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Helium II heat-flow measurements have been made in bundles of hollow glass fibers (<10 z in diameter)
over the temperature range 1.5 to 2.1°K. A linear heat-current-versus-temperature-difference relationship
was observed using channels 3, 6, and 9 cm in length. The experimental thermal conductivity varies ap-
proximately as 7! and decreases with increasing length of the channels; the latter result is apparently not
accounted for by the theory of London and Zilsel. This length dependence is shown to be explainable in
terms of a nonlinear temperature distribution along the channels. The consequence of this “length effect”
on experimental determinations of normal fluid viscosity by heat-flow methods is briefly discussed.

I. INTRODUCTION

HEN the heat-transport properties of helium II
are measured, a linear relationship between heat-
current density and temperature gradient is realized only
when channels of very small size are used to contain the
helium, and at the same time only small values of
temperature gradient are allowed.!—® With these condi-
tions satisfied, a coefficient of thermal conductivity can
be defined and measured. Theoretical considerations
based on the two-fluid model,* neglecting quadratic
terms in the thermohydrodynamic equations of helium
II and assuming perfect reversibility,5:® predict that
the heat-current density for heat flow along the length
of a cylindrical helium-II column of radius R is propor-
tional to the temperature gradient along the column.”
The coefficient-of-thermal-conductivity values resulting
from this theory are solely dependent upon the radius R
and the temperature 7. An examination of early
experiments’ performed with helium II confined in
small but very short channels suggested that the
coefficient of thermal conductivity may actually depend
on the length of the channel as well as on its radius and
the temperature.

In 1958 Forstat® reported on a study of this length
dependence. He used channels that were appreciably
longer than those considered in the earlier examination
and found a definite length dependence. This discrep-
ancy between theory and experiment has received little
attention in subsequent work, perhaps because of
Forstat’s use of a column of packed jeweler’s rouge to
obtain channels small enough for measurements to be
made in the linear region; these have the obvious draw-
back of being extremely ill defined. Further, his sub-
sequent analysis of the measurements was based on the
oversimplifying assumption that such multiple-
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connected channels are equivalent to an array of
parallel, noninterconnected, identical channels.

This paper reports on recent measurements of the
dependence of the thermal conductivity of helium II
on the length of the channels using parallel arrays of
long, geometrically well-defined channels. The results
show that the coefficient of thermal conductivity de-
pends on the temperature roughly as predicted by
theory, and also that the thermal conductivity does
depend on the length of the channel. The latter result
is not covered by present theoretical treatments.

II. DESCRIPTION OF THE CHANNELS

Our channels were fabricated by embedding hollow
glass fibers, initially of 0.3-cm inside diameter, in a
glass matrix.? Each unit comprises 1026 such fibers in a
paralle]l array. These bundles of fibers were softened by
heating and pulled down to form a continuous set of
small, straight channels several meters in length. These
long fiber bundles were then cut into 15-cm lengths
and divided into three groups of equal numbers each
consisting of an equivalent selection of cut lengths from
various parts of the uncut bundles. The bundles in one
of these groups were further cut into 9- and 6-cm
lengths; those of the second group into 3- and 12-cm
lengths; while those of the third group were left at their
original cut length of 15 cm. Thus, groups of 3-, 6-, 9-,
12-, and 15-cm-length bundles having the same average
channel size were obtained. (To date, only the 3-, 6-,
and 9-cm lengths have been used in our experiments.)
Finally, only those bundles for which all fiber orifices
were circular in cross section and within a tolerance of
+1u of the average (optically measured) channel
diameter of 6.6 u were retained for use in these measure-
ments. The regularity of the fiber openings, in size and
shape, is illustrated in Fig. 1.

Each experimental channel assembly was constructed
by mounting seventeen capillary bundles in parallel
between two stainless-steel header plates. The header
plates were bonded to the capillary bundle ends using

® The hollow-fiber bundles were fabricated by the American
Optical Company of Southbridge, Massachusetts.
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Fic. 1. Microphotograph (one-quarter view) of the end of a fiber
bundle. The small dark spots are the capillary orifices. The light
annular regions are the capillary walls and the darker region
surrounding them is the embedding glass matrix. The outer
boiu(l)dary)of the glass matrix is circular in cross section (diameter
~1.0 mm).

an epoxy resin'® and were soldered to the brass com-
ponents of the experimental chamber. Prior to a thermal-
conductivity experiment, the channel assemblies were
always tested for leaks in the solder joints and in the
epoxy seals using a mass-spectrometric leak detector.
Leak tests were made first at room temperature and
were followed by tests during three or more temperature
cyclings between room- and liquid-nitrogen tempera-
tures. Finally the assembly was tested for superfluid
leaks by immersing it in a liquid-helium bath and
cooling below 2.0°K while the tightness of the
assembly’s joints was monitored with the leak detector.

