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The anharmonic contributions to the energy, specific heat, frequency —wave-vector dispersion relations and
damping of phonons in a crystal have been studied using the recent technique of thermodynamic Green's

functions based on Geld-theoretic methods. General expressions for these quantities have been deduced. It
has been shown that at absolute zero the number of density is finite for the anharrnonic solid and it is of the
same order as the square of the fractional change in the normal-mode frequencies. The cases of a linear chain
and a simple model of a crystal have been studied in detail. The normal modes of a linear chain exhibit
some unusual but interesting features for different amounts of anharmonicity. The half-width of the phonons
of the anharmonic chain has been evaluated for all temperatures for both normal and umklapp processes. For
a solid, the complicated integrals that occur because of anharmonicity are simplified by an approximation
scheme suggested by us. Within the scope of this approximation it is found that the frequency-wave-vector
dispersion curves for a solid show a dip at the maximum wave number, quite similar to that observed for solids
like lead and copper. The width of phonons is proportional to the square of the wave number, and the thermal
conductivity is seen to be finite at low temperatures and to vary inversely with temperature at high
temperatures.

I. INTRODUCTION

HE potential energy of a crystal is usually ex-
panded in a power series of nuclear displacements

from their equilibrium positions. In the harmonic ap-
proximation one retains only the quadratic terms and
then the problem is solved exactly in terms of the
normal modes of vibration of the crystal. The system
can be quantized and each quantum of normal mode is
known as a "phonon. "The thermodynamic properties
are easily worked out by treating the crystal as an
assembly of these phonons.

However, there are many features of a real solid which

can not be explained by the harmonic approximation
alone, for example, the thermal expansion, speci6c heat
at high temperatures, thermal conductivity, and fre-

quency —wave-vector dispersion relations, etc. Many of
these features of a solid can be explained by going
beyond the harmonic approximation. The next terms in
the power series expansion of the potential energy are
the cubic and quartic terms. The role of these an-
harmonic forces in determining the actual response of
the crystal is by no means negligible, because these
anharmonic terms contain phonon-phonon interactions
which can explain some of the more interesting prop-
erties of the crystals.

Recently, the anharmonic free energy and specihc
heat of solids have been calculated by Maradudin and
co-workers. ' ' They have used the Bloch expansion
formula which for a system described by the Hamil-
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4 S. V. Thompson, Phys. Rev. 131, 1420 (1963).

where P = (k~T) ' and Hr is a small anharmonic
perturbation to the Hamiltonian Ho of the harmonic
approximation.

So far we have not come across any published work
where the anharmonic contribution to the energy of the
system has been evaluated quantum mechanically,
either at low or at high temperatures, although the
recent formulation of thermodynamic Green's functions
leads naturally to the evaluation of the energy of the
system through the correlation functions. In Sec. II we

shall deduce an exact expression for the energy in the
presence of cubic anharmonicity alone in terms of the
one-particle correlation function. We shall treat the
quartic anharmonicity in an approximate way.

Our Green's function will be similar to that of
Thompson, 4 which gives directly the displacement and
momentum correlation function. The approximation of
limiting the chain of Green's function equations will be
used to write the two-particle Green's function as a sum
of products of one-particle Green's function and equal-
time correlation functions. These approximations are
not the usual perturbation approximation; indeed they
are better than Hartree-Pock approximations as pointed
out by Thompson. 4

Once the decoupling scheme has been decided upon,
it is easy to obtain a simple expression for the Green's
function. Examining the Green s function in the com-
plex energy plane, it is found that there are poles that
lie above and below the real axis. The real part of the
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pole in the positive half-plane is identified as the
perturbed mode, and the imaginary part as the half-
width of the mode. When the poles lie close to the real
axis one can meaningfully discuss a phonon number
density and it turns out that at absolute zero of tem-
perature this number density does not vanish as it does
for a perfect crystal.

