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Model Pseudopotential and the Kohn Effect in Lead
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A model local pseudopotential for lead is proposed and two parameters adjusted so that the pseudo-
potential leads to the correct vibration frequency for two selected modes. Two potentials are found to
satisfy these conditions and one is selected which resembles the pseudopotential suggested from other ex-
periments. Kohn anomalies in the spectrum are found which are of the same general magnitude of those ob-
served. The model does not, however, lead to the correct stable structure, nor does it appear to describe
well the effective interaction between ions at small distances. Similar adjustment of the model to fit the
vibration spectrum of aluminum gives a pseudopotential similar to that computed from first principles and
leads to the correct stable structure, but again does not give correctly the effective interaction potential at
short distances.

I. INTRODUCTION

' "X the self-consistent-field approximation, the energy
~ ~ eigenstates for electrons in a metal can be obtained
by solving the Schrodinger equation,

TP+ VP= EP,
where V is the self-consistent potential. If we know the
core states ln), which for a simple metal can be taken
equal to the core states in the free ion to a good approxi-
mation, we may replace the Schrodinger equation by
the pseudopotential equation,

(1.2)

where the general form of the pseudopotential has been
given by Austin, Heine, and Sham';

(k+ql wlk)=(k+ ql vlk)
+2- f(k,~)&k+ql ~)(~ lk), (1 3)

and f(k,n) is a general function of k and n. l This form
for plane-wave matrix elements of the pseudopotential
can readily be obtained from the formulas given in
Ref. 1.j This will lead to precisely the same eigenvalues
E and the eigenfunction g may be obtained from the
pseudoeigenfunction q by orthogonalizing to the core
states,

0= (1—2-l~)&~l) ~. (1 4)

The advantage of the pseudopotential equation is
that with appropriate choice of f(k,u) the pseudo-
potential will in some sense be small and approximate
solutions may be found by perturbation techniques.

We have used this technique' 4 to evaluate the con-
duction-electron energies and to sum them over occupied
states in metals. This gives the total band-structure
energy of the metal and may be determined as a func-
tion of the positions of the ions in the metal; this, in
turn, allows the calculation of atomic properties of
metals such as the vibration spectrum.

' B. J. Austin, V. Heine, and L. J. Sham, Phys. Rev. 127, 276
(1962}.

' W. A. Harrison, Phys. Rev. 129, 2503 (1963).' W. A. Harrison, Phys. Rev. 129, 2512 (1963).
4 W. A. Harrison, Phys. Rev. 136, 1107 (1964).

In these calculations we have found that the nonlocal
nature of the pseudopotential, arising from the final
term in Eq. (1.3), was very pronounced. This was

reQected in a strong dependence of the matrix elements
of Eq. (1.3) upon k as well as upon q. We have there-
fore been skeptical of attempts to replace the true
nonlocal pseudopotential by an effective local potential.
However, Sham' has indicated that little error is intro-
duced in the final results by replacing the nonlocal
pseudopotential by an effective potential which is an
average of the nonlocal potential over k. We wish here
to explore further the use of such an effective potential.

This has the advantage of considerably simplifying
the computations. More importantly, from our point
of view, it allows us to select a particularly simple model
form and adjust two parameters so that the computed
vibration spectrum fits that observed for lead. The
calculation of the true pseudopotential for a metal as
heavy as lead would be a considerable task and would

be of questionable significance unless spin-orbit cou-

pling were included. The phenomenological approach,
by adjusting to fit experiment, takes some crude
account of the influence of spin-orbit coupling upon the
vibration spectrum.

On the other hand, the calculations are certainly not
from first principles and comparison with experiment is
not such a critical test. We partly compensate for this

by carrying out the same calculations for aluminum and
comparing with the pseudopotential obtained from first

principles earlier.

II. THE MODEL PSEUDOPOTENTIAL

We first separate the pseudopotential into individual

(but overlapping) ionic pseudopotentials centered at
the ion positions rj j

W(r)=g;w(r —r,). (2.1)

This separation is valid to the order in 8 to which we

compute. We are interested then in the structure of the
individual pseudopotentials rn(r) which are, of course,
nonlocal operators.