III. APPARATUS AND PROCEDURE

Figure 2 shows schematically the part of the appa-
ratus that was immersed in the liquid-helium bath
during measurements. The channel assembly described
above connected two liquid-helium reservoirs. The
“hot” reservoir (HR), suspended from the lower end
of the channel assembly in the vacuum region, contained
a carbon-resistance thermometer (& W, nominal 47-Q
Ohmite) and a Chromel-C wire-wound heater (2000 Q).
The leads to the thermometer and heater were fed out
of this reservoir into the surrounding vacuum jacket
through Stupakoff seals and from the vacuum region

10The best epoxy found for this operation was Minnesota

Mining and Manufacturing Company’s Structural Adhesive
EC 2214.
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into the helium bath also through Stupakoff seals.
Initially the remaining unoccupied volume in HR was
about 3.5 cm?®. In recent experimental runs more than
half of this dead space was filled with small glass beads
in order to reduce the total heat capacity of HR by
reducing the amount of liquid helium contained in it,
and hence (1) to reduce the time required during the
experiment for the system to come to an equilibrium
temperature difference for a given heat input, and also
(2) to reduce the time required for the system to reach
a new equilibrium reference temperature (with no heat
input) after a series of thermal-conductivity points had
been taken at the previous reference temperature. For
ease of exchanging channel assemblies of different
lengths, the joint between the assembly and HR was
made with low-melting-point (105°F) solder.
Low-melting-point (117°F) solder was also used to
connect the channel assembly to the bottom of the
“cold” (viz., reference temperature) reservoir (CR).
This reservoir contained a carbon-resistance ther-
mometer (3 W, nominal 47-@ Ohmite), and a sensing
thermometer and wire-wound heater that were con-
nected to an electronic temperature regulator of the
type designed by Sommers.! The electrical leads to
these elements were fed out of CR to the bath through
two 7-pin Winchester plugs. During the experiment the
liquid helium contained in the experimental chamber
was physically isolated from the bath liquid so that the
quantity of helium in the experimental chamber re-
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F16. 2. Schematic of heat-flow apparatus.

1H. S. Sommers, Jr., Rev. Sci. Instr. 25, 793 (1954).
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F16. 3. Representative plots of total heat current versus tem-
perature difference for a 3-cm-length assembly (run 51).

mained constant throughout the thermal-conductivity
measurements. Heat supplied to the experimental
chamber was carried to the helium bath by thermal
conduction through the walls of CR. In order to enhance
the thermal contact between the helium in CR and the
bath helium, a heat-exchange coil was mounted in the
experimental-chamber pumping line just above CR.
The experimental chamber was filled from the helium
bath through a needle valve (copper seat, phosphor-
bronze plug) mounted in the top of CR and controllable
from outside the cryostat by means of a long wrench.
HR and the channel assembly were surrounded by
a vacuum region during the measurements. The glass
vacuum jacket was sealed (housekeeper seal) to a short
copper tube, which in turn was connected to a flange at
the top of CR with low-melting-point (105°F) solder.
This flange also contained the Stupakoff seals that fed
electrical leads out of the vacuum region into the helium
bath. The glass envelope of the vacuum jacket allowed
a check to be made for clearance between HR and the
inner wall of the vacuum jacket. After assembly of the
apparatus this glass envelope was covered with alu-
minum foil to reduce stray radiation reaching HR.
Prior to the start of the actual experiment, the
experimental chamber and the vacuum jacket were
evacuated at room temperature to a pressure lower
than 5X1075 Torr. The vacuum jacket was then
isolated and backfilled with helium exchange gas to a
pressure of about 1 Torr, after which the apparatus
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was cooled, first overnight to liquid-nitrogen tempera-
ture, then to about 2°K, while continually pumping on
the experimental chamber. The exchange gas was then
pumped out of the vacuum jacket; next, the experi-
mental chamber was isolated from the pumping system
and filled with liquid helium from the bath through the
needle valve. The needle valve was then reclosed.

A conventional (dc) four-lead, current-potential
method was used to measure thermometer resistances
and the energy input to the heater in HR. Two type-
K-3 Leeds and Northrup, and a four-channel, type-
4363D Guildline potentiometer were used in the
measurements. For every thermal-conductivity point
in our final data, a set of four or more heat input-
temperature difference values were taken to ensure that
measurements were restricted to the linear region of
heat-conduction phenomena. Figure 3 shows typical
plots, for a 3-cm length assembly, of heat current
versus temperature difference for various reference
(CR) temperatures. The 2.05°K (reference tempera-
ture) data in this figure show departure from straight-
line behavior. Such nonlinearity (not intentionally
looked for) was observed in our measurements only
above =1.9°K and only with a 3-cm assembly; and
even when it was observed, a linear portion of the data
could always be discerned.