In Sec. III, the general formulas deduced in Sec. II
have been used to calculate the properties of a linear
chain. Detailed discussion of the dynamic properties of
the anharmonic chain is given. The width of the phonons
is obtained for all temperatures and is found to be
proportional to the absolute temperature. In Sec. IV,
we have performed similar calculations for a solid based
on a very simplified approximation, which we have
called the soft phonon approximation. The frequency—
wave-vector dispersion curve is found to drop near the
maximum wave number.

II. GENERAL FORMULATIONS

We consider a Bravais crystal of iV atoms, each of
mass M. Our Hamiltonian for the system is

H=2~Z U'+2 Z V'jU*Uj+s 2 9'j«U'U/U«
it j i,j,j

+(1/24) P q;j«/U;U;U«U/, (1)

where U; is the displacement of the ith atom from the
equilibrium position. The q coefFicients are general
force constants of the lattice. We confine ourselves to
quadratic, cubic, and quartic terms in the potential
energy. In terms of phonon annihilation and creation
operators, the atomic displacement can be expressed as

1 e(k, j)'U. Q (g .+/3 «.t)e2mi«Ri (//4
—1) (2)

(2M%)'/' «, 4 (o»«j7'»'

In this expression co» is the frequency of the normal
mode described by the wave vector k and polarization
index j, and e(kj) is the polarization vector for the
mode (k,j).

For convenience we define the operators

A«j 43«j+/3 «j i —B«j /3«j /3—«j

Akj and Bkj are directly related to the Fourier trans-
forms of the displacement and momentum operators.
Substitution of (2) in (1) gives the Hamiltonian in
second quantized form as

Q o»«j(/4«j 43«j+2)+ Q V (kljl k2j2 k3 j8)A«1 jlA«2j2A«8j3
kj kl, kg, kg

jl j2 j8
+ p V"'(klj l,k2J k2j 8k84j4)A ljl«A«2j2 «8j3A«4j4 (3)

kt, km, ks,k4

The coeffjcients V(3& and Ij"( ) which appear in the anharmonic Hamiltonian are the Fourier transforms of the thinI-
and fourth-order atomic force constants. They are completely symmetric in the indices (k,j;) and are given by

q (kl jl,k2 js,k8j3)
V"'(klJI k2j2 ksj3) = A(k, +k2+k3)

(2) 3/26+1 /2

44 (kl jl,k2 js,k8 j„k4j4)
V&'&(kl jl,k2 j2 k3js k4j4) 6(kl+k2+k3+k4)

(2)224(7 kl jlk2 j2k3 j3k4j4
where

v (kl jl,k2js,k8 j3)= 2 (4 'j«/~8/2)e(kl jl)e(k2 j2)e(k8j8)e"'"'"'+""'+"'"",
i, j,k

q (kl jl,k2 js,ks jsk4 j4)= p (q, j&&/3P) e(kl jl)e(k2 j2)e(k8 j8)e(k4 j4)e' '&«'"'+"',

A(k) = 1 if k=0, or reciprocal lattice vector,
=0 otherwise.

Equations of motion for 2 I, and BI, are

i (r)A «/rjt) = LA «,H$ =o/«B«,

i(c/B«/c/t) = LB«,H7= o&«A «

+6 P V'8/(kl, k2, —k)A«, A«,

Here and in what follows we use only one index k to
denote (kj).

We define the one-phonon retarded Green's function
as'

G.,(j,j') = ((A.(j),A'(1'))) = —2/)(~ —~')(LA «(j) A.'(1')j)
where

(0)=Tre ~~0/Tre Pjj

/tA, Bj=AB BA, —

8(x)=1 for x)0+8 Q V/4&(kl, ks, k„—k)A«, A«2A«3. (6)
k1, k2, k3

' D. N. Zubarev, Usp. Fiz. Nauk 71, 71 (1960) (English transl. :' A. A. Maradudin and A. E. Fein, Phys. Rev. 128, 2589 (1962). Soviet Physics —Uspekhi 3, 320 (1960)j.
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We also define the one-particle correlation function as Therefore

F. (t,t)=(A.'(t)A (t)).
The Fourier transforms Gk(kp) and Ji,(kp) of the one-
particle Green's function and the correlation function
are defined as

E=Ep+p kdi(kzi, 'kzi)+ p V"'(kz, kz, kp)(A4, ,A~,Ai, )
k1, k2, k3

+ Z V«&(ki, kz, kz,k4)(A. A.,A.,A.,)
kI, k2, k3, k4

=Eo+Z +(V)+(«)
G&(t—t') = Gi, (kp)e '"k' "idkp

and

Fi, (t—t') = Ji,(kp)e '"k' '&dkp.

