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Calculation of the interaction of electrons with short-wavelength phonons becomes tractable when the
initial and final electronic wave vectors have high symmetry and a local-pseudopotential representation is
used. After discussion of the general Bloch formulation for the electron-phonon interaction and of the
pseudopotential method in band theory, we calculate as a specific example all allowed transitions in ger-
manium between wave vectors 1 and L for electron states at the edge of the gap. Our result for the matrix
element 1'2 +LA —+ L& is nearly twice that deduced from optical absorption by McLean. The sensitivity
of the results to the short-wavelength behavior of the pseudopotential is tested by use of two sets of pseudo-

potential parameters. Approximations az'e given for the case of wave vectors not exactly at the symmetry
points. In the principal calculation, it is assumed that each nucleus rigidly carries a spherical pseudo-
potential. Since this is questionable in covalently bonded Ge, we also attempt, with partial success, to
calculate by the deformable-ion method. This traditional alternative is ambiguous and unjustifiable, but
it indicates the effect of using a different prescription in perturbing the crystal pseudopotential by a phonon.
Resulting matrix elements are generally smaller.

I. INTRODUCTION

THEORETICAL investigation of the interaction
between electrons and phonons in real materials'

does not proceed far in full generality. Progress from a
formal to a quantitative description seems to require
restriction to specific classes of materials, to specific
branches of the vibration spectrum, and usually to
long phonon wavelength; there is no universally applic-
able approximation scheme. Even when an explicit
expression for the form and strength of a restricted part
of the electron-phonon (E-P) interaction can be ob-
tained, unambiguous experimental test is difficult,
despite the broad range of phenomena qualitatively
dependent on the E-P interaction. Directly observed
quantities such as the va,riation of conductivity with
temperature often depend on averages performed over a
large part of the electron-phonon spectrum in an in-

completely understood manner.
A relatively sensitive and specific probe of the E-P

interaction may be afforded by electronic interband
transition phenomena in an indirect-gap semiconductor
such as germanium. ' ' Initial and final states are highly
localized in wave-vector space, and it is often possible
to isolate from competing mechanisms the process going
directly through the E-P interaction.
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An interest in such effects' led the author to examine
the possibility of calculating the relevant matrix ele-
ments. This would aid interpretation of the data and
also test the theoretical principles used to make the
calculation. These matrix elements are unusual in that
they are virtual and involve quite short wavelengths.
Apparently there has been no serious theoretical attack
on them previously. Yet recent advances in the theory
of band structure and the electron-phonon interactionr
seem to make plausible numerical results possible.

This pa,per' analyzes the situation with specific
application to interband transitions in Ge. This material
was chosen because of the wealth of data and under-
standing already available. Section II briefly reviews the
conception of an interacting electron-phonon system.
The Bloch formula for the electron-phonon interaction
in the one-electron approximation is presented and the
arguments justifying it mentioned. Section III discusses
the local-pseudopotential representation of Ge and its
use in evaluating the Bloch formula. In Sec. IV, two
slightly different sets of pseudopotential parameters are
chosen and the electronic wave functions determined
for wave vectors at the symmetry points I' and L. Then,
in Sec. V, we numerically evaluate the Bloch formula
for all allowed transitions between I' and L for the
states at the edge of the gap. The result for the one
matrix element available experimentally is about a
factor of 2 too high. The approximation of rigid spherical
pseudo-ions is used. As a possible alternative, we
attempt, with partial success, in Sec. VI, to use the
deformable-ion approximation. Finally, in Sec. VII,
we discuss wave vectors away from symmetry points
and calculate effects linear in phonon wave vector.

%e anticipate that the procedures introduced in this

' R. T. Shuey, Phys. Rev. 137, A1268 (1965).
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Vol. 15, p. 221.
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Solid State Commun. 3, 43 (1965).
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paper will work equally well for intervalley scattering
and for semiconductors other than Ge. An electronic
computer should be used for any extensive calculations.

II. ELECTRON-PHONON INTERACTION

This section outlines notation and the conception of
electrons, phonons, and their interaction, to be used in
this paper. The discussion is general and without
specific reference to Ge. Ke suppose a mathematical
model of a quasi-infinite crystal with the symmetry of
some space group. There is a complete set of crystal
states specified in an electron-phonon number represen-
tation. The individual phonon modes are described by a
dynamical matrix' which is a triply periodic function
of wave vector tl. The eigenvector es(thp) for the
branch p gives the relative displacements of the nuclei
at positions b in a unit cell; the corresponding eigen-
value coz(tl, p) is the square of the classical mode fre-
quency or essentially of the phonon-energy quantum.
The classical nuclear displacement in the /th cell is

with mb the mass. The entire configuration of nuclei
so displaced transforms as some representation of the
group of the wave vector q. (This comprises all elements
of the space group which result in a configuration of the
same or equivalent wave vector. )

Exact knowledge of the dynamical matrix throughout
the Brillouin zone would determine its expansion in a
Fourier series, and the Fourier coeKcients could be
interpreted as force constants between individual
nuclei. The experimental co(q,p) curvesm available for
many materials (including Ge) with q along a sym-
metry axis show that such a force system must, in
general, be long range but do not sufFice to determine
the form of the force with any precision. Therefore,
we regard the wave-vector language as fundamental.

Similarly, the one-electron states are described by
one-electron energies and wave functions which are
triply periodic, multibranched functions of wave vector
k in a, repeated zone scheme. Each spinor wave-function
branch transforms as some representation of the double
group of the wave vector. Ke assume with Bloch" that
the states are eigenstates of an eRective Hamiltonian
which is independent of energy and wave vector. An ef-
fective Hamiltonian determined by refined a priori band
calculation may not satisfy this condition. This would
happen, for example, if the Hartree-I'ock equations
were used without making an approximation such as
Slater's" for the exchange term. Nevertheless, the
assumption is generally made in formal band theory. "

9 A. A. Maradudin, E. W. Montroll, and G. H. Weiss, Theory
of Lattice Dynamics in the IIarmonic Approximation (Academic
Press Inc., New York, 1963), p. 11.' B.N. Brockhouse, in Phonons and Phonon Interactions, edited
by T. A. Bak (W. A. Benjamin, Inc. , New York, 1964), p. 221."F.Bloch, Z. Physik 52, 555 (1928)."J.C. Slater, Phys. Rev. Sl, 385 (1951)."E.I. Blount, in Solid State Physics, edited by F. Seitz and

These electron-phonon states so specified are sup-
posed to be nearly but not exactly stationary states of
the entire crystal. By means of packets and an ensemble
formalism, one can refer to local occupation probabilities
in this electron-phonon number representation and
develop a transport theory. These states have the
physical significance that external inQuences such as a
magnetic field, light, or electrical contacts are properly
regarded as coupling to these states and changing
occupation numbers. The one-phonon and one-electron
energies are what such an external probe would see if
there were no coupling between microscopic excitations,
such as anharmonicity and the electron-phonon inter-
action. Thus these energies do not include such contri-
butions as anharmonic broadening and electron self-
energy in the phonon field.