Values of the coefficient of thermal conductivity (K)
were obtained by multiplying the slopes of straight-line
plots of total rate of heat input versus temperature
difference (e.g., Fig. 3) by the length of the channels
and dividing by the total cross-sectional area of the
channels, the latter computed as 17 bundles times 1026
capillaries per bundle times the cross-sectional area
wR? of one capillary. An analysis of the amount of heat
conducted by the glass and by the electrical (manganin)
leads connecting HR and CR indicates that <19 of
the heat was conducted along these paths even at the
lowest temperatures reached in our measurements
where K of the helium had its lowest values. For this
reason the corrections for heat conducted by the glass
and manganin have been neglected in the presentation
of our data.

Immediately following each thermal-conductivity
run the thermometers were calibrated against the vapor
pressure of the helium isolated in the experimental
chamber. A large-bore mercury-in-glass manometer, an
oil (Octoil-S) manometer, and a Texas Instruments
quartz-Bourdon gauge were used for the calibration
measurements. Only after these calibration data were
taken was the system again allowed to come to room
temperature.

Several days of measurements were required to
gather enough data to plot a K-versus-T experimental
curve for a given length assembly. Further, it was found
imperative to remove the liquid helium entirely from
the experimental chamber at the conclusion of a run
before the chamber warmed above the \ point; when
this was not done, ruptures in the epoxy joints of the
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channel assembly and/or in the solder joints of HR
usually occurred. These ruptures were caused by the
inability of HeI to escape HR sufficiently rapidly
through the capillaries as HR temperature rose toward
the critical temperature. Thus, the temperature of the
helium bath was continuously held below the A\ point,
and, using a device especially designed for transfer of
4.2°K liquid into a below-\ region,'? new liquid was
added daily to the bath.

IV. RESULTS AND ANALYSIS

Measurements were initially made on three assemblies
indentically constructed except for a difference in their
lengths (runs 50, 51, and 52). The experimental data
were first analyzed with the assumptions that all three
assemblies had the same number of open channels (17
times 1026), and that all channels were identical in
diameter (6.6 u), and uniform along their lengths. These
assumptions seemed to be justified on the basis of the
uniformity in size and shape of the channels observed
in optical measurements on the cut ends of the capillary
bundles (Fig. 1) and the precautions noted in Sec. II.
The results'® presented in Fig. 4 and in Table I show
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F16. 4. Thermal conductivity as a function of temperature for
three different length assemblies; data shown does not include
gas-flow measurement corrections.

(119’614;1)' H. Madden and H. V. Bohm, Rev. Sci. Instr. 35, 1554
B H H. Madden, R. H. Hammerle, and H. V. Bohm, Proceed-
ings of the Ninth International Conference on Low Temperature
Physics, 1964 (Plenum Press, Inc., New York, to be published).
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TasLE I. Thermal-conductivity data; maximum superfluid ve-
locities attained during measurement of the thermal-conductivity
value.

T Kaxpt Vs
cal
Run (°K) ——— ) (cm/sec)
identification °K cm sec
1.520 0.187 0.020
1.583 0.304 0.021
1.609 0.391 0.019
1.634 0.449 0.055
1.660 0.579 0.046
1.684 0.688 0.094
1.706 0.772 0.063
1.730 0.877 0.10
L=3cm 1.760 1.078 0.035
Run No. 51 1.795 1.345 0.18
Assembly No. L3A 1.809 1.469 0.074
1.828 1.664 0.18
1.865 2.049 0.11
1.881 2.102 0.21
1.907 2.507 0.11=
1.936 2.852 0.25+
2.015 3.843 0.35+
2.035 4.105 0.38»
2.056 4.647 0.31=
1.470 0.0917 0.008
1.516 0.125 0.021
1.560 0.172 0.022
1.607 0.224 0.013
1.655 0.356 0.031
1.692 0.425 0.027
1.706 0.463 0.026
1.740 0.603 0.046
1.765 0.693 0.039
L=6cm 1.785 0.829 0.056
Run No. 50 1.816 0.992 0.068
Assembly No. L6A 1.836 0.945 0.059
1.860 1.258 0.080
1.876 1.482 0.069
1.905 1.530 0.065
1.928 1.537 0.072
1.965 2.012 0.12
1.981 2.251 0.12
2.002 3.052 0.17
2.021 3.494 0.037
2.031 2.720 0.18
1.560 0.0819 0.058
1.692 0.0865 0.0093
1.754 0.117 0.021
L=9 cm 1.794 0.173 0.016
Run No. 52 1.837 0.180 0.027
Assembly No. L9A 1.896 0.232 0.017
1.940 0.334 0.029
2.005 0.394 0.070
2.036 0.388 0.025
2.077 0.412 0.050

» Departures from linearity observed; . value given corresponds to the
greatest value for points in the linear range.

a sizeable “length effect” with K decreasing with
increasing length of the channels.

