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Logarit&rrtic Ter~ in the Density Expansion of Transport CoefBcients*
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A divergence in the first (second) density correction to the transport coefhcients of two- (three-) di-
mensional classical gases has been studied using the resolvent-operator formalism of the correlation-function
expressions for the transport coeScients. As an illustration we consider the self-diRusion coeScient of the
two-dimensional gas. A divergence in the triple-collision term arises from the behavior of the integrand at
small values of the wave vector in the integration over the wave vector. Similar and stronger divergences
appear in higher terms of the binary-collision expansion. The most divergent terms have been summed with
the help of a diagram analysis and are shown to provide a natural cutoB to the divergence in the triple-
collision term. The cutoff wave vector is proportional to the density p and gives rise to a term involving lnp
in the density correction to the transport coefficients.

1. INTRODUCTION

ECENTI.Y, Cohen, Dorfman, and Sengers' dis-
covered that the triple-(quadruple-) collision terms

which appear in the first (second) density correction to
the transport coeKcients in two- (three-) dimensional
classical gases interacting with short-range repulsive
forces contain certain divergences arising from the fact
that the contributing phase-space regions can become
indefinitely large in the neighborhood of certain well-
co]limated collisions. They suggested that the transport
coeKcients (q, the viscosity coefficient, ~, the thermal
conductivity; and pD, where D is the diffusion constant)
of gases might not be analytic functions of the density p
near p =0, and that the density expansion might involve
lnp besides powers of p. This indicates that some of the
basic assumptions in the transport theory of dense gases,
notably Bogolyubov's functional assumption, ' break
down at a certain stage of the density expansion. This
has already been anticipated by Green' from the slow
time decay of the error term which expresses the
deviation from Sogolyubov's functional assumption.

A somewhat different method for obtaining density
expansions of the transport coefficients has been de-
veloped by Zwanzig' and the present authors' starting
from the correlation-function formulas for the transport
coeScients which are expressed in terms of the E-body
resolvent operator. We make use of the binary-collision
expansion of this E-body resolvent operator, and invert
the resulting series for the reduced one- or two-body
resolvent operators. Ke do not use a statistical or

functional assumption similar to that mentioned in the
preceding paragraph. Instead, our basic assumption- has
been that the inverted series gives a well-defined ex-
pansion of the transport coefIicients in powers of the
density. This has been verified up to the first density
correction in the three-dimensional gas interacting with
short-range forces.

The discovery of the divergence necessitates a re-
examination of our method; the main object of the
present work is to present the results of this re-examina-
tion. We consider as an illustration the self-diffusion
coef5cient of the two-dimensional gas. In Sec. 2 we give
a formal expression for the self-diffusion constant up to
the first density correction which involves the triple-
collision operator and we classify various terms (dia-
grams) contributing to the density correction. In Sec. 3
we express the triple collision term in the t representa-
tion and demonstrate that in two dimensions a loga-
rithmic divergence arises in the k integration from the
neighborhood of k=0. We also find that stronger
divergences appear in higher terms of the binary-
collision expansion. With the help of diagrams we sum
over the most divergent contributions (ring diagrams)
in each power of p, and demonstrate that the sum pro-
vides a natural cutoff to the logarithmic divergences in
the triple-collision term, producing a lnp term in the
self-diffusion coefhcient. The last section is devoted to a
brief summary and remarks concerning other transport
coeKcients and three-dimensional gases.

2. SELF-DIFFUSION COEFFICIENT
*Work supported by the National Science Foundation and the

U. S. Air Force Cambridge Research Laboratories.' E. G. D. Cohen and R. Dorfman, Phys. Letters 16, 124 (1965),
and J. U. Sengers (private communication). The fact that the
quadruple and higher collision terms in 3 dimensions diverge has
been noted also by Weinstock. See J. Weinstock, Phys. Rev. 132,
454 (1963).

~ There is an enormous literature to be cited here. Some of it is
given in Refs. 3 and 4 of II.' M. S. Green, International Seminar on the Transport Theory
of Gases at Brown University, 1964 (to be published); M. S.
Green and R. A. Piccirelli, Phys. Rev. 132, 1388 (1963).

~ R. Zwanrig, Phys. Rev. 129, 486 (1963).'K. Kawasaki and I. Oppenheim, Phys. Rev. 136, A15
(2964); 139, 649 (1965), hereafter referred to as I and
respectively.