~ L. J. Sham, Proc. Roy. Soc. (London) A283, 33 (1965).
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(k+qI w
I k) =

I
—4~Ze'/q'

+0/(1+ (p.)')'3/I:oo (q)), (2 3)

with the two adjustable parameters P and r, .
Given this form and the values of the parameters we

may directly proceed to the computation of any
property of interest using the methods described
earlier. ' The energy-wave number characteristic which
determines the atomic properties is found to be

q' 4m Ze'
~(q) =-

8~Ze Qp q

-'e(q) —1

L1+ (q& )']'- e(q)
(2.4)

FIG. 1. Curves represent the computed vibration spectrum of
lead using the high-P pseudopotential, P =96.9 Ry a.u.8, r, =0.31
a.u. Experimental points are taken from Brockhouse, Arase,
Caglioti, Rao, and Woods (Ref. 13). Two prominent Kohn
anomalies in the computed curves are indicated by arrows and are
discussed in the text. Points at which the pseudopotential was fit
to experiment are indicated by boxes.

We have noted earlier' that for many electronic
properties, we are interested only in matrix elements

(k+qIwIk) between two states lying on the Fermi
surface. This subclass of matrix elements could be
characterized by a single parameter q lying between
zero and 2k', twice the Fermi wave number. Thus a
single curve for each metal gave an important set of
matrix elements and these were evaluated for the simple
metals Li, Be, Na, Mg, Al, K, Ca, and Zn. ' We further
found that these curves could be fit quite well by a one-
parameter form,

(k+ q I
w

I k) =
I
—4~Ze'/q'+P)/Ln, e(q) $. (2.2)

4m' sinqr
(k+q I n) ~ e-"I"r'dr=—

Qp qr Qs L1+ (qr, )']'

at large q. We are therefore motivated to propose

6 W. A. Harrison, Phys, Rev. 131, 2433 (1963).

Here Z is the valence of the ion; P is the strength (the
one undetermined parameter) of a delta function a,p-
proximating the inAuence of the core; Qp is the atomic
volume; and e(q) is the Hartree dielectric function for
free electrons.

In calculations of atomic properties we will require
matrix elements for q larger than 2kF, and Eq. (2.2)
does not behave properly in this range. As q becomes
large, the expression in Eq. (2.2) approaches the
constant P/Os, whereas our computed form factors
always approach zero at large q. To obtain a more ap-
propriate form at large q, we consider the form of the
general pseudopotential given in Eq. (1.3). The decay
of the repulsive final term on the right-hand side at
large q arises from the factor (k+q In). For a core func-
tion which varies as Ae "~"', this factor approaches

The appearance of the e(q) —1 in the numerator comes
from noting that the sum over all electronic states to
obtain the energy is of the same form as the sum over
states to obtain the screening field. The band-structure
energy per electron is given by

&~'= Z. ~*(q)~(q)&(q), (2.3)

where $(q) is the structure factor given by

~(q) = (1/&)Z, e-"' (2.6)

the sum being over all S ion positions in the crystal.
In particular, we may compute the vibration spec-

trum (including of course the electrostatic as well as
the band-structure energy) as described earlier'4 using
various values of P and r, and select those values which

give the best fit to the spectrum.

[3/4 3/4 0] [I IO]

1.0 .8 .6 4 .2 0 .2
qa/2 r

.6 .8 1.0 1.2 1.4

FIG. 2. Curves represent the computed vibration spectrum of
lead using the low-P pseudopotentia], P =19.6 Ry a.u.8, r, =0.30
a.u. Experimental points are taken from Brockhouse, Arase,
Caglioti, Rao, and Woods (Ref. 13).Points at which the pseudo-
potential was 6t to experiment are indicated by boxes.