One possible explanation for the results shown in
Fig. 4 was that clogging of the longer channels had
occurred due to freezing out of condensible vapors. On
the basis of this hypothesis the results would be due to
insufficient (room-temperature) pumping time being
allowed, before the start of an experiment, for HR and
the channels to be thoroughly cleansed of condensable
vapors. This hypothesis was tested and shown to be
incorrect by repeat measurements (runs 53 and 54)



THERMAL-CONDUCTIVITY LENGTH DEPENDENCE IN He 1I

made on the same 9-cm channel assembly used in
run 52. Following run 52, two weeks were spent at room
temperature in flushing the experimental chamber with
dry helium gas, and in extensive pumping on this
chamber between the flushings before the start of run
53. Between runs 53 and 54 a similar clean-up procedure
was carried out over a one-month period. The results of
runs 53 and 54 do not differ significantly from those of
run 52. In the remaining analysis given below, these
three runs are treated as one,

In order to check the reproducibility of the results,
measurements were next made on a different 3-cm and
a different 6-cm assembly (runs 56 and 57) from those
used in runs 51 and 50, respectively. The data from
runs 56 and 57, analyzed as outlined above do not
agree with those of runs 51 and 50. This discrepancy
suggested that the optical measurements showing
channel uniformity at their ends were insufficient
evidence to justify the assumption that the channels
were uniform to hydraulic flow. A series of room-
temperature helium-gas-flow measurements made on
all five channel assemblies used in the thermal-con-
ductivity measurements showed that the total cross-
sectional areas open to flow were not the same for all
assemblies. The thermal-conductivity results had thus
to be re-evaluated on the basis of these gas-flow
measurements,
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F16. 5. Thermal conductivity as a function of temperature for
seven runs on assemblies of three different lengths normalized to
reference run 51.
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TasLE II. Uncorrected and corrected thermal-conductivity
ratios; channel-geometry parameters.

(1) Run Number 51 56 50 57 52,53, and 54
(Reference) (Composite)

(2) Assembly L3A L3B L6A L6B L9
(3) Length (cm) 3 3 6 6 9
(4) Uncorrected thermal-

conductivity ratio (x) 1.0 0.87 0.66 1.03 0.13
(5) Measured gas-flow

rate ratio (¢) 1.0 1.08 2.52 1.68 13.4
(6) Average-areas

ratio (@) 1.0 0.96 0.89 1.09 0.47
(7) Channel-numbers

ratio (v 1.0 0.93 0.79 1.19 0.22
(8) Corrected thermal-

conductivity ratio (x) 1.0 0.94 0.83 0.87 0.58

Without reference to the gas-flow measurements, it
is of interest to examine the values of K obtained from
the various runs for similarities in their temperature
dependence. The data can be made to fall approximately
on one curve of Kexp: versus 7 by scaling each run by a
constant factor appropriate for that run. Run 51 (the
first 3-cm-length assembly run) was taken as a reference
since the data from this run were the best defined of all
the runs. Scaled data from all seven runs are plotted
in Fig. 5. In order to determine a scaling factor for a
given run, a scaling factor for each data point of the
run was determined and an average scaling factor
calculated for the run. Values of «, the reciprocal of the
average scaling factor, are tabulated in line 4 of
Table II. The individual scaling factors for the 9-cm-
length assembly points above 2.0°K were markedly
larger than those for the points below that temperature;
they were not used in calculating the average scaling
factor for the 9-cm data (runs 52, 53, and 54). Except
for these points, the scaled data are internally consistent
in their general temperature dependence. The 9-cm-
length assembly data suggest the possibility of a maxi-
mum in the experimental K-versus-T curves.

The results of the room-temperature gas-flow
measurements are given in line 5 of Table II in terms
of ¢ ; this quantity is defined as the ratio of the volume
rate of flow through channel assembly L3A (the
assembly used in reference run 51) to the volume rate
of flow through another given channel assembly. The
gas-flow measurements were all carried out in the same
pressure range and under conditions where flow is
governed by Poiseuille’s equation. The Reynolds
numbers calculated for the gas-flow experiments were
<10~ The expected values for ¢ (on the basis of
identical channel size and number) were simply
¢=L/(3 cm). The differences between the expected
and measured values of ¢ were interpreted on the basis
of two alternate premises. The first is that there existed
differences in the average-radius values between channel
assemblies; these differences are given in line 6 of
Table II in terms of e, the ratio of the average area of
channels in a particular channel assembly to the average
area of channels in the reference assembly. The alternate

1 Comparative ratios are given Greek-letter symbols in this
paper.
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F16. 6. Thermal conductivity as a function of temperature for
three different length assemblies; curves are corrected to account
for gas-flow measurements.

premise is that different assemblies had different
numbers of open channels; these differences are given
in line 7 of Table II in terms of », the ratio of the num-
ber of channels in a channel assembly to the number of
channels in the reference assembly.