For illustration purposes, we consider the self-diffu-
sion coefficient 0 of a system consisting of Emonatomic
classical particles of mass m which interact with two-
body short-range repulsive forces. The correlation func-
tion expression for 9 is

D—= lim (1/m')(pi*G(~)pi*), (2.1)

where pi* is the x component of the momentum of
particle 1, G(c) is the resolvent operator defined in I and
(.. .) denotes an average over the equilibrium ensemble. 4

A 1763



K. KAWASAKI AND I. OPPENHEIM

2 3 2 3'

G2

Fxp. $. Diagrams representing Do(e), D&(~), and Dg(~).

Since, as we shall see later, in two dimensions the
logarithmic divergence appears in the triple-collision
term to which the spatial correlation present in the
equilibrium configurational-distribution function does
not contribute, we shall ignore these spatial correlations.
Thus we consider

D= limD(o), (2.2)

D(o)—=-
m' V~

dx~pg'G(o) pg&(p"), (2.3)

from which we obtain the corresponding binary-collision
expansion of D(o). If we use the k-vector representation,
we obtain

D(o) =Do(o)+pDI(o)+p'Do(o)+ p'Do(o)+ " (2 5)

where

Do(o) =— dpio 'p~* N(p0 ~

tn2
(2.6)

1
Di(o) =— dp'pi*& —o 'Ir&»(0I0))p~'p(p'),

m2
(2.7)|

D, (o)=— dp'pg'o-'V'&»(0
~
0)

m2

&(t 2'»(0
i 0)+Too(0 i 0))pg'4(p'), (2.8)

1
D, (o)=— dpoP, .L—-', o-'V'(0( r(123) (0))

SP
XpiW(p'), (2.9)

where T is the binary-collision operator defined by
I(2.22) and r(123) is defmed by I(3.31) and represents
the triple collision. The remaining terms in Eq. (2.5)
contain higher powers of p than p~.

where C(p") is the e-particle equilibrium momentum

space distribution function and y" stands for y~, y2,

y„. x; represents r; and y;.
The first step in obtaining a formal density expansion

of (2.3) is to make use of the binary-collision expansion
for G(o)

G(.)-G —g G,I'ao+E Z'Go»o2'6 —" (24)

For the present problem a diagrammatical analysis is
convenient. The processes corresponding to Do(o), Dq (o),
and Do(o) are represented by Figs. 1(a), (b), and (c),
respectively; and some of the processes of the triple
colhsion are presented in Fig. 2. Straight vertical lines
represent the propagation of freely moving spatially
uncorrelated (k=0) particles and wavy vertical lines
represent freely moving but spatially correlated (kWO)
particles. The horizontal lines connecting two vertical
lines represent binary-collision operators between the
two particles represented by the vertical lines. Each
section of the vertical lines corresponds to the resolvent
operators for free particle motion Go and, if there is no
wavy line in this section, gives rise to a factor Go(0j 0)
=e . Higher order terms in the binary-collision ex-
pansion of D(o) can readily be represented by similar
diagrams.

Ke now classify these diagrams and consider their
contributions to D (o): (1)Disconnected diagrams which
can be divided into more than one part in such a way
that no two particles belonging to diferent parts are
connected by binary-collision operators, do not con-
tribute to D(o). This is because these diagrams involve
an operator of the form

dx;dx;T,; (2.10)

F&0 2 A part of the
triple-collision process
which diverges yn t~o

ensions. Another dj-
vergent contribution is
given by interchanging 1
and 2 in Fig. 2(a}.

which vanishes. By the same token, any term vanishes
in which T;;, (iW j/1) appears in such a way that no
quantity containing i or j appears to the left of T;;.
(2) Consider the diagrams which can be divided into
more than one section by horizontal lines between
binary-collision operators cutting through vertical
straight lines. A typical example is given in Fig. 3 where
the cut is represented by a dotted line. Contributions to
D(o) arising from these diagrams are simply the
products of operators corresponding to the separate
sections with extra factors of e '. In our method of
density expansion, the term with the highest power of
e ' in each order of the binary-collision expansion be-
longing to this category, such as the one represented by
Fig. 1(co), is simply the product of terms represented by
Fig. 1(b) (or 2 (pq), (2.18), below), and does not appear
in the inverted series. As far as the first density correc-
tion to transport coefEcients is concerned, the terms
with lower powers of ~ ' belonging to this category such
as the one represented by Fig. 1(cq) are combined with
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FIG. 3. A diagram belongi gn to the
category (2).