III. ADJUSTING THE PARAMETERS

We followed the procedure of fixing r, and varying P
to obtain the correct frequency for a selected mode at a
selected wave number. We found often that for fixed

r, the frequency of the mode in question varied roughly
quadratically with P. Thus for some choices of r„ there
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FIG. 3. Computed form factors for lead for the two model
pseudopotentials which lead to the dispersion curves of Figs. 1
and 2. The dashed line gives the pseudopotential estimated earlier
(Ref. 8) from the resistivity of lead alloys. The two points repre-
sent form factors estimated by Anderson and Gold (Ref. 7) from
studies of the Fermi surface.

was no value of P giving the correct frequency; such
values of r, were of no interest. For other choices of r,
there were two values of P; we retain both values. We
then followed the same procedure for different values
of r, until we obtained agreement also for a second
selected mode. Agreement for the second mode was
obtained at different values of r, for the high- and for
the low-P solutions. These two experimental frequencies
lead to two different possible pseudopotentials.

In lead, after some experimentation, we selected the
two modes: transverse mode propagating in the L110)
direction with polarization in the L001j direction and
with wave number q given by qa/27r =0.707; and trans-
verse mode propagating in the (110j direction with
polarization in the L110j direction and with wave
number g given by qa/2' = 1.414. Agreement with these
two modes was obtained with r,=0.3 atomic units (a.u.),
P= 19.6 Ry a.u.' and with r,=0.31a.u. P= 96.9 Ry a.u.'
jNote that P has units of energy times volume; our
unit of volume is a Bohr radius (a.u. ) cubed (0.529 A)'.)
The corresponding computed dispersion curves are
given in Figs. 1 and 2. The most striking aspect of
these curves is the structure, which is to be associated
with the Kohn effect. We will discuss this aspect later.

We may note at once that there is some calculational
error rejected in the failure of the T~jo and longitudinal
modes propagating the L110) direction to become de-
generate at qa/2vr=1. 414 in the high-P curves. This
rejects a failure to reach convergence in summing over
q though we summed to q equal to 16s-/a, corresponding
to some 500 reciprocal lattice vectors and their satellites,
and added an approximate correction for the remainder.
This represents a systematic error of the order of the
difference between the computed frequency of the
degenerate modes, but is not of great importance for
our considerations.

We note further that the frequency of some of the
high-P modes has become imaginary, reQecting an in-
stability in the lattice.

Neither 6gure represents sufficiently better agree-
ment with experiment than the other to enable us to
select it. It is therefore appropriate to consider other
information we have about the pseudopotential in
lead.

We consider the form factor (lr+tf~tv~lr) which is
plotted in Fig. 3 for the two model pseudopotentials.
Comparison is made there with two values of the form
factor estimated by Anderson and Gold~ by analysis of
the Fermi surface. It is also made with the form factor
we have estimated earlier' by consideration of the
resistivity of various alloys of lead. In terms of the
model used here, that given earlier for lead corresponds
to P=60 Ry a.u. ', r, =0. On this basis we select the
high-P solution as giving a better description of lead.

It should be noted again that no explicit account is
taken here of the effects of spin-orbit coupling. Anderson
and Gold~ estimate a spin-orbit coupling parameter of
0.0961 Ry, comparable with the form factors deter-
mining the band gaps at zone faces. The effects of spin-
orbit coupling thus should have an appreciable role in
determining both the dispersion curves and the resis-
tivity of alloys. By neglecting this effect and forcing
the pseudopotential to give appropriate experimental
results, we are making a very crude experimental correc-
tion for spin-orbit coupling. Some of the discrepancy
in our computed dispersion curve will come from
the crudeness of this correction as well as from the
oversimplification of the problem with our effective
potential.

A further interesting check on the method may be
made by applying the same procedure to aluminum and
comparing the resulting pseudopotential with that com-
puted from erst principles. Here spin-orbit coupling is
so small that there is no difhculty in our neglecting it.