The values of « tabulated in line 4 of Table II, and
previously referred to as the reciprocals of the average
scaling factors, are uncorrected ratios (with respect to
the gas-flow measurements) of the thermal conduc-
tivities of channels of length L, to the thermal conduc-
tivity of the reference channel. The values of x corre-
spond to a “length effect” of the magnitude shown in
Fig. 4. Recalculated values of the thermal-conductivity
ratios (k') are tabulated in line 8 of Table II; both above
premises Jead to the same reduced thermal-conductivity
ratios. (See Appendix for details.) The recalculated
ratios show a “length effect” in the direction originally
observed but smaller in magnitude. This is illustrated
in Fig. 6.

The “length effect” is not evident in current theo-
retical results. From the linear thermohydrodynamic
equations of motion® for the two-fluid model of helium
II, London and Zilsel” obtain a theoretical expression
for K (for the case of heat flow along a cylindrical
column of helium II):

K= (pS)TR/8,, 1)
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where p is the mass density, .S is the specific entropy of
the liquid, #, is the coefficient of viscosity of the normal
component of helium II, R is the radius of the liquid
column, and 7 is the absolute temperature of the liquid.
Using the empirical result that the entropy density (oS)
of helium II varies approximately as 7%-¢ in the tem-
perature range from 1°K to the A point, and assuming
that “n, o< 795 as is the case in an ideal gas and in
helium I,”7 they predict a temperature dependence
(R constant) of K o« T1-7,

Equation (1) is derived for conditions of zero net
mass transfer, steady-state hydrodynamic flow, and no
viscous dissipation of energy. Our experimental system
fully satisfies the first two conditions; as will be dis-
cussed below, any viscous dissipation occurring has
apparently a negligible effect on our results. Using the
value of the channel radius as the fitting parameter, a
theoretical curve o 77 has been fitted to the 3-cm
(reference) data in Fig. 5. A value of R=0.8 x gives the
best fit to the experimental points. K.y, does not in-
crease quite as fast with temperature as the theory
predicts (indeed, a plot of logioKexpt versus logo7" gives
a power of 11.0). The difference in value between the
theoretical fitting parameter R of 0.8 1 and the optically
measured radius of 3.3 u may be related to the dis-
crepancies between the optical and the hydraulic-flow
measurements of channel size and uniformity. It should
also be noted that if one knew how to extrapolate the
3-cm (reference) Kexpy: to a “zero-length” value, the
fitting parameter R would be nearer the optically
measured radius.

Possible phenomenological explanations of the experi-
mental results are considered next. For a linear tem-
perature distribution the temperature difference be-
tween the ends of a channel divided by the length of the
channel is constant for any length channel. If however,
the temperature distribution along the channel were
nonlinear, in particular if it were of the shape illustrated
in Fig. 7, the experimentally determined temperature
gradients for 3-, 6-, and 9-cm-length assemblies would
correspond to the slopes, (T—7T,)/L, of the chords
0-3, 0-6, 0-9, and would thus not be equal. Such a non-
linear temperature gradient would be in agreement
with the apparent dependence of K., on the length of
the channel. As a representative nonlinear temperature
distribution, a power law

T=Ty+ (dT/dL)[L+BL"] 2

was tried in analyzing our data. In Eq. (2), T, is the
temperature at CR, L is the distance along the channels
measured from CR, (d7/dL), is the initial slope at
L=0, and B and p are constants to be determined from
a comparison with experimental results. Thus, in terms
of this temperature distribution the slopes of the chords
in Fig. 7 are

(T—Tv)/L=dT/dL)[1+BL>']. A3)
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Representative values of B and p (calculated using «’
values from line 8 of Table II for run 50 and the
composite 9-cm run) are B=1.5X10"3 (in units of
cm~29), and p=23.9; both have a strong dependence on
the magnitude of the ‘““length effect.” Since Kexp; de-
creases with increasing L, we have B>0 and p>1 as
necessary conditions. Thus any nonlinear temperature
distribution must have an increasing slope as illustrated
in Fig. 7.

The initial slope (d7/dL), should be obtainable from
the limiting value of the thermal conductivity as L

goes to zero:
(W/4)

limK (L) = Ko=——"—— ,
L0 (@dT/dL)o

©)

where W is the total heat input per unit time, and 4 is
the total cross-sectional area of the channels. Attempts
to extrapolate the corrected Koy, values to a “zero-
length” value have been made, but an explicit ex-
pression for the dependence of Kex,, on the length of
the channels that fits all data could not be determined.

In the above analysis it has been assumed that the
heat-current density (conventionally defined, for pur-
poses of calculating experimental data, as the ratio of
the measured heat input at HR to the cross-sectional
area of the channels) is constant along the entire length
of the channels. If it is assumed that K is truly inde-
pendent of length, but that heat-current density (J)
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changes along the channels are responsible for the non-
linear temperature distribution illustrated in Fig. 7, an
alternate analysis can be developed. A changing J
might be due to heat created or lost along the channels
or to a changing effective cross-sectional area through
which the heat flows.