&(y( —= T»(o
I o) o (ps)dys (2.18)

ontoD
D,c, as follows.Let us now rewrite D3 c

dk dysdysV'Tss(Ol k, —k, 0)D, ( ) = — y 2.11

Xg k, —k, 0)Tis(k, —k, 0l k, —,—1 0

dy(p(*t (pi) ps*so(pi), 2.11 = dk dysdys

2.12)
Xg k —k, 0)T,s(k, —k, 0l0)so(ps)((s ps,( s), (31)Xgk,

e n
'
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operator Go given by

+T & T NoT lll) o p

g kK —Lo+ok'. Ps(isis j-1
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quadruple collisions
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Xt+(pi)Z+ '(pi)pi oo(pi,,), (2.17)
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Fzo. 5. Ring diagrams corresponding to Fig. 2 and Fig. 4(a}.

The erst term of (2.14) does not diverge because as
far as the divergence is concerned, T 's can be replaced

by 2' (0 l 0) in the h representation and

r»(OIO)&(p, )&(pe) ~O as e~O+. (3.2)

It is also clear that the terfns involving more than 3 T's
in the triple collision operator which occur in the second
term of tc(p~) possess no divergences in two dimensions

because, for each additional factor of T beyond the
third one, we have one factor of 1/k and one integration
over k

The fact that the triple-collision operator contains
divergences near k=0 or at large distances in two
dimensions indicates that the collisions of the three
particles with the rest of the system cannot be ignored
even in calculating the first density correction to D.e

This reminds us of the familiar situation encountered in
dealing with a system of particles interacting with
Coulomb potentials where the density expansion shows

similar divergences due, in this case, to the long range
nature of the Coulomb potential. Such divergences have
been eliminated by summing over the most divergent
contributions coming from all orders in the density
(ring diagrams'). We shall investigate whether or not
the divergences in our problem can be eliminated by
summing over the most divergent higher order terms in
the binary-collision expansion (2.4) and (2.5).

Our 6rst task is to find the most divergent terms in
each order of the binary-collision expansion, restricting
ourselves to the terms belonging to category (3) of
Sec. 2. Extending the reasoning for the case of triple
collision operators, one easily arrives at the conclusion
that the most divergent contributions which have nT's
involve n di6erent particles. Considering the restriction
de6ning category (3) of Sec. 2, these terms are charac-
terized by a single k vector. This can be seen as follows:
First let us separate out those particles out of n particles
which carry zero wave vectors, such as the particle 4 in
Fig. 4(b); and suppose that there are s such particles.
For the rest, the number of T's available is clearly the
same as the number of the remaining particles, and each
particle is connected. to the rest by at least two T's. The

' Here we de6ne the triple collision in such a way that in the
diagram representing the triple collision no free-particle propa-
gator arith%=0 appears (see Fig. 2). This definition may not be
the same as other de6nitions; for instance, the one in which during
the collision process any particle is within the force range of at
least one of the other two particles.

'M. GeQ-Mann and K. A. Srueckner, Phys. Rev. 1/6, 3{F4
(1957);R. Salescu, Phys. Fluids 3, 52 (1960).The precise meaning
of the present diagrams is, how&ever, diferent from those used in
these references.

only possible way of connecting these n —s particles by
n—s T's is to form a ring with n —s T's and n—s
particles which carry a single wave vector k as shown in
Fig. 4. If we add another T to these terms without in-
creasing the numbers of particles, another ring carrying
another wave vector k' is formed. This will bring about
an additional factor of k', thus rendering the contribu-
tion less divergent.

Examples given in Fig. 4 show a divergence pro-
portional to 1/ko where ko is a cutoff wave number at
small k. The terms involving n particles diverge as
ko-&"—@ n&4.

