g 0f0 — (4)

3ePv2 2mve N
' The detailed derivation of these equations along with a discus-

sion of the approximations used in obtaining them is given by W. P.
Allis, in EXandbuch der Physik, edited by S. Flugge (Springer-
Verlag, Berlin, 1956},Vol. 21. Also see T. Holstein, Phys. Rev.
70, 367 (1946).
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It is convenient to introduce dimensionless variables The solution to this equation which is regular a,t u =0
into Eq. (4) given by is a confluent hypergeometric function, 4 i.e.

R=mv r,

2mv

M

Then Eq. (4) becomes

u= e/hT.

8 8fo 1 Bf'
u—8/2 u3/2 f0+ +g 2fo-

BQ BQ Q Br
(5)

Since K (or n) is a parameter, Eq. (8) becomes an

eigenvalue equation for 8. It is easily shown that the
corresponding eigenfunctions are orthogonal with re-

spect to the density function u'"e". Inspection of the
asymptotic behavior of the confluent hypergeometric
function4 as u ~~ leads to the allowed spectrum for 8

and to the corresponding eigenfunctions. The complete
set of eigenfunctions is discrete and is given by

Equation (5) can be separated into three ordinary
differential equations, i.e., with f"= T (r) (R(R)F (u),
then

F/ (1/X/) ex——pL ——,
' (1+a)u]L/ &' "& (nu),

where I &&'") is a Laguerre polynomial' a,nd X& is the
normalization constant given by

1 dT

T dy

7'R'(R = —E'(R,

(6) X '= I'(-'+l)/1!n'"/',

with l=1, 2, , ~. The eigenvalues for 0 are

8/= l(1+4K')'/2+ 3 [(1+4K')'" 1]—(10)
de' dF

u +(2+u)—+(~+8 K'u)F=O—,
dQ dQ

where 8 and E are the separation constants.
The solution of Eq. (6) is

T(r) = exp( —87) .

The solution to Eq. (7) depends on the geometry of the
enclosure. For plane parallel it is

tit(X) = sinEX or cosEX,

where X is the Cartesian coordinate perpendicular to
the plane. The extension to other simple geometries
such as spherical or cylindrical is straightforward. For
electrons in a perfectly absorbing enclosure the condi-
tion which sets the allowed values of E is

f 0 —A
boundary

With one plane at X=O and the other at X=Xa, /R(X)
becomes

(R= sinEX,
with

K =pm/Xo, .

where/8=1, 2, 3
Equation (8) can be transformed into a recognizable

form by letting

F (u) = expL ——,
' (1+a)u]h(u),

where

F/ (1/Ã/) exp( ———u)L/o/" (u).

These results for a uniform spatial distribution have
been derived by Bayet, Delcroix, and Denisse' a,nd fur-
ther discussed by Levine and Uman. '

It is seen that each of the terms or modes in Eq.
(11) decays with a time constant, given by /!/I/2mv8,
that decreases as E and l increase. For the lowest modes
(l=0) and with K'(1, 807 and Fo can be expressed as

and

where

80r= s3K (1—K')r,

Fo= (1/XD)e
—o+x'&"

Lo&/2(u) = 1.

Then the general solution to Eq. (5) is

PxX
f'(u, X,r) =g A//, / exp( —

8/& /T)F// /(u) sin . (11)
P, l X()

This solution can be used to describe the decay of elec-
tron energy and density for an arbitrary initial distribu-
tion in the space between the plates. It is not the purpose
of this paper to discuss any specific initial-condition
problem in detail but to point out some of the genera. l

fea, tures of this modal description.
The case of a, uniform spatial distribution is obtained

by letting E ~ 0. In this limit

Then Eq. (g) becomes

d'h dh
u—+ (-', —nu) —+L-', (1—a)+8]h =0.

dQ dQ

' P. M. Morse and H. Feshbach, Methods of Theorem'eel Physics
(McGraw-Hill Book Company, Inc., New York, 19S3), Chaps.
S and 6.' M. Bayet, J. Delcroix, and J. Denisse, J. Phys. Radium 17,9 923 (19561.

~ N. E. Levine and M. A. Uman |',to be published).
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If these relations are expressed in terms of t and e, we
obtain

III. CONSTANT CROSS SECTION

For the case of an energy-independent cross section
(12) the equation governing fo is'

tP~y'kT -«P~ 'MkT-
id) mv Emvd 3

and

l&M Bf'
= (2em) '&'

2 85where d has been taken as the actual plate spacing. From
Eq. (13) it is clear that even when the higher modes
have disappeared the mean energy of the electrons is
not equal to the thermal energy of the gas. Equation
(13) represents a Maxwell distribution with a mean
energy e, of

where X is equal to 1/Ea, with o the momentum-
transfer cross section and S the gas density. As in the
case of constant collision frequency we have assumed
that f' varies sufficiently slowly so that an equation of
the type (3) is valid. With a change to dimensionless
variables given by3kT ps ' MkT