Suppose also that an eRective one-electron Hamil-
tonian can be obtained when the nuclei are not in a
perfect lattice. A general arrangement can be described
by values for the complex normal coordinates"

Q
—(N)

—1/2+/&(rrt )1/2u &. ebe(tlP)e
—i%'rl (2 2)

where S is the number of cells in an arbitrary large
phonon normalization volume. Presumably for only
slightly perturbed configurations, the electron Hamil-
tonian can be expanded in powers of the Q,„.

Now the electron-phonon (E-P) interaction. operator
can be described: Obviously it conserves electron num-
ber and total crystal momentum (modulo reciprocal
lattice vector). As long as we are able to calculate with
only one-electron wave functions, the interaction
must be taken as changing the state of only one electron.
Plausibly the interaction, can be expanded in powers of
the phonon creation and annihilation operators"; only
the linear terms (one-phonon vertex) will be important
at temperatures well below the melting point. This
linear part of the E-P interaction scatters an electron
from wave vector k to wave vector k' and simultaneously
crea, tes a phonon of wave vector equivalent to k-k' or
annihilates one with wave vector equivalent to k'-k.
Ke postulate that the E-P matrix element is equal to
the matrix element between one-electron wave functions
of the linear change in the one-electron Hamiltonian
B resulting when each nucleus undergoes a displace-
ment equal to the matrix element of its position operator
between phonon states. The nuclear position operator

ut& ps„(A/2r/z&co, ——„N)'/'(e's'"e/a+e 's'"e/, *a/) (2.3)

has matrix element

(ut/) = (zz/z/2r/z/cos„N)'/'e'&"es(qp) (2.4)

for annihilation of a phonon of wave vector g and

D. Turnhull (Academic Press, Inc., New York, 1962), Vol. 13,
pp. 305, 347.

~ Maradudin et al. , Ref. 9, p. 30."C. Herring, in Proceedzngs of the International Conference on
Semiconductor Physics Prague, 1960 (Czechoslovak Academy' of
Sciences, Prague, 1961),p. 62.
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branch p. The corresponding E-P matrix element is

ME p= (nh/2&os„)"'(ks js~ ciH/BQ, „~k,j,). (2.5)

The E-P matrix element for the conjugate process, in
which an electron is scattered from ksjs to kt jr with
creation of a phonon in mode qp, is simply the complex
conjugate

~E—p*= (ts&/2~„)"'(kt jt ~
&H/&Q„~ks js) ~ (2.6)

Here j& and j2 indicate the electron bands, e is the
occupation of the qp mode when the electron is in k&j&,
and the wave vectors satisfy

ks ——kt+q+ 6,
with 6 a reciprocal lattice vector.

This form of E-P interaction is in essence that pro-
posed by Bloch" in 1928.Bloch used the deformable ion
prescription for r)H/c)Q, and he considered only real
transitions. Subsequently, several other treatments
have been proposed' for the effective electron wave
functions and the linear change of the effective electron
Hamiltonian needed for the Bloch formula (2.5). In
1950, Frolich'~ introduced the consideration of virtual
matrix elements, in connection with superconduc-
tivity. Since then several attempts have been made
at a rigorous, first-principles treatment of the K-P
interaction. But every approach, when reduced
to a form susceptible to detailed realistic calcula-
tion, seems to lead back toward the 81och formula
(2.5). There are formal manipulationsr which purport to
show that at least for real transitions it is in essential
agreement with other approaches, such as the Born-
Oppenheimer separation, "" the Nakajima-Bardeen-
Pines canonical transformation, "-and the deformation
transformation. "

III. PSEUDOPOTENTIAL THEORY

Evaluation of the Bloch formula (2.5) for the E-P
interaction requires an electron Hamiltonian whose
eigenfunctions may be readily determined, and a
prescription for the derivative of that Hamiltonian with
respect to the phonon normal coordinate. The Hamil-
tonian ought also to meet the test that its eigenvalues
reasonably represent the experimental band structure
over the range of energy and wave vector encompassed
by the E-P matrix elements to be computed.

There is available a simple local potential which re-
produces the Ge band structure within 0.3 eV over the
10-eV range reached by ultraviolet-reQection measure-
ments. ~' This crudeness is not necessarily serious, since

"F.Bloch, Z. Physik 52, 580 (1928).
'7 H. Frolich, Phys. Rev. "/9 845 (1950)."C.V. Chester, Advan. Phys. 10, 357 (1961)."T. K. Koehler and R. K. Nesbet, Phys. Rev. 135, A638

(1964).' L. J. Sham and J. M. Ziman, Ref. 7, p. 241."D.Brust, Phys. Rev. 134, A1337 (1964).

a small change in the potential produces a significant
change in energy levels but a surprisingly small change
in wave functions. Furthermore, the total electron
Hamiltonian should include, in addition to this local
potential, a spin-orbit term; and the spin-orbit splittings
in Ge are of order 0.3 eV.