Heat is generated in the flow of the viscous normal
fluid from HR to CR. It produces an increasing J as
one goes from HR to CR. This contribution to the heat
flow is among the nonlinear terms neglected by London
and Zilsel as insignificantly small in the derivation of
Eq. (1). The steadily increasing slope of the curve in
Fig. 7 as one goes from CR to HR requires a decreasing
J as the heat flows from HR to CR. Heat losses by
conduction or convection were prevented by the vacuum
surrounding the channels. Heat losses by radiation have
been calculated to be too small to account for the ob-
served ‘“length effect”; the temperature differences
between the walls of the capillaries and the helium bath
surrounding the aluminum-foil shielded vacuum jacket
were less than 0.01°K.

An increase in the average effective cross-sectional
area of the channels as the heat flows from HR to CR
would yield a decreasing J. Such a consistent variation
in geometrical area can hardly be expected for all five
channel assemblies; however, changes in the normal
fluid velocity profile along the length of the channel
could result in a variation in effective area. It must be
noted that “end effects” which are usually associated
with a changing velocity profile, appear to be negligible.
The maximum Reynolds Numbers, M =2Rv,p,/7a, for
the normal fluid flow are of the order of 3, and thus the
inlet lengths, defined!s as 0.07RM, are less than 10~ cm.

V. DISCUSSION

At the start of this research project we were very
skeptical about the existence of a “length effect” as
suggested by London and Zilsel” and reported by
Forstat.® London and Zilsel arrived at the possibility
from a consideration of two independent experiments,!+?
in both of which the channels used were very short
(=0.1 t0 0.3 cm in length), in each of which a channel
of one length only was used, and in one of which the
establishment of steady-state conditions during meas-
urements was questionable. Forstat’s model of a set
of parallel, noninterconnected channels, all of the same
length, shape, and size does not agree well with the real
channels through a column of packed jeweler’s rouge.
In applying the laws of hydrodynamics to the flow of
normal fluids through porous media one must make a
number of simplifying assumptions, and even when
more realistic models than that assumed by Forstat are
used, the flow of normal fluids through porous plugs
exhibits deviations from Poiseulle’s law.!® Clearly,

5 R. B. Bird, W. E. Stewart, and E. N. Lightfoot, T mns%)ort
Phenomena (John Wiley & Sons, Inc., New York, 1960), p. 47.
16 P. Debye and R. L. Cleland, J. Appl. Phys. 30, 843 (1959).
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simplifying assumptions must be examined carefully
in dealing with helium II. Further, Reynolds and
co-workers,!? using an experimental setup similar to
that used by Forstat,'® reported results that appear to
show a “length effect” in the opposite direction to that
reported by Forstat.®

Section IV deals first with reducing the magnitude of
the “length effect” to a value consistent with the gas-
flow measurements. Of the limiting hypotheses con-
sidered, average channel-radius differences are the least
credible situation since the capillary fabrication, cut-
ting, and selection methods discussed in Sec. IT make
variations (systematic or otherwise) in capillary size of
sufficient magnitude to explain the gas-flow discrepan-
cies improbable. Total capillary number differences,
due to clogging, are the more probable situation since
optical measurements, while showing no evidence of
clogging or capillary collapse, could be made only on
the ends of the capillary bundles. Clogging for a short
distance anywhere along the length of the channels
would effectively remove the channel as an “internal
convection” path. Neither of the extreme cases leads
to an elimination of the “length effect.” Analyses of
intermediate cases, i.e., combinations of differences in
area and of clogging that satisfy the gas-flow results,
are more difficult to carry through, but in any case do
not appear to lead to the elimination of the “length
effect.”

Our interpretation of the “length effect” on the basis
of a nonlinear temperature distribution does not lead
to a clear-cut explanation of why K should change as it
appears to when J is taken as constant along the
channels, or, alternately, why J should change, as it
must, if K is taken as constant along the channel.
Suspect then is the validity, for the case of a helium II
column of finite length, of the theoretical expression
for K given in Eq. (1). Equation (1) is derived for
differential temperatures and lengths. Perhaps if the
London-Zilsel differential thermohydrodynamic equa-
tions were properly integrated with respect to both
length and temperature, a length dependence of K
would result.

The validity of Eq. (1) under the above conditions
may be further questioned by considering experimental
determinations of 7. by heat-flow methods.17:1%-2 The
evaluation of K given by Eq. (1) is crucial in such
experiments. If K decreases with increasing length of
the channel through which the heat (normal fluid) flows,
the values of 7. calculated using K determined by
Eq. (1), which does not include a length dependence,

17 J. Burnham, J. Reppy, G. Pearson, A. H. Spees, and C. A.
Reynolds, Phys. Fluids 3 735 (1960) ; (cf Fig. 2 of that paper).