We attempted again a Gt of the same modes used in
lead, but with much less extensive exploration than was
carried on in lead. We found that with r,&0.3 there was
no P giving as low a frequency as that observed at the
q=0.707X2s./a mode. At r,=0.2, there were solutions
at P= 41.4 and about 15. The former gave a good fit to
the second mode and resembled the form factor which
we had computed from first principles. We therefore
computed the vibration spectrum for that case. The
resulting dispersion curves are shown in Fig. 4. We also
show in Fig. 5 the corresponding form factor and that
computed from 6rst principles. The rather good ht in
both cases suggests that the approach is a reasonable
one. Presumably with further adjustment we could im-
prove the agreement with the vibration spectrum of
aluminum.

' J. R. Anderson and A. V. Gold (to be published). The author
is indebted to Professor Gold and Professor Anderson for inform-
ing him of these results prior to publication.

s W. A. Harrison, Rev. Mod. Phys. 56, 256 (1964).' J. L. Yarnell, J. L. Vfarren, and S. H. Koenig, Lattice Dy-
namics (Proceedings of the International Conference held at
Copenhagen, Denmark, August, 1963), edited by R. F. %allis
(Pergamon Press Ltd. , London, 1965), p. 57.
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Fte. 4. Curves represent the
computed vibration spectrum
of aluminum using the model
pseudopotential with P =41.4
Ry a.u.' and r, =0.2 a.u. Ex-
perimental points are from
Yarnell, Warren, and Koenig
(Ref. 9). Points at which the
pseudopotential was 6t to ex-
periment are indicated by
boxes.
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The greater degree of success in the case of aluminum
than in lead might indicate that in fact spin-orbit
coupling may be an important source of error in lead.
Comparison of the form factors would indicate that the
use of perturbation theory in computing the energies
should have comparable validity for both metals.

An additional point should be made concerning the
sensitivity of the vibration spectrum to the pseudopo-
tential. In aluminum, the speed of transverse sound
propagating in the [100$ direction is reduced to about
half of that obtained from the electrostatic energy alone.
This reRects a cancellation of about three-quarters of
the electrostatic energy by band-structure energy. In
lead the corresponding reduction in the speed of sound
is by a factor of 3 representing even stronger cancel-
lation. We conclude first that the dispersion curves
strongly reQect the details of the pseudopotential; we
conclude second that the greater cancellation in the

l
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FIG. 5. Form factors for aluminum. The solid line represents the
model pseudopotential with P =41.4 Ry a.u.3 and r, =0.2 a.u. The
dashed curves represent those computed from erst principles
(Ref. 4).

case of lead may be an additional cause of difficulty in
matching the observed dispersion curves.

IV. THE KOHN EFFECT

We next turn to the remarkable structure, particu-
larly in the lead curves, arising from the Kohn effect."
Our earlier opinion' was that the observed structure
in the dispersion curves did not come from the singu-
larity in the dielectric function at 2k+. We based this
conclusion erst on the fact that the singularity is not
visible in the energy-wave number characteristics we
computed for zinc (and subsequently for sodium, mag-
nesium, and aluminum). This remains true in our
present calculation; Figure 6 shows the E(q) curves for
lead and aluminum which we are using here. The initial
peaks arise from the vanishing of the structure factor,
and nothing in the curves near q= 2k~ suggests the
singularity which becomes so visible when we compute
the dispersion curves in detail. Our second reason for
being skeptical of the interpretation of the observed
wiggles as Kohn anomalies was the calculation by Wall
and Kohn" which indicated that the expected irregu-
larities were indeed very small. Their calculations were
based upon the electron-phonon interaction given much
earlier by Bardeen, " which seems to seriously under-
estimate the matrix element for back scattering. Be-
cause of an extreme sensitivity (we will see that it is
exponential) of the size of the anomaly upon these
matrix elements, they greatly underestimated the size
of the effect.

Without making a detailed study of the Kohn effect,
a few interesting points can be made. In computing the
dispersion curves in second-order perturbation theory,

' W. Kohn, Phys. Rev. Letters 2, 393 (1959)."E. J. Woll, Jr. , and W. Kohn, Phys. Rev. 126, 1693 (1962)."J.Bardeen, Phys. Rev. 52, 688 (1937).
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cv'=48E„/Ma'+ (Z/M) Q q'E(q) . (4.1)

"B.N. Brockhouse, T. Arase, G. Caglioti, K. R. Rao, and
A. D. B.Woods, Phys. Rev. 128, 1099 (1962).