This potential is a pseudopotential in that it has no
bands representing the core levels; its lowest eigenvalue
corresponds to the bottom of the valence band. But
it is not so weak that the electrons become "nearly
free." For nearly free electrons, the eigenfunctions
at wave vectors of high symmetry can be well approxi-
mated by a single plane wave symmetrized to give the
appropriate representation of the group of the wave
vector; and the eigenvalue can be well approximated
by the kinetic energy of the plane waves plus the
expectation of the potential in the symmetrized com-
bination. The energy gap at k=0 in Ge is between the
lowest valence states of I"» and F2 symmetry. For the
I'ss and I's symmetrized plane waves (SCPW) of
lowest kinetic energy, the diagonal matrix element of
the pseudopotential happens to vanish, while the matrix
element connecting to the next lowest SCPK is, in
each case, greater than the kinetic energy difference.

In the diamond structure there are "forbidden"
Fourier components of potential which vanish for a
potential having full cubic instead of only tetrahedral
symmetry about each nuclear site. The forbidden com-
ponents of one-electron potential should be small,
despite the tetrahedral distortion associated with co-
valent bonding, because the corresponding components
of charge density are small. The (222) forbidden com-
ponent of charge density is actually large enough to be
measurable by x rays in C and Si, but in Ge any
asphericity of the valence-electron charge density is
masked by the larger core contribution. "The pseudo-
potential for Ge referred to above has no forbidden
components. Hence it can be decomposed into identical
spherical units, each centered at a nuclear site. This
suggests that the pseudopotential for the lattice dis-
tored by a phonon could be found by rigidly moving
each spherical unit with its nucleus.

Such a "rigid ion" prescription is plausible for a com-
plete (including core states) theory, because in the
various schemes for constructing a crystal potential, the
contributions of the individual Hartree or Hartree-
Fock ions are, in general, just so superposed. The effect
of the other valence electrons on the long-range part of
the bare ion potential is accounted for by some process
of cellular truncation or dielectric response analysis.
Since this process in practice has spherical symmetry,
the potential associated rigidly and independently with
each nucleus is spherically symmetric.

It has been argued~ that a rigid-ion prescription
ought to be equally valid in a pseudopotential represen-

~ J. J. DeMarco and R. J. Weiss, Phys. Rev. 137, A1869
(1965); S. Gottlicher and E. Wolfel, Z. Electrochem. 63, 891
(1959).
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tation. The kernel of the argument is the "general
pseudopotential scattering theorem, '"' '4 which is: Let
the (possibly nonlocal) complete potential rigidly carried
by individual nuclei be nonoverlapping even as seen by
an electron incident at a valence-band energy, and
consider only E-P transitions conserving electron (not
total) energy.

For each bound state of the individual potential
unit, there will be a band of zero width. To pass to a
pseudopotential representation, add to the complete
Hamiltonian H a repulsive term V~ ——(E H)P, w-here P
is the projection operator onto the core bands, and E
is the valence electronic energy at which the transition
occurs. This Vz will almost surely be nonlocal, even if
the original potential was local. The eigenfunctions for
eigenvalue E of the pseudo-Hamiltonian H~=H+V~
comprise all the pseudow ave functions, that is,
"smooth" functions whose projections orthogonal to
the core bands are eigenfunctions of the true Hamil-
tonian H at eigenvalue E. The theorem states that
instead of using the true eigenfunctions and BHjBQ to
calculate the E-P interaction, we may equally well use
any corresponding pseudo-wave functions and BH„)BQ

There are other pseudo-Hamiltonians which will in-
clude some of the pseudo-wave functions among their
eigenfunctions. In general, these operators are not
Hermitian and do not give quite the correct phonon
scattering. The situation is analyzed in Ref. 24.

While this "theorem" leaves open the question of
what happens in other than the ubiquitous "good metal"
and for general transitions, it does support the rigid-
ion prescription in a pseudopotential representa-

tion, with the proviso that the change of electronic
energy should be small compared to the difference be-
tween either level and the highest core level. As men-
tioned above, Ge is not exactly a free-electron metal,
even in the pseudopotential representation. If we accept
the great computational convenience of neglecting
tetrahedral and cubic distortion in the pseudopotential
assigned to each core, we still have spheres of inQuence
that are definitely overlapping. It is the interference
pattern of the core potentials arranged in the diamond
structure that causes the pileup of valence electrons at
the tetrahedral bonding sites.

ard.""It is important only near syrrunetry points
where there are degeneracies in the nonrelativistic
band structure that may be split. At F», for example,
the six spinors formed from the three orbitals are
arranged into I'7+ and F8+ representations of the double
group. These are spinor eigenfunctions of the total
one-electron Hamiltonian, neglecting the oE-diagonal
s-o ma, trix element connecting them to F7+ and F8+
functions higher up in the band structure. This is a
very good approximation, because the s-o matrix ele-
ments in Ge are of order 0.1 eV, while the smallest
energy denominator here is about 11 eV. The s-o matrix
elements cannot be calculated just from the pseudo
wavefunctions and the known form of the s-o operator,
because in Ge the matrix elements depend almost
completely on the core part of the true wave functions. "
Instead, the diagonal matrix elements are taken from
the experimental band splittings.

We now discuss in detail the pseudopotential repre-
sentation of the Ge band structure mentioned in the
preceding section. Choose the origin at an inversion
center and align a Cartesian coordinate system with
the crystallographic axes. The two atoms in the unit
cell at the origin (rq ——0) are at

r.s = &,'~ =+ (111)a/8. (4.1)

V(r) =P)sU(r r)s), — (43)

then the Fourier coefficients V(G) may be written as
the product of a form factor and a structure factor, vis,

V(G) = U(G) cosG -', ~. (4 4)

The form factor is the Fourier transform

The Ge lattice constant is designated by p. The pseudo-
potential can be given as a Fourier series

v()=g v(G) (4.2)

where G is a reciprocal lattice vector. In order that the
entire protential be invariant under the diamond space
group OA7, certain V(G) must be zero and all V(G) of
equal ~G~ must have equal magnitude and a certain
relative sign. If we take V(r) as a superposition of
identical spherical units,

IV. DETERMINATION OF THE PSEUDO-
POTENTIAL BAND STRUCTURE

Use of a local pseudopotential to represent all but
the spin-orbit coupling term in the electron Hamiltonian
greatly simplifies calculations, and the subject of
electron-phonon interaction is murky enough that there
is no certainty that a more complicated approach would
give a better answer.