18 H. Forstat and C. A. Reynolds, Phys. Rev. 101, 513 (1956).

19 A. Broese Van Groenou, J. D. Poll, A. M. G. Delsmg, and C. J.
Gorter, Physica 22, 905 (1956)

* D. F. Brewer andD 0. Edwards, Proc. Roy. Soc. (London)
A251, 247 (1959).

"F A. Staas, K. W. Taconis, and W. M. Van Alphen, Physica
217, 893 (1961).

BOHM, COWAN, AND ALCARAZ

will be larger than “actual,” though the “actual”
experimental values are not definitely established.?Z—2
Ordinarily, n,-heat-flow experiments employ very small
slits’® or capillaries® to avoid nonlinear heat-flow
phenomena; hence, data reduction involves the for-
midable difficulties of ascertaining exact flow geometries
of these narrow channels. Staas and co-workers?! have
performed experiments using ‘“wide” capillaries that
were carefully calibrated for channel size and uniformity
using a ‘“‘mercury drop” method, rather than the more
conventional, but less accurate, gas-flow method.!?-19:2
Their elegant technique apparently avoided the non-
linear effects usually seen in wide channels. Below 1.7°K,
they obtained results in agreement with the rotating-
cylinder viscometer results of Heikkila and Hollis
Hallet.?* Above this temperature their 5, values are
larger than those measured by the rotating-cylinder
method. This difference is consistent with the “length
effect,” its absolute magnitude becomes smaller, the
lower the temperature. This might be expected because
of the rapid decrease in K with temperature and the
resultant insensitivity of 7. calculations to small
changes in K.

A number of further experiments are suggested by
the work reported here. A check on the linearity of the
temperature distribution along the channels would be
valuable. Also desirable would be a series of experiments
on the “length effect” using channels that may be
broken into sublengths in such a way that none of the
original channels is lost in the subdividing process, as
would necessarily have occurred with our 17-bundle
capillary assemblies. Such studies would eliminate the
need for corrections for channel size- and number-
differences and thus remove the aspect of our experi-
mental results that makes the exact dependence of K
on the length of the channels difficult to determine.
Finally, independent of the ‘‘length effect,” measure-
ments of K should be made as 7" approaches the A point
in order to determine under what conditions, if any, a
maximum occurs in the Keyp-versus-I' curve, as re-
ported by Forstat® and as suggested by our 9-cm-length
data.
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APPENDIX

Reduction of the uncorrected thermal-conductivity
ratios'  in light of the gas-flow results is based, in both
the average-radius differences and clogging limits, on
Poiseulle’s equation for the volume rate of flow F of a
gas of viscosity 5 through N identical cylindrical
capillaries of radius R and length L:

F=Nr(Ap)RY/8yL, (A1)

where Ap is the pressure difference between the ends of
the capillaries. Measurements of F could not be made
with sufficient accuracy to determine absolute channel
sizes. Rates of pressure change in the constant-volume
gas supply chamber used in all gas-flow measurements
were measured accurately, and, taking these rates as
proportional to the F values, an accurate ratio ¢ of F
for the reference assembly to F for any other assembly
was determined. If each assembly has the same number
N of identical channels of radius R, from Eq. (A1) this
ratiois

¢=L/ (reference length)=L1/3 cm. (A2)

Experimental conditions were such that n and Ap were
the same for each gas-flow measurement. Differences
between the expected and measured values of ¢ could
only be due to (i) differences in R, (ii) differences in N,
or (iii) a combination of differences in R and N. From a
single set of gas-flow measurements a definite choice
among these possibilities cannot be made. Thus, the
two extremes, (i) and (ii), were considered separately.

Case (i). Reduction for average-radius differences
(ka): In this limit N is the same for all channel as-
semblies (= N,), but the average channel radius of the
reference assembly R, is not necessarily the same as
that of any other assembly R;. Thus

¢=[L/(3 cm)J(R,/Rr)*, (A3)
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or the average-areas ratio is

e

(A4)

Initially, Kexpt values were calculated according to

W/(V.rR?)
expt=— T,

gradT

(AS)

where I¥ is the measured rate of heat input to HR, and
grad T is the measured ‘“‘temperature gradient” (Fig. 7).
To correct Kexps in this limit, R,2 must be replaced by
R;?, thus giving a new K., allowing for area

differences,
, Rr 2 Kexpt
Kexpc = Kexpt = .

L a

(A6)

The theoretical K depends on the square of the radius
of the channel:

Kin=constant X R2T1-7, A7)
Thus Kexpy should be compared with a new reference
curve that corresponds to experimental results for a
3-cm assembly with an average radius Ry instead of R,.
From Eq. (A7), this new curve is obtained by multi-
plying the original reference curve K,, shown in Fig. 5,

by a. The thermal-conductivity ratio k., corrected for
area differences, is then

Kexpc, Kexpt/a K
Ka= e o e o — .