'4The most recent and thorough discussion of this point is
given in Ref. 7.

we always find the positions of the anomalies at wave
numbers arising from the free-electron surface. The
true Fermi surface, however, deviates appreciably from
the free-electron sphere and the anomalies are therefore
displaced. We would only obtain the correct positions
if the inhuence of the pseudopotential were carried to
higher order.

The singularity designated by a in Fig. 1 represents
such a case. A consideration of the topology of the
Fermi surface indicates that this anomaly comes from
transfer of electrons across the hole in the third-band
structure. This transfer is indicated in Fig. 7. Brock-
house et a/. "have associated the irregularity at slightly
larger wave number with this transfer and have indi-
cated that the difference in position is consistent with
our understanding of the lead Fermi surface.

The singularity in our computed curves designated
by b in Fig. 1 comes from transfer of electrons right at
the zone face, as indicated in Fig. 7. In terms of bands
this means transfer of electrons between the third and
fourth bands. However, it is believed" that there is no
Fermi surface in the fourth band and hence it is not
surprising that the corresponding Kohn anomaly is
suppressed. We have not, however, explored the eRects
of including Fermi-surface distortions in detail.

The size of the singularity a appears to be roughly
correct. Other irregularities which we find in our com-
puted curves seem not to be visible on the scale of
accuracy of the experiments. It is interesting to look
more quantitatively at the size of the singularities. For
a downward singularity" such as a or b, there are two
points of zero slope and the "size" of the singularity
may reasonably be defined as the diRerence in wave
number between these two points. We may estimate
that difference.

To do this we must sketch the calculation of vibration
frequencies. We assume a periodic displacement of the
ions given by

Br;=acos(Q r, +t). —

This gives rise to an average kinetic energy per ion of
Ma'cu'/4, where M is the mass of an ion. It also gives
rise to potential energy consisting of an electrostatic
energy bE„and a band-structure energy determined
from Eq. (2.5). The latter is found to be

5E&,= (Za'/4)Q q'E(q)

per ion except for angular factors appearing in the
summand. This sum is over all lattice wave numbers

qo (qo is 2m times a reciprocal lattice vector) and
satellite points qo+Q. The average kinetic and poten-
tial energies are set equal and we may solve for the
frequency.

q/kp .
2,0 5.0
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Fxo. 6. Energy-wave number characteristics for aluminum and
lead computed from the model pseudopotentials. The lead curve
represents the high-P model potential.

The Kohn anomaly arises as we vary the phonon
wave number Q and a satellite point qo&Q crosses the
value 2k+. Here there is a logarithmic singularity in the
dispersion curve arising from the corresponding singu-
larity in the e(q) factors in E(q). Equation (2.4) gives
the model form for E(q) and contains the dielectric
function twice; the singularity in the e(q) appearing in
the numerator is of more importance since e(q) is near
unity at q= 2k+. We seek the points at which des/dQ, or
equivalently doP/dQ, is equal to zero and therefore
wish to extract the singular term in doP/dQ which arises
from the e(q) in the numerator of Eq. (2.4). The
singular term in de(q)/dq may be found by direct differ-
entiation of e(q)i5 near q=2kp. We find the singular
contribution to daP/dq given by

d(g' Z dE(q) Z q'E(q) de
2

dq „„, M dq M e(q) —1dq

Z g=——E(q) ln 1—
2M kp 2k

(4.2)

FxG. 7. The free-
electron Fermi sphere
for lead with Bril-
louin-zone planes in-
tersecting a (100)
plane. Energy-band
indices associated
with various seg-
ments are indicated
by Roman numerals.
The electron transfer
corresponding to the
Kohn anomalies in-
dicated by a and b in
Fig. 1 are shown by
arrows.

"An explicit expression for e(q) is given, for example, in Ref. 6.