2 mvd 3 e= e/kT,

r = (2mkT)'&'(2/&&M)l,This expression explicitly displays the diffusion cooling
of the electroas. This e6ect is due to the higher loss of
high-energy electrons than low-energy electrons to the
walls by diffusion. If we dehne a characteristic energy Eq. (14) becomes
decay distance as

R= (6m/M')'" (1/l&)r,

1 8 t' Bf' Bf'
+2~ f0+ +V 2fo I—«2

Q BQ 4 Bg 87'
d, = (n/mv) (MkT/3)'",

then the fractional deviation of the electron energy
from that of the gas can be written as As before, a separation of variables leads to

8f' Ml&.'
1 — Px ' MkT ——e' f'+kT + V,2f'

Fa= exp——1+ —,(13) e Be Be 6m
Xo nkvd 3 kT

bc/ee„=—(Pd, /d)'.

Equations (12) and (13) show, as expected, that as
v~~ the time constant and the mean energy of the
lowest mode approach values characteristic of electrons
in equilibrium with the gas. That is, the time constant
goes to

time constant ~ (d/p&r)'(1/D„),

where D„is the equilibrium diffusion coefficient for
electrons given by kT/vm, and the average energy ap-
proaches &kT.

The inequality that must be satis6ed in order that
Eq. (3) be valid is

Bf&/Bt(vf& or (2e/m)'&2% f'
This inequality can be expressed for a single mode of
Eq. (11) as

1/8&2m/M,

or in terms of the time constant M/2mv8 of that mode

time constant& 1/v .

This implies that Eq. (11) is valid only after a time
that is long in comparison to a collision period. This
also means that the present solution cannot ascribe to
f' an initial condition independent of P and that the
solution therefore ignores any initial transient behavior
of f'. A similar approximation has been used by
Holstein. '

T()= p(—8)

&R(X)=sinKX or cosEX

for the case of plane-parallel geometry. The energy
equation is

d'E dr'
+(2+I) +(2+—I '"8 K')F=—o (15)

dQ dQ

With K' as a parameter, Eq. (15) becomes an eigen-
value equation for 8. The density function for Eq. (15)
is u'"e". The exact analytic form of the solutions of
this equation could not be obtained because the
behavior of this equation near its irregular singular
point at in6nity indicated the need for a more compli-
cated solution than the usual exponential. ' However, an
approximate expression for the lowest mode for E'(1
can be obtained by a perturbation calculation.

The lowest mode eigenfunction Fo(K',u) snd eigen-
value 80(K') can be expanded in powers of E', i.e. ,

F0(K'Q) =F0&'&+K'F0&'&+K'F0&"+
and

80(E')=80&'&+E'80&'&+E'80&'&+

If the following transformation is made,

F (u) =e-"k(N),

E. L. Ince, Ordinary Differential Equations (Dover Publica-
tions, Inc. , New York, 1944), Chap. 17.
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then Eq. (15) becomes &~o' is given by

d'h dh
u + (2—u)—+8u '/'h=K'h.

dQ ds
(16) H„p'= ~».--VpV„~~.

Up to now we have considered H to be the eigenvalue
which is a function of 2P. However in the perturbation.
calculation it is more convenient to reverse this view-
point and to consider E' the eigenvalue which is now a
function of H. Then the term Hu '"h in the above equa-
tion is considered as a perturbation. It is convenient
to put Eq. (16) into a standard quantum-mechanical
form' so that the usual perturbation formulas may be
applied. Equation (16) can therefore be expressed as and

1V W' (H o')'
+ p +

Hoo' (Hoo')' -&

The values of B„p'were evaluated with the help of the
generating function for the Laguerre polynomals. 4 The
values of H„p' for n up to four are given in Table I.

We can now obtain 8(W) and 4'p (W) from Eqs. (17)
and (18) and these relations are

where

and

Ho+o+8H'+o= &o+o,

H p ——ud'/du'+ (2 u)d/d—u,
H'=~-~12

)

C p —hp)

8' ~ H„p'
+o=Vo— Q V+

Hpp' ~-& E„
It should be noted that Vp= i. The function +p which
is normalized with respect to ue " is now renormalized
with respect to u" e ".Then Hp and hp can be written in
terms of E' as

8'p= E'

When H is equal to zero the complete set of discrete
orthonormal solutions is4

V„=L„&'&(u)/(n+1)! (n+1)'/',

where 1.„&"is a Laguerre polynomial. 4 The correspond-
ing eigenvalues are

4) 1/4 00

hp —— —
~

(1+K' Q a„L„&'&(u))
~J Tsm

8= (2/pr'")K'(1+apK') .

The constants u„canbe expressed in terms of H„p' as

(H.o')'

I' =0 —1 —2 —3 - - —n

2H„p'

pr'/Pn(n+1)! (n+1)'"
for e&0.