K, K a?

(A8)

Case (i7). Reduction for number differences (k,):
Assuming R is the same for all channels (=R,), the
difference in total cross-sectional area of the channels
reflected in the measured gas-flow ratio ¢ is expressible
in terms of », the ratio of the number N of open
channels in any given assembly to the number N, in
the reference assembly :

¢=(L/3 cm)(N,/N1), (A9)
and
N L L/ (3 cm)

p=—=

. A10
3 " (A10)

In this limit, N, must be replaced by N in Eq. (A5)
for the corrected values (Kexpt'’):
Kexpt" =Kexpt(Ny/N1)=Kexpi/v. (A11)

Since K.y is not dependent on N, Ky, must be com-
pared with the original reference curve K, (Fig. 5), and
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thus
Aepr !

Kp= = =

A'exm/ vV K
-, (A12)
K, K, v

but from Egs. (A4) and (A10), o=, and so

COWAN,

AND ALCARAZ

Note added in proof. The assumption of incompressible
gas flow with zero slip is implicit in Eq. (Al). In ana-
lyzing the relative gas-flow measurements, the validity
of this assumption does not affect the evaluation of x,;
approximate calculations for k, show that the inclusion
of slip corrections does not appear to eliminate the
“length effect.”

Kn=Ke=K", (A13)
where «’ is the ratio given in line 8 of Table II.
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The pure-diffusion (field-free) distribution function for electrons in a gas enclosed by absorbing walls is
obtained. The distribution is described in terms of spatial modes, each of which decays exponentially with
time. Special emphasis is placed on the lowest modes which explicitly display the “diffusion cooling’ effect

for electrons.

I. INTRODUCTION

HIS paper deals with the pure-diffusion (field-free)
energy distributions for electrons in a gas and
enclosed by absorbing walls. The present study is an
extension of previous work! by the author on the spatial
dependence of distribution functions for electrons in
the presence of electric fields. The purpose of the pres-
ent work is to describe the manner in which the distri-
bution function for electrons, which are initially zof in
thermal equilibrium with the gas, changes with time and
position owing to collisions between the electrons and
the gas atoms and to diffusion of the electrons to the
walls. This descritpion is given in terms of spatial
modes, each of which decays exponentially with time.
It will be shown that in general the electrons never
come into equilibrium with the gas but have a terminal
energy that is lower than the thermal energy of the gas.
This effect, which has been called “diffusion cooling,?”’
is displayed by the lowest modes, i.e., the modes with
the longest decay times. For simplicity the interaction
between the electrons and atoms is taken as elastic and
only the plane-parallel geometry is considered. The
entire mode system is given for the case of an energy-
independent collision frequency while only the lowest
modes are obtained for the case of an energy-independ-
ent collision cross section.

II. CONSTANT COLLISION FREQUENCY

The starting point for the present discussion is the
Boltzmann equations for f(r,z,f) and f'(r,,t). These

! J. H. Parker, Jr., Phys. Rev. 132, 2096 (1963).
2 M. A. Biondi, Phys. Rev. 93, 1136 (1954).

functions represent, respectively, the isotropic and non-
isotropic parts of the electron distribution function,
ie.,

f(r,v,t) = f(J (r)v’t)_*_fl (r,v,t) D

where r is the position vector and v is the electron
velocity. The Boltzmann equations for f° and f!, with
the collision frequency independent of energy, are?

aft 2mv 9 af° 1/72e\!72
L YA e,
at Me'? Je Je 3\m

and

of! 2e\17?
e (Yoo
at m

where m is the electron mass, M the atomic mass, e the
electron kinetic energy, » the momentum-transfer
collision frequency, and 7" the gas temperature. It will
be assumed that f° varies sufficiently slowly so that Eq.
(2) can be written as

vilm— (2¢/m)12V, fO. 3)

The conditions under which this approximation is valid
will be discussed at the end of this section. When Eq.
(3) is combined with Eq. (1), the resulting equation for
fOis
] df° M M of°
6-3,’2,___[63/2<f0+kT___>]+ Vr2f0___ —_— (4_)
de O€ 3m?y? 2mve Ot

# The detailed derivation of these equations along with a discus-
sion of the approximations used in obtaining them is given by W. P.
Allis, in Handbuch der Physik, edited by S. Fliigge (Springer-
Verlag, Berlin, 1956), Vol. 21. Also see T. Holstein, Phys. Rev.
70, 367 (1946).




Fic. 1. Microphotograph (one-quarter view) of the end of a fiber
bundle. The small dark spots are the capillary orifices. The light
annular regions are the capillary walls and the darker region
surrounding them is the embedding glass matrix. The outer
boundary of the glass matrix is circular In cross section (diameter
~1.0 mm).