The points where du'/dq will vanish are just those
points at which the magnitude of the singular term, Kq.
(4.2), is equal to the magnitude of d~'/dQ in the absence
of the singularity; we characterize the latter by a speed
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Fro. 8. The eftective interaction between ions for lead obtained
from the model pseudopotential (high-p) and that obtained from
a study of the pair-distribution function for liquid lead by John-
son, Hutchinson, and March (Ref. 16).

of sound.

nonSing.

Then the size of the singularity is the dista, nce 8q

between the two points of vanishing slope.

8q=4kpi 1—(g/2kF) (

=4kp exp( —Mrna', /ZE(q)kp). (4.3)

It should be recalled that angular factors in the sum-
mand were dropped which appear in the denominator
and can make the exponential much smaller for some
modes.

Using numbers appropriate to the anomaly a of
Fig. 1, ~= 0.9&& 10"rad/sec and e, = 2X 10" cm/sec, we

obtain by= 0.004k' or 0.005 on the scale of the abscissa;
the angular factors were unity for this case. This
appears to be roughly that obtained in the calculation.
Note that the corresponding anomaly in Fig. 2 was
considerably larger because of the decreased (computed)
velocity and frequency.

Perhaps of more significance tha, n the exact size
of the anomalies is their extreme sensitivity to, for
example, the pseudopotential. A decrease in the ma, trix
element of the pseudopotential at 2k' by 20'P~ reduces
the size of the anomaly by a factor of 50.

With such extreme sensitivity of the size of the
anomaly upon the pseudopotential, it is difficult to put
a meaningful estimate on the size of the singularities
in a particular material. We must attribute some of our
success in obtaining singularities of the correct size in
lead to chance. On the other hand, it is gratifying to
see that the observation of singularities in lead should
not be rega, rded as surprising a,s we initially thought.

V. OTHER PROPERTIES

Once we have obtained the energy-wave number
characteristic E(q) for a given metal it is quite straight-
forward to compute many atomic properties of the
metal. ' We have not carried this very far with our
model potential for lead, but have obtained two in-
teresting results.

First, we compared the energies of fcc, bcc, and hcp
(with variable axial ratio) structures using the model
pseudopotential for lead. We found that both potentials
gave hcp as the stable structure instead of the observed
fcc. At the same time the model potential for aluminum
gave correctly the fcc structure. Exploration of other
light metals using reasonable model pseudopotentials
has similarly given the wrong structure in most cases,
though not in the cases of sodium, magnesium, and
aluminum. It remains to be seen whether more accurate
pseudopotentials will remedy this situation, but it
seems very possible at this point that the approxima-
tions inherent in our approach are too severe to reliably
predict stable structures and that sodium, magnesium,
and aluminum4 were fortunate choices.

We have also computed the effective ion-ion inter-
action' V(r) for lead using the model potential. This is
essentially a sum of the Coulomb interaction between
ions and the Fourier transform of E(q). The resulting
potential is shown in Fig. 8 along with an effective
interaction for lead given by Johnson, Hutchinson, and
March" which was obtained from the measured pair-
distribution function in liquid lead. There are several
aspects of the comparison which may be noted. First,
the general magnitudes of the potentials we obtain are
the same. In contrast, our first calculation of the inter-
action potential in zinc' ga,ve the first minimum deeper
by an order of magnitude than those given by Johnson
et al. This does not refiect any major difference in the
magnitudes of energy-wave number characteristics from
which the potentials for zinc and lead are derived; but
rather differences in the curvatures which are amplified
in taking the Fourier transform. It seems very possible
at this point that we overestimated the size of the
oscillations in the hand calculation for zinc, and more
recent machine calculations on other metals have given
results of the same general magnitude as those found

by Johnson ef al.
The oscillations of the computed intera, ction potential

at large distances are the Friedel oscillations which
reQect the same singularity in the dielectric function
which gives rise to the Kohn effect. The fact that the
computed magnitudes agree roughly with those found

by Johnson ef a/. , is consistent with our computed Kohn
anomalies being roughly of the size observed. The
period of the computed oscillations is half the Fermi
wave length and they decay as 1/r'. The curves derived
from the liquid should have slightly longer periods

' M. D. Johnson, P. Hutchinson, and N. H. March, Proc. Roy.
Soc. (London) A282, 283 (1964).
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because the density of the liquid is lower and hence the
Fermi wave length is larger. However, the periods of the
curves of Johnson et aL appear to be 50% bigger which
is a puzzling result.