Treatment of the spin-orbit (s-o) coupling is stand-

~ L. J. Sham, Proc. Phys. Soc. (London) i8, 895 (1961)."B.J. Austin, V. Heine, and L. J. Sham, Phys. Rev. Qi, 276
(1962).

U(K) = U(~ K~)= (-'&) ' d're '*rU(r), (45)

(4.6)

"E.O. Kane, J. Phys. Chem. Solids 1, 83 (1956)."L.Liu, Phys. Rev. 126, 1317 (1962).

where —,'0 is the volume per atom and the integration is
over all space.

Thus a potential V(r), which is c'ompletely general
except that it lacks the forbidden components, may be
specified by giving the values of the function U(~ K~)
for the discrete set

~
K[ = ~G), where

fG[ =3,8,»,16,24, ".
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Tmr. z I. Pseudopotential form factors in rydbergs. The
points listed in the upper part of the table determine the band
structure. The other points are needed for a rigid-ion calculation
of E-P matrix elements between F and L, .

(Eu/27f)'

3
8

11
16
19
24

3
4

2 4

43

64'

83

10-,'
124
14-,'
16-,'

1.11
1.81
2.12
2.56
2.78
3.13
0.55
1.06
1.39
1.66
1.89
2.10
2.28
2.45
2.62

Ug(E)
—0.230

0
+0.060
+0.085
+0.070
+0.025
—0.49
—0.255
—0.125
—0.038
+0.018
+0.055
+0.080
+0.088
+0.082

—0.230
0

+0.050
+0.060
+0.040
+0.015
—0.49
—0.255
—0.125
—0.038
+0.018
+0.045
+0.065
+0.065
+0.055

"W. A. Harrison, Phys. Rev. 131, 2433 (1963).
W. A. Harrison, General Electric Research Laboratory Report

64-RL-3712M (unpublished), and Physica (to be published).' F.Herman, C. D. Kuglin, K. F.Cu8, and R.L. Kortum, Phys.
Rev. Letters 11, 541 (1963).' J. C. Phillips, Phys. Rev. 112) 685 (1958)."F. Bassani and D. Brust, Phys. Rev. 131, 1524 (1963)."L.M. Falicov and S. Golin, Phys. Rev. 137, A871 (1965).

in units of (27r/u)'. The approximate magnitude of
these U(E) can be guessed a priori: If it means any-
thing to say crudely that the projection of a pseudo-
wave function orthogonal to some core states is a true
wave function, then these U(E) ought to lie roughly
along the "universal orthogonalized-plane-wave (OPW)
form factor" curve discussed by Harrison. '7 Indeed,
Harrison has computed a curve" for Si which gives
Brust's" empirical points to within 25%%uq.

Since the remaining variability of U(jGI) can cor-
respond to a rather large variability in electronic
energy levels, a fine adjustment of U(~G~) can be
performed by requiring that it give a good account of the
experimental band structure. The "experimental"
structure should be for the pure crystal at zero tem-
perature, with spin-orbit effects subtracted. Thus the
direct gap Ps —I'ss should be more like 1.00 eV than
0.80 eV. At this point, however, it is sobering to take
note of a calculation by Herman" indicating that the
relativistic terms invariant under the single group con-
tribute —0.84 eV to the direct gap in Ge.

Some decision must be made on how to treat the
U(~G

~ ) for ~G(') 11. Phillips" took. them all equal to
U(11), while Brust" took them all equal to zero. Since
the proposed calculation may be delicate, something
more plausible should be done. Four-parameter func-
tional forms to bring the U(E) curve smoothly back
to zero at large E have been suggested by Bassani
and Brust, " and by Falicov and Golin. "There is no

TABLE IP. Electronic energy levels in electron volts. In all three
cases, the average pseudopotential was arbitrarily chosen zero.
It is expected that the exact eigenvalues for the potentials given
in Table I are 0.05-0.10 eV lower than those shown here. Also
shown for reference are the experimental relative energy levels at
zero temperature, with the spin-orbit splitting of l 25 and L,3
deducted. (The zero level is arbitrarily taken at P& .)

No potential Potential A
Relative

Potential 8 "experimental"

14.15
13.07
14.15
13.07

10.43
10.33
9.32
8.24

10.29 0
10.29 —0.15
9.63 —1.00
8.51 —2.35

apparent reason not to have it again become negative,
as happens with some of Harrison's OP% form factor
curves. "However, this would be expected to happen
at around E=4Kp, which is too short a wavelength to
have much effect a,t the energy levels of interest. (By
EI is meant the radius of the Fermi sphere of anoninter-
acting fermion gas, equal in average density to the Ge
valence electrons. )

Since the eigenvectors from previous pseudopotential
calculations of the Ge band structure were not im-
mediately available, it was decided to start afresh and
to pay closer attention to short wavelengths. Two
plausible U (E) curves were used. Table I gives pertinent
values of both; a sketch of U~(E) has appeared in
Ref. 8. Potential 2 is an interpolation and extrapolation
through Brust's" values, while potential 8 has a
slightly weaker repulsive core.

By considering only wave vectors of high symmetry,
calculations could be carried out by hand. Symmetrized
combina, tions of plane waves'4 and secular determinants
for the electronic energy levels were found. The deter-
minants were truncated at about 50 plane waves (from
4 to 9 symmetrized plane waves), and the eigenvalues
(Table II) and eigenvectors (Table III) found for
both edges of the gap at I and L,. It appears that
potential A gives a somewhat better representation of
the relative energy levels. The momentum matrix ele-
ment (S~ p, ~X) across the direct gap at P is 1.04 h/a
for both sets of normalized pseudo-wave functions.
The experimental value is about 1.18 h/a; an error of
this direction and magnitude is to be expected in a
pseudopotential representation. "

By the standard formulas of k y perturbation theory, "
the electronic wave functions near a symmetry point
in the Brillouin zone can be expressed in terms of those
at the symmetry point. Since a manageable theory of
interband transitions would take into account the
mixing-in only of the states immediately a,cross the gap,
consideration of only the four states indicated in
Tables II and III should be adequate.

"W. A. Harrison, Phys. Rev. 129, 2512 (1963); 136, A1107
(1964).