For the subsequent discussion, it is convenient to
change the diagrammatic representation in order to
have a closer connection with the familiar ring dia-
grams. ~ Figures 5(a), (b), and (c) represent the ring
diagrams corresponding to Figs. 2(a) and (b), and Fig.
4(a), respectively. In Fig. 5(a), the small loop labeled 3
indicates a collision of the particles 1 and 3 without a
transfer of the L vector. The dot in Fig. 5(b) designates
the collision of the particle pair 23 where the k vector is
transferred from the particle 2 to the particle 3. The
first and the last binary collisions in each term are
represented by the two cusps at the top and the bottom
of the corresponding ring, respectively. Now, again as
far as the divergences are concerned, the T 's in the
most divergent terms can be replaced by T (0 l 0) in the
k representation. Thus, the first and the last T 's in
each term must involve the particle 1 because of (2.10)
and (3.2). Then the most general diagram is the ring
with two cusps decorated with an arbitrary number of
loops attached to the arc labeled 1 and an arbitrary
number of loops and dots attached to the other half of
the ring starting with particle 2 in an arbitrary order,
excluding the diagram with neither loop nor dot.
Typical most divergent diagrams are given in Figs. 5
and 6 where the left and right halves of the ring carry
the wave vectors lr and —lr, respectively. Figure 6(a)
represents the following sequence of processes: (1) a
collision between the particles 1 and 2 creating the wave
vectors lr and —lr; (2) the collision of 1 with 3 without
the transfer of the k vector; (3) the collision of 2 with 4
without the transfer of the ir vector; (4) the collision of
1 with 5 without the transfer of the lr vector; (5) the
collision of 2 with 6 with the transfer of —k from 2 to 6;
(6) the collision of 1 and 6 annihilating the lr vector
created in the process (1).Figure 6(b) can be interpreted
in a similar manner. Here we have omitted the class of
diagrams represented by Fig. 7 in which the particle 2
which has interacted with another particle before
interacts with still another particle (4 in Fig. 7) while it
carries no k vector. This particle cannot coincide with

FIG. 6. More complex
ring diagraIns.
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summation of all the contributions yields

Fxo. 7. Less divergent
diagrams.

t(pi)= V(olTioGo 2 2 2 (—p)"-'A. , (&o&)
n=1

f tt&) (a&I

XA"(~o). A-. (o-)T»I0)v(Po)dyo (3 g)
where

the particle 1 since the particle 1 always carries the k
vector during the whole event. The terms corresponding
to these diagrams can be shown not to be the most
divergent ones by the same argument as before which
uses (3.2). Summing up all the most divergent contribu-
tions, tp(p&), (2.13), is modified to become another
operator here denoted by t(p&).

Succinct expressions for general terms in this ex-
pansion can be obtained by introducing the two opera-
tors A~ and A~ corresponding to a loop and a dot, re-
spectively, which can operate on another operator. If a
line labelled, say, 1 enters a loop or a dot from above,
these operators are de6ned by,

I„=/ if n,;=1, u;= I or d if Qf, =2.

This can be simplified as

t(p, ) = V(O~ T,~oA(12)

where
XL1+ pA(12)] 'T&o

~
0) &p(po)dyo, (3.9)

A(12)=—A[(1)+A[(2)+Ay(2) . (3.10)

tD(P&)= V(0~ TgoGoA(12)Tgo~o)&p(po)dyo) (3.11)

If we compare (3.9) with (2.13) which is written as

A&(1)A —= VTggoA &p(po)dyo, (3.3)

we see that (3.9) contains an extra factor L1+ pA (12)] '.
This extra factor provides a natural cuto6 at small k of
the divergent integral (3.11).First let us write (3.9) in
the k representation as follows:

Ao(1)A =— VT„Go&oA y(po)dpo, (3.4)
t(p&) =

(2or)'
dk dp, vT„(o~k, —k)g(k, —k)A(k, —k)

respectively, where A is an arbitrary operator containing
the variable x~ and (P~s is a particle-exchange operator
which does not act on &p(p;). Then one can immediately
write down contributions to t(pq) arising from Figs.
5(a), (b), and (c) as follows:

X(1+pA(k, k)]—'Tgo(k, —ki0) &p(po) ) (3.12)

where

A(k, —k)—=A&&"&(y&)+A&& "&(yo)+Ad& +(yo), (3.13)

t, (p&) = V(Ol T~oGoA&(1) T»
I o) &p(Po)dyo (3 5)

with

A&'"'(yi)=— VT13(k, —k, o~k, —. k, 0)

tb(pl) = V(0~ TioooAo(2) T12~ o) o (p2)dpo &

t, (p&) = —p V(0~ T&oGoAo(2)Ad(2)T12Io)

(3.6) Pi—P2
X o+i k oo(po)dpo, (3.14)

m

Ao& "&(po)—= VToo(k, —k, o~k, 0, —k)
X o (Po)dyo, (3.7)

where the factor p in (3.7) comes from the 1V—3(—X as
1&t ~~) possible choices of the particle 4.