Our computed curve does not show a minimum at the
near-neighbor distance (3.5 A) as does the Johnson curve.
This minimum is not necessary for the stability of
the metal since there are volume-dependent terms in the
energy in addition to those included in the interaction
potential and that potential itself depends upon the
volume. However, such a minimum did occur in our
treatment of aluminum4 using the full nonlocal pseudo-
potential and is absent in the interaction derived from
the model potential for aluminum. We conclude that
the behavior of the interaction potential at short dis-
tances is not well given by the model potential we have
used. Perhaps the appropriate behavior could be ob-
tained, however, without use of a nonlocal potential if a
different form were used.

VI. CONCLUSIONS

Our experimentation with a model pseudopotential
has met with mixed success. We have found it possible
to fit the vibration spectrum reasonably well with two

parameters and presumably would do better with more.
Furthermore, a pseudopotential is found which looks
very much like that obtained by consideration of the
electronic properties alone. The fact that the scheme
seems to work somewhat better for aluminum than for
lead might suggest that spin-orbit coupling plays an

important role in lead and cannot be accounted for
well with the simple pseudopotential. At the same time,
a model potential, at least in the form we have chosen,
seems not to duplicate all the results of the nonlocal
potential. In particular, the effective interaction be-
tween ions is not well given.

The most striking finding is the account which the
model in lead gives of the observed Kohn anomalies.
This account is not sensitive to the detailed form of the
model used but only to the form factor for back scatter-
ing. The size of the anomalies found would be much the
same had we simply extracted the form factor for back
scattering from our previously given form factors or
if we had attempted an extrapolation of the form
factors obtained by Anderson and Gold from studies of
the Fermi surface. The model lends additional support
in indicating that these form factors are consistent
with the general form of the vibration spectrum.
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Measurement of the Mossbauer Recoilless Fraction in y-Sn for 1.3 to 320'K*)

C. HOHXNEMSERf.

Departmemt of Physics, Washimgtort Umiversity, St Legis, Miss.ouri

(Received 15 February 1965)

Doppler-shift measurements of Mossbauer recoilless fractions f in P-Sn show discrepancies of the order of
20 to 30% and sometimes bear quoted errors of &10%. Such discrepancies can be caused by using
incorrect values of n, the internal conversion coefFicient; 7-, the mean life of the excited state; 1 g and

I'g, the absorber and source linewidths; and 8, the nonresonant background present in the detector at the
energy of the Mossbauer p rays. In the present work, the use of a black resonant absorber and the technique
x-p delayed coincidences combine to eliminate dependence on these parameters in first approximation. In
particular the results f=0.455&0.010 at 77.3'K and f=0.72&0.01 at 4.2'K are obtained. The errors are
systematic, and are due largely to uncertainties in evaluating the residual resonant transmission of the
black absorber, the total magnitude of which is about 5% for T & 100'K. For the experimental temperature
range of 1.3&T&370'K, f values are obtained at over 300 points for two different source samples. The
results are as much as 20% higher than some previously reported values, and also do not agree well with
the theoretical calculations of DeWames, Wolfram, and Lehman for. T&150'K. On the other hand, when
the data are expressed in terms of a Debye temperature Q~ derived at each temperature from the Debye
formula for f, the Q values show remarkably little variation with temperature, and fall on a smooth curve.
The results at low temperature help to clarify the data of Wiedemann, Kienle, and Pobell in the super-
conducting region and immediately above.

1. INTRODUCTION

'I'UMEROUS authors have reported data on the
temperature dependence of the recoilless fraction

f in the Mossbauer eRect. It is naturally of interest to
compare these experimental f values to theoretical
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predictions, since this can be considered as a direct test
of various forms of the phonon frequency spectrum.
f is given by the relation
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