'4 The chosen symmetrized plane waves are given in the author' s
Ph.D. thesis, Johns Hopkins University, 1965 (unpublished)."J.C. Phillips, Phys. Rev. 125, 1931 (1962).
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TABLE III. Coefficients of normalized symmetrized plane waves
in the expansion of normalized electron eigenfunctions. The
SCPW are labeled by the squared length of the wave vector
in units of (2s/o)'.

3

12

E2
3

6-,'(2)
6l(6)

124
124

0.854
0.518
0.061
0.043

LI
A

—0.407
+0.856—0.282
+0.098—0.049—0.010
+0.010
+0.056
+0,010

0.853
0.543
0.024
0.017

B
—0.419
+0.856—0.274
+0.084—0.064
+0.007
+0.026
+0.044
+0.009

3

8
11a
11b
12

124
12 4,

0.804
0.579
0.108
0.088
0.028—0.051

A

0.954
0.210

-0.175
0.075
0.070—0.060—0.010—0.002

0.814
0.562
0.120
0.078
0.034—0.045

0.956
0.211—0.168
0.069
0.069—0.059—0.012—0.002

bV(r) =+o8V(q+G)e'«+G&', (5 2)

~
2~»'

5V(q+6) = —
i

&pvi
d'rQ 'e '«+o&'gbeb

~ VU(r —reb) . (5.3)

The gradient operator in (5.3) is transferred to the
exponential by partial integration. A plausible asy-
mptotic form for U(r) would be a charge of +4 screened
by the Ge dielectric constant of 16. Since there is no
surface integral contribution, even if U(r) does fall

TABLE IV. Phonon eigenvectors.

Component

e
e„
e,

e
+m ey

e,

TOI

i/2—i/2
0

i/2—i/2
0

LO

1/v'6
1/v'6
1/v'6

—1/v'6—1/v'6—1/v'6

LA

i/v'6
i/v'6
i/v'6

i/v'6
'/V'6
i/v'6

1/2—1/2
0

—1/2
1/2
0

V. MATRIX ELEMENTS BETWEEN I AND L

Consider a process in which a phonon of wave vector
q and branch p is absorbed. In the approximation of
rigid spheres of inRuence, the potential associated with
the phonon is

t)V/Q() = PV= —(2/pV)g»s& b&e' eb(qP)
y'p U(r rbb) —(5.1).

Here rg is the position of the inversion center in the /th

cell, r~~ are the positions of the two atoms in the /th

cell, p is the crystal density, and V is the arbitrary
phonon normalization volume. The phonon potential
may be expanded in a I'ourier series:

off as slowly as 1/r, we have

&V(q+G) = —s(2/p V)'"U(I q+G I)(q+6)
g bebop

i—«+G) o'b (5 4)

In this section, we consider only the special case of
electron states exactly at the band extrema. A phonon
connecting such states has L, symmetry, which greatly
simplifies the determination of the phonon potential.
Because of the cubic symmetry, it is sufhcient to con-
sider only one of the four inequivalent I, points in the
Brillouin zone; we choose q=(—', xs s~). The possible
eb(qp) are completely determined by symmetry: Both
nuclear displacements must be precisely along or
transverse to the wave vector g, and the relative phase
must be 0 or vr. The only question is whether the
eb(qp) of a given parity belongs to the acoustical or
optical branch. After comparison of the experimental
phonon dispersion curves" with the general force-
constant expansion of the dynamical matrix, '~ there is
no question that the transverse optical (TO) is odd
(Ls ) and the transverse acoustical (TA) is even (Ls).
Definite parity assignment to the longitudinal branches
cannot be made by force constant arguments'~; but from
the interband transition experiments, it is clear" that
the acoustic (I.A) is odd (Ls ), and the optic (LO) even
(Lt)

The phase of the phonon eigenvector eb(qp) and of
the electronic wave function e'~'u, (k, r) is arbitrary. In
a material such as Ge with inversion symmetry, it is
possible to use a gauge

eb = —e b and I (r)=u(—r)

in which the E-P matrix element is real. Eigenvectors
chosen accordingly are shown in Table IV. Only one
polarization of the transverse phonon is indicated.

In order to evaluate (5.4) for any plane wave, the
values of U(~q+G~) in the lower part of Table I are
needed. Except for U(s), these represent an interpola-
tion between points fairly well fixed by the band
structure. The value U(xs)= —0.49Ry is needed only
for the longitudinal phonons; this is a remnant of the
ancient rule that only longitudinal phonons interact
with electrons. The extrapolation is fairly unambiguous
because the curvature of U(E) is nearly zero in the
region between E'=3 and E'=4. Furthermore, the
U(E) for Ge should be fairly close to the universal
"good metal'"~ curve, even for a wave vector as short
as K'=43, because at this point the wave vector de-
pendent dielectric constant e(E) suggested for Ge by
Penn" is only about 15% less than either the Thomas-
Fermi or free-electron Hartree formulas for e(E)
appropriate to "good metals. " In other words, for

'6 B. N. Brockhouse and P. K. Iyengar, Phys. Rev. 111, 747
(1958).

'7 F. Herman, J. Phys. Chem. Solids 8, 405 (1959).
38M. Lax and J. J. Hopheld, Phys. Rev. 124, 115 (1961);J. J.

Tiemann (private communication).
bb D. R. Penn, Phys. Rev. 128, 2093 (1962).
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Tasr E V. CoefIicients in plane wave expansion of 8V/8Q for the two potentials, 2 and 8 The units are rydbergs times (p V) '~'(2s/u).