Values for a„aregiven in Table I for n up to four.
Therefore the lowest mode for Eq. (15) can be written as

,
- (H-o')'

!Yo=8Hoo' —8' Z + (17) 1 j4

Fp(IP,u)= — e "(1+KP P a„L&'&(u)+ ~ ~ ) (19)
lr )t~l

Hnp
op= vo —8 P V., + 18)

with the eigenvalue for H as

These functions are orthogonal with respect to the
density function ue ".

If the usual perturbation formulas are used, 0'p and
8'p, to second order in perturbation theory, are

We have explicitly put Ep=0 in Eqs. (17) and (18) and

Twsx. E I. Constants for the perturbation calculation.

2
8o= K'(1+aoK'+ ) .

2a„,'/~~~

1
)v2
gv3

15/96
105/384+5

—0.165

1/96
5/460S
7/61440

o,.(K') =
oo/Pfodo uo/PFodu

These expressions can now be used to display the
"diffusion cooling" of the electrons. The average energy
for this mode is

' L. I.Schiff, Queetgm Mwhaeics (McGrav -Hill Book Company,
Inc. , New York, 1955), Chap. 7.

ol/P jodo u'~'Fpdu
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The average energy, which was evaluated by using
the expression for Ii o as given in Eq. (19) and using the
generating function for the Laguerre polynomials, can
be expressed to first order in E' as

e,„=—,'k 7 (1—0.30E')

The accuracy of the numerical constant appearing in
this expression is about 1%.As in the case for constant
collision frequency, we again see that the average energy
is lower than the thermal energy of the gas. The devia-
tion of the electron energy away from the thermal value
can be put in the following form

s~/~...= —yd, /d)',

where d„the characteristic energy decay distance, is

3f '~' 1
d, =m — — 0 55,

and d is the distance between the planes. For example,

d, for He can be expressed a,s

d He

where
time constant -+ (d/Ps. )'(1/D, ),

L.= (2f Z/m~)»2(2~/3),

e, ~-',kT.
' L. S. Frost and A. V. Phelps, Phys. Rev. 136, A1538 (1964).

where a- is taken as 5.0X10 "cm' ' and P is the pres-
sure expressed in mm Hg at 300'K. If we take d = 1 cm,
I'=10 mm, and P=1 (lowest spatial mode), then

5c/ eg„=—0.14.

Ke again see, as in the case for constant v, that as
X —+0 the expressions for the time constant and the
average energy approach the equilibrium values with
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Nanosecond-Pulse Breakdown in Gases*
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A theory describing the formative period of breakdown in gases following the sudden application of a dc
electric 6eld has been developed and applied to the design of experiments to measure lag times in nine gases.
It is shown analytically that under certain conditions pulsed-dc and pulsed-microwave breakdown are
directly comparable. A pulsed-dc experimental system is described which permits measurements of the
formative period over a wide range of applied held, gas pressure, and gap space. For those gases where
sufhcient basic data are available, theoretical and experimental results are in good agreement.

INTRODUCTION

'HE electrical breakdown of a gas is, in general,
characterized by the net buildup of ionization

from processes within the gas and from a host of
secondary processes at walls and electrodes of the dis-
charge vessel. Under certain conditions it has been
possible to investigate breakdown with cw microwave
techniques' ' where the electron generation and loss
mechanisms are conhned to the ga,s alone. The applica-
ble dift'usion theory then accounts for the balance
between impact ionization as the generation process
and attachment and diffusion as the loss processes. The

*This research was supported by Rome Air Development
Center, Rome, New York.

f Now with Arthur D. Little Inc., Cambridge, Massachusetts.
f. Now with Ikor Inc. , Burlington, Massachusetts.' A. D. MacDonald and S. C. Brown, Phys. Rev. 75, 411 (1949).'M. A. Herlin and S. C. Brown, Phys. Rev. 74, 291 (1948}.'S. C. Brown and A. D. MacDonald, Phys. Rev. 76, 1629

(1949).

validity of the diffusion theory' is subject to require-
ments on 6eld uniformity, electron mean free path,
and the amplitude of electron oscillation in the alter-
nating Geld. The same theory has been applied success-
fully to the investigation of the formative time for
breakdown under pulsed-microwave conditions. ' An
additional simplification can be achieved in this case
since it is possible to design experiments in which the
diGusion loss of electrons is negligible.

The research described in this paper was under-
taken with the premise that the restriction of break-
down processes to those taking place in the gas could
also be achieved under pulsed-dc breakdown condi-
tions. Under these conditions the formative processes
of breakdown can be described within the same theo-
retical framework as employed in microwave breakdown,
and the experimental results for the two types of break-

4 L. Gould and L. W. Roberts, J. Appl. Phys. 27, 1162 (1956).