Generalizations to more complex ring diagrams are
obvious. For each additional loop attached to the left
half of the ring, and loop or dot attached to the right
half we add a factor A&(1) and a factor A&(2) or Aq(2),
respectively, the order of the factors being determined
by that of the corresponding loops or dots in the dia-
gram. (Loops and dots are ordered in any diagram in a
dednite way from the top to the bottom irrespective of
which half of the ring they are attached to.) Thus, the

pz p3
X o+i k &Poo&p(po)dyo, (3.15)

and A&&"&(po) is obtained from (3.14) by replacing p~

by p2.
As k approaches zero, g(k, —k) as well as A(k, —k) be-

haves as 1/k in the limit o~0+, and L1+pA(k, —k)] '
provides a factor k, eliminating the logarithmic diver-
gence. The magnitude of the cutoff wave vector ko
which is the magnitude of k when pA(k, —k) becomes
of the order of 1 can be estimated by noting that for
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VTr3(k, —k, 0 i k, —k, 0)
—VT„(k, —k, Oi0, —k, k)—VT„(0i0) so, (3.16)

where e is the average velocity of the particles and o. is
the collision cross section. Then from (3.14) and (3.15)

A(k, —k) o jk (3.17)

for small k. Thus, we estimate that

and Sengers has been eliminated by summing over the
most divergent contributions coming from all orders of
the binary-collision expansion of the resolvent operator
appeariog in the correlation function expression for the
transport coeScients. A detailed analysis has been
presented for the case of the self-diffusion coefficient,
and its density expansion is obtained in the form (3.19).

A similar analysis for the shear viscosity and the
thermal conductivity should yield density expansions of
the form

ko po (mean free path) ', (3.18) A+Bp lnp+Cp+ (4.1)

and the guess' as to the magnitude of the cutoG is
justitied. Since (3.12) is logarithmically divergent at
small k in the absence of the factor L1+pA(k, —k)j '
and this factor gives a cutotf given by (3.18), it is now
clear that t(yr) contains a term lnp, and thus the self-
diffusion coefBcient 9 has the form

D=Ap-'+B lnp+C+ (3.19)

where A, B,C, ~ ~ ~ depend only on the temperature. The
term Ap ' is the low density limit of Chapman and
Enskog, (2.16). The term B is determined by the
coeScient of lnko of the logarithmically divergent term
tn(y~) in the absence of the cuto8 by using (2.17). In
order to determine C, we need the complete analysis of
the most divergent contributions as given in this section.
This situation is the same as in the case of the electron
gas; namely, t(pr) gives rise to a density independent
contribution in addition to the lnp term plus a part of
the higher density corrections. This together with the
density-independent contributions coming from to(y&)
and from the spatial correlation in the equilibrium
con6gurational distribution function which we have
ignored up to now constitute C.

In 3 dimensions the divergence erst appears in quadruple
collisions and. the form of the transport coefBcients is

A+Bp+Cp' lnp+Dp'+ . (4.2)

Although the transport coefficients are no longer analytic
functions of the density, the erst density corrections to
them are still valid. The expressions for them obtained
earlier are still valid, although the assumptions used in
deriving them are no longer justiaed. Nevertheless the
present work shows that we can still obtain a systematic
density expansion of the transport coefficients by suit-
ably extending the resolvent operator technique for
calculating the autocorrelation-function expressions of
Zwanzig and the authors.

Note added tn proof. After submitting this paper, we
have learned that the same kind of divergence has been
found and discussed by Goldman and Frieman LR.
Goldman and E, A. Frieman, Bull. Am. Phys. Soc. 10,
531 (1965) and private communication j.

Diagrams similar to our Figs. j.-4 and 7 have also
been used by Fujita in a similar context. LS. Fujita,
Introduction to Non-Equilibrium Quantum Statistical
Mechanics (to be published) j.

4. CONCLUDING REMARKS

The logarithmic divergence in the triple-collision term
in the density expansion of the transport coefficients in
two dimensions recently discovered by Cohen, Dorfman,
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