Plane
wave

$ (111)
—:(3ii)
2(133)
—,'(333)
—', (511)
2 (531)
—,'(533)
k(155)
—:(711}
—,
' (713)
—,'(355)
s(733)

TOI

—0.334
—0.068

+0.050
+0.020

—0.144 —0.117
+0.044 +0.035
—0.086 —0.071
—0.249 —0.170
+0.231 +0.170
+0.044 +0.030

LO

—0.390
—0.028
—0.167
+0.038
—0.030
+0.028

+0.006 +0.006
—0.235 —0.191
+0.106 +0.086
—0.176 —0.130
+0.068 +0.051
—0.285 —0.191

—0.162
—0.068
+0.069
+0.092
+0.071
+0.011

+0.014 +0.011
—0.098 —0.079
—0.044 —0.035
—0.425 —0.311
—0.164 —0.122
+0.119 +0.079

TAI

—0.138
+0.162

—0.021
+0.048

—0.059 —0.048
+0.105 +0.085
+0.209 +0.170
—0.096 —0.071
—0.095 —0.071
—0.108 —0.072

reasonably short wavelength disturbances, such as
an I.phonon, the energy gap does not drastically aGect
the screening capability of the valence electrons. For
very long wavelength disturbances in insulators, the
model of independently screened spherical pseudo-ions
must be examined more closely. "

For each of the four phonons in Table IV, the coef-
ficients (5.4) determine the expansion of the phonon
potential fIU/clgs„ in the SCPW" with the symmetry
of the phonon. Table V gives the coefficient of one
member of each SCPW.

It is perhaps not completely trivial to remark that
these expansions would be the same if g had been taken
as —(—, —,

'
—',), or any other wave vector equivalent to

(-,' —', -', ), instead of (-', —,'—,'); a phonon is the same thing
regardless of which of a set of equivalent wave vectors
is used to label it.

It is necessary to choose a specific basis for each
degenerate electron and phonon state involved in the
calculation. For the electrons at F25, we make the
usual choice of functions transforming like X, I, and Z.
(More precisely but less concisely, the P». functions
transform as FZ, XZ, and XU.) For Ls electrons and
Ls, Ls. phonons, we define basis functions

I
II) and

I I)
polarized within and perpendicular to, respectively, the
110 reQection plane:

n) =+ In),

(5.5)

(5.6)

(I I s„„.I n) =+-',Ks. (5 7)

We use the standard notation of p for a reRection
operator, 8 for a rotation operator. Under the C3,
subgroup A of the D3 group at I., I transforms like
(X—F')/Q2 and II like (2Z—X—F)/Q6. We denote
the one-dimensional representations F2. by 5, L,&

andi. p byI. .
Now that SCPW expansions have been obtained for

the phonon potential (Table V) and the electron
eigenfunctions (Table III), calculation of the Bloch

+ L.'Kleinman, Phys. Rev. 13Q, 2283 (1963).

E-P matrix element (2.5) is straightforward. For the
electron states, SCPW coefficients become small after
the first two or three, but this is not the case for the
phonon potential. Therefore, it is necessary to consider
in cIU/ciQ wave vectors as long as the sum of two wave
vectors appearing with large coefficients in the SCPW
expansion of the electronic eigenfunctions; this includes
about 70 waves. At the outer (long-wave-vector) part
of this region, the coefficients (Table V) are relatively
large this reRects principally the positive peak in
U(E), representing the "repulsive core" of the atomic
pseudopotential. The importance of these wave vectors
in the phonon potential is illustrated in Fig. 1 by the
significant change between 52 and 70 plane waves.

In practice, the calculation was carried no further
than the 76 waves indicated in Table V. Table VI gives
a complete, nonredundant selection of matrix elements
for all allowed processes between the band edges. By
comparison with Table II, it is seen that the matrix
elements are less sensitive than relative energy levels
to the choice of pseudopotential. A feel for the numeri-
cal work suggests that the uncertainty due to trunca-
tion of the electron and phonon SCPW expansions is
comparable to the uncertainty due to choice of pseudo-

4

3
2-

l0 20 30 40 50 60 70
I I I I I I I

I I I I I

NUMBER OI PLANE WAVES

Fro. 1. Convergence of the E—P matrix element with number
of 8V/BQ plane waves for the LA transitions in potential B.Shown
dashed in McLean's value for I'2+LA-+ LI. Number of waves
in the electron eigenfunctions is held constant at 50, but the
calculation is insensitive beyond ~20. Rapidity of apparent con-
vergence was comparable for the F2~ —+ LI, transitions, worse for
F2 +TA ~ L3, better for all components of F25 +TO —+ I.~ .
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TABLE VI. Electron-phonon matrix elements between I
and L in units of (ek/2copV)'"(2s/a) times electron volts.

Process
Specific

matrix elements
Potential
A 13

I'2 +LA ~ L1
F»r+TA ~ L1
~»+~O ~ L1
r».+LA ~ L,.
r, . +TA L,.
F»r+TO ~ L3r

(L IL[s)
(L II

I
(X—I')/~»

(I.
I
L

I
(X+ I'+Z) /K3)

(IILI (X—I')/v2)
(I [I[s)
(I [II

I (X—I')/v2)
(I I

I (X+I')/v2)
(III Z)

2.0
1.9

—4.0
5.9
0.8

13.5
—2.4
+8.6

2.0
1.7

—4.4
5.5
1.0

13.3
—2.2

8.1

VI. DEFORMABLE ION

Because the approximation of rigid spheres of in-
Quence is especially questionable for the covalently
bonded diamond structure, it would be of interest to
obtain some estimate of the sensitivity of the E-P
matrix element to the prescription used in computing
r) V/c)Q An alternati. ve is offered by the original prescrip-
tion of Bloch," the "deformable ion. " To apply this,
it is necessary to interpolate "smoothly" between the
displacements at the nuclear sites. The method is
purely intuitive and not derivable from more general
principles, so that no precise criterion is offered for
making this interpolation. However, at or near wave
vectors of high symmetry, such as the center of the

"T.P. McLean, Ref. 2, pp. 53, 86.

potential, which is indicated in Table VI by the last
two columns.

Data from interband transition experiments have
already been successfully reduced to an E-P matrix ele-
ment apparently only for the transition Ps.+I A —& Lt.
McLean ' deduced from optical absorption an equiva-
lent deformation potential of 1.3 ev. Since [qj =-',v3

(2'/a), the matrix element is 1.1, in the units of Table
VI. Since one would like to believe the error in the
experimental value to be less than 50%, the value of 2.0
in Table VI is definitely high. Furthermore, that value
was obtained with normalized pseudo-wave functions.
If we normalized, instead, the projection of the pseudo-
wave functions orthogonal to a space of core states,
the theoretical value would be increased by 15—20%.
Of course, the values in Table VI are already at least
that uncertain anyway. At this point, we might bring
up the remark of McLean" that it one attempts to
estimate the I' s.+LAI L, E-P matrix element by
an extrapolation of deformation potential theory, using
the experimental deformation potentials, one comes out
an order of magnitude above experiment.

We hope to return in the future to the question of
obtaining from past or future interband transition
experiments more information on the E-P matrix ele-
ments involved.

zone or the center of a face, the restrictions of symmetry
on the interpolation are so great that it is possible to
get answers without being too arbitrary. We now

parallel the work of the preceding section, using the
deformable ion.

The phonon potential is

c)V/c)Q= 8U(r) = —(2/pV)"'P'U(r). 5x(r), (6.1)

where bx is to equal eb at the nuclear sites, and the
entire potential is to have the same symmetry as the
phonon under the group of L. Therefore, 8x(r) must
be everywhere transverse or everywhere longitudinal,
and the interpolation need be performed only on its
algebraic magnitude. This magnitude is to be of J~
symmetry for the odd modes LA, TO, and of 1.&
symmetry for the even modes LO, TA. The most
general such function can be expanded in the appro-
priate SCPW. The "smoothness" criterion then could
be interpreted as meaning that only one or a few of the
SCPW of shortest wave vector be used. Once the
Fourier expansion of Bx(r) is chosen, it can be folded
into the expansion of the crystal potential V(r) to give
the plane-wave coeflicients of BV/BQ. In this model,
we need only the U(E) pertaining to the band structure,
and the lower part of Table I is not used.

For the even modes, we used just the longest wave-
length Ls SCPW; normalized to (2) "' at r= —st~,

this is
—0.766 sins. a—'(x+y+s) .

For TA, the resulting phonon potential coeKcient
closely resembled the rigid-ion values shown in Table V.
For the Pss.+TA~ Lt transition, this was reflected
in the E-P matrix elements, which were 2.0 and 1.4 for
potentials A and 8, respectively. It was noted in the
caption to Fig. 1 that Fs.+TA~Ls showed the
poorest convergence; this effect was magnified for the
deformable ion, so that from as far as the calculation
was carried, it was difficult to say more than that the
matrix element was small.

For LO, the potential components again bore some
resemblance to those in Table V. However, the calcula-
tion of Pss +I,O —+ Lt showed poorer convergence,
greater dependence on pseudopotential choice, and
smaller result (by half an order of magnitude), com-
pared to the corresponding calculation in Sec. V.

For the odd modes, a deformable ion calculation was
first performed using just the longest wavelength I.&

SCPW. Normalized to i/v2 at r=&-', ~, this is 1.85
i cos7ra '(x+y+s). This is a rather implausible inter-
polation in that the peak displacement is 2.61 times the
displacement at the nuclear sites. For LA, a typical
plane-wave coefficient was twice as large and of opposite
sign compared to the rigid case. The situation was
similar for the resulting E-P matrix elements. For
TO, there did not seem to be much relation at all,
beyond comparable magnitude.
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The interpolated displacement, using only the Lj
SCPW of next-to-longest wavelength, is

0.255iLcoss-a '(3x—y—s)+coss-a '(3y —z—x)
+coss.a '(3s—x—y)7.

Here the ratio of peak to nuclear displacements is 1.08,
as was the case with the longest wavelength SCPK for
the even modes. For I A, the plane-wave coefIicients
were smaller but generally of the same sign, compared
to Table V. The calculation for I's +LA —+ Li followed
that of Sec. V fairly well, with the results 0.8 and 1.1
for potentials A and 8, respectively. Notice that the
latter happens to be exactly the experimental result
quoted in the preceding section.

For I's;+LA —+I.s, there again was poor converg-
ence and sensitivity to the potential. The short wave-
length contributions tended to cancel the long-
wavelength contributions, in contrast with Fig. 1, so
that the result seemed to be nearly an order of magni-
tude smaller. For TO, the plane-wave coef6cients
themselves were much smaller than in Table V, but
otherwise unrelated.

VII. PHONONS ALONG A.

For interband transitions with inhomogeneous ge-
ometry, such as in tunnel junctions or the Franz-
Keldysh effect, and for "forbidden" transitions, it is
essential to consider wave vectors away from the
symmetry points. As mentioned in Sec. IV, the cell-
periodic part u;(k, r) of an electronic wave function near
a symmetry point ks is easily expressed to a good
approximation in terms of the e, (ks, r) at the symmetry
point. Unfortunately, there seems to be no similar
simple relation for the cell-periodic part e '«'BV/BQ, „
=n~(q, r) of the phonon potential.

By means of a force-system analysis of neutron-
scattering results, one should be able to obtain good
expressions for the polarizations es(qp) near a qs where
they are determined by symmetry. In our case,
qs= (-,' —', —,'). Then BV/BQ can be calculated as in Sec. V
or Sec. VI. The matrix elements

(koi'I~ '" ""BV/BQ .I0i&

will sufIice to determine the general Bloch E-P matrix
element.

Because by far the largest electronic effective mass
involved in interband transitions in Ge is the longi-
tudinal mass at I.&, the most important bp=q —qo will
be parallel to qp. Fortunately, this is the easiest to
handle, because the eb do not change direction. The
wave vector q remains on the symmetry line A and its
group merely loses the inversion operation. We consider
here only this special case.

An exact description of all es(qp) along A requires
only two real parameters, which we take as P& and pi,
the phase of the nuclear displacement at +—',~ for the
transverse and longitudinal modes, respectively, rela-

TABLE VII. Matrix elements between electronic wave functions
of derivative with respect to wave vector in the (111)direction of
s *'ts s»'rBV/SQq„, in units of (pV) '~s eV, for potential A only.
Polarizations chosen are the same as in Table VI. Values are less
certain than those of Table VI, as discussed in the text.

Forbidden process Derivative matrix element

F ~ +LO
F25 +TO
F25 +LA
F2g +LO
F2 +TO
F25 +TA

—+ LI~ L1
—+L3
—+ L3.
—+ L3.

8.8
40

15
36
0.6

1.8; 4.4) 4.3

tive to the phase with wave vector qp. The phase at
——,c is determined by the condition eb*= —e & in-
troduced in Sec. V. The parameters p, and pi are
functions of bq, the algebraic magnitude of the dis-
placement of q in a (111) direction. (For Bq)0, q is
outside the first Brillouin zone and is equivalent to a
wave vector just inside —qs. ) We now specialize to
effects linear in bq, which should be sufFicient for inter-
band transitions. It would be of definite theoretical
interest to consider large bq and perform an interpola-
tion to the deformation potential regime in E-P in-
teraction, but we have not done so.

In general, e '««&'B V/BQ, „does not have definite
parity, but the term of zero order in bq does have parity,
and the linear term, in fact, has the opposite parity.
We shall find the plane wave coefficients of this linear
term and then its matrix element between electronic
wave functions.

Consider 6rst the method of rigid spherical pseudo
ions, in which the plane wave coefficients of BV/BQ
are given by formula (5.4). There are three comparable
contributions to the linear change in the coefFicient as

q moves away from qs. the change in U(I q+GI), the
change in the projection of q+G on the direction of
polarization (zero for transverse modes), and the change
in phase of ebe '«+G)'"'.

For b=+-,'~, the rate of change of this phase is

(By/Bg) (%3a/8)—.
Consider first the transverse phonons: Since parity
changes between I" and I., the average Bg,/Bq over a
reciprocal lattice vector is (a/2%3). For the two force
constant models of Herman'~ fitting the Ge phonons,
the B&&/Bq at qs are 0.82 and 0.85 of this average. 4' We
take the higher value, which gives (Bp,/Bq) (v3a/8)—
=0.030a, with an uncertainty of at least 30%. The
final results, in Table VII, are not necessarily this bad,
since for the transverse phonons the ebe (&+ &'0& term
is generally the smaller contribution to the linear
change in plane wave coefFicient.

Secondly, consider the longitudinal phonons: Since
the parity does not change between F and I., the aver-

~These are for the models labeled ii and iii. For the other
models, i and iv, which have the wrong longitudinal parity at L,
the values are 1.06 and 0.87.



A 1684 RALPH T. SHUEY

age 8&t/ctq is zero, and at tie it should be large and
negative. The two Herman'~ values are —2.1 and —1.2
times V3a/8. We take the total ( tcp,/ tiq) —(&3a/8) to be
—2.5%3a/8= —0.54u, again with at least 30% uncer-
tainty. All three effects contribute comparably to the
linear change of plane-wave coefficient, so this un-
certainty carries over in large measure to the final
results in Table VII. Furthermore, the linear approxima-
tion itself should be used only with caution in an inter-
band transition calculation, because of the proximity
of the branch point connecting LA and LO.

The convergence and general behavior of the calcula-
tion was, on the average, the same as for the work of
Sec. V. Calculations were made of the quantities in

Table VII for the deformable ion case by assuming that
no new plane waves were Inixed into the interpolating
function. General behavior of the calculation was as
bad as in Sec. VI; in fact, the algebra is essentially
identical. Moreover, the prefactor to the result includes
(rig/ctq) —(%3tt/8), which as discussed above, is rather
uncertain.
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Trapping of a Resonant Phonon by a Pair of Paramagnetic Ions~
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The trapping of a resonant phonon by a pair of paramagnetic ions is studied in the limit of zero temperature
with the aid of the Heitler damping formalism. The probability amplitudes of the states (spin 1 up, spin 2
down, no phonon), (spin 1 down, spin 2 up, no phonon), and (spin 1 down, spin 2 down, one phonon) are
computed. Provided coherence is maintained between the two spins, the transfer of energy to the crystal
lattice takes place in the time T&e(1—sinkprys/kprys) '. Here T&e is the spin-lattice relaxation time for an
isolated ion at zero degrees, k0 is the wave vector of the resonant phonon, and r12 is the distance between
the spins. The relation of this result to the general problem of spin-lattice relaxation at low temperature is
discussed.

I. INTRODUCTION
' 'N the standard treatment of the spin-lattice relaxa-
~ - tion of a two-level paramagnetic spin system it is
assumed that the ensemble of spins can be characterized
by a temperature. ' ' Loosely speaking, a description in
terms of a spin temperature different from the lattice
temperature is valid whenever the spin-spin relaxation
time T~ is less than the spin-lattice relaxation time
T1.' In this paper we will discuss the transfer of energy
from the spin system to the lattice for a situation where
the opposite condition holds, namely T1«T2.

At zero degrees an isolated spin in the excited level
has a lifetime T10, where T~o is the spin-lattice relaxa-
tion time evaluated at T=O. We will show that the
presence of a neighboring spin may greatly enhance this
lifetime, provided coherence is maintained between the
two spins for intervals greater than T10. We identify
this enhancement with the coherent trapping of the
resonant phonon. Although the situation studied is

*Work supported in part by the Wisconsin Alumni Research
Foundation.

' j.H. Van Vleck, Phys. Rev. 57, 426 (1940).' R. Orbach, Proc. Roy. Soc. A264, 458 (1961).' A. Abragam, The Principles of Nuclear 3SIagnetism (Clarendon
Press, Oxford, England, 1961), Chap. V.

somewhat artificial there is reason to believe that the
results of the calculation indicate the conditions under
which an analogous trapping may be present in a crystal
with a large number of spins.

II. THEORY

In order to discuss this effect in detail we start with
the Hamiltonian of the two-spin system (S=-',),
SC= coo(S,'+S,')+P t costi t tag+ S 'Q t A se'"'"

X (at 1+a

i~)+Se'+tease'"'"(at,

t+a t). (1)

The first term in (1) is the Zeeman interaction (I't=1),
the second is the phonon Hamiltonian (a& and ut, f
are the phonon annihilation and creation operators),
while the third and fourth terms couple the spins to the
lattice. In the interaction terms, r~ and r2 denote the
locations of the two spins and k is the phonon wave
vector. The x components of the spins are denoted by
S ' and S,', and A& is a coupling constant inversely
proportional to the square root of the volume of the
crystal. %e will assume for simplicity that ~&——~k where
e is the velocity of sound, and that 3 I, depends only on
the magnitude of k. Since we are interested in the limit
T~&&T2 we have omitted the dipolar coupling. The