Here we will just indicate the relation between the
correlation function and the thermodynamic Green's
function. Details of the formalism can be seen in Ref. 6.
The spectral-density function A(kp) is related to the
one-particle Green's function by the relation

oi
Gi, (kp+zp) —Gi, (kp

—zp) = —z(ee"—1)Ji,(kp)

Ji(kp) = —(2/(ee" —1)) ImG4(kd+ ip)

where e —& 0 is implied.

kd J„(kp)e iw(t k')d—~—

kpk(B pz(t') Bi (t) )= z—(Bpt(t') A i, (t) )
Bit

kp'Ji, (kp)e-*""-' 'dkp,

8
koan(A kz(t')BI, (t))= i—(A i,t(t')A k(t))

Bt

kp JI,(kp)e
—' k'—'&dkp, (9)

and take the limit /= t'; the number density comes out
to be

+ M

nI, 1+———— JI,(kp)dkp.
—oo +k

(ii) The Energy of the System

The energy of the system is equal to the thermal
average of the Hamiltonian which is

E= (H).

(i) The Number Density

The spectral-density function J&(kp) is directly related
to the number density of the system. In terms of the
operators A k and Bk, the number density is

ni= (kzk'kzp)=-'[(A p'Ai)+(Ak'Bi)+$4'Ai)+(Bk'Bp)).

We now use the relations

8
kpk(Bit(t')A 1(t))= —i—(A i Z(t')Az(t))

Bt'

where Eo is the usual zero point energy of the harmonic
crystal. Now we differentiate the correlation function
(Bit(t')A~(t)) with respect to t' and, after summing
over all k, we get
—i(8/kjt') Q (Bit(t') A 4(t) )

=p kpk(A i t(t')A i,(t))+6 p Ukp~ (k,ki, kz) (A 4,A 4,A 4)
k k,kI, k, ,k,

+8 Q V«i(k)ki, kz, kz) (A i„A i„A i,A 4). (12)
k, kI, k2, k3

To evaluate the right-hand side of Eq. (12) we differ-
entiate the first relation of Eq. (9) with respect to t' and
then take the limit t= t'. We get a very useful relation:

1
(V)=lZ — d J()( '—")—l(V) (13)

k —kO

The usefulness of the above relation lies in the fact that
(Vz) is now expressible in terms of the one-particle
correlation. function. Using the relations (10) and (13)
we get an expression for the energy of the system from
Eq. (11) as

E=Ep ——,'(V4)
+oo

+ p — dkp(5kp +kpk +6kpkdy) J4(kd) . (14)

So far we have not made any approximation in obtaining
(14), and it is clear from the expression for E that, if the
quartic anharmonic term is absent, then E is exactly
known in terms of J&(kd). It is possible to write formally
exact expressions for the thermodynamic functions when
the anharmonic terms of all orders are present (e.g. free
energy as an integral over coupling parameter). How-
ever, it is not possible to express the energy of the system
in terms of the one-particle correlation function. For
instance, to evaluate the cubic and quartic contributions
we can express the energy in terms of one-particle and
two-particle correlation functions. The complex problem
of anharmonicity is considerably simplified if the two-
particle correlation function is decoupled according to
the scheme

(kz&«) = (kz&)(«)+(«)(&d)+(«)(f'e) (15)

where u, b, c, d are the operators Ak or Bk. Therefore,
the approximate form of (V4) is

(V4)=3 P V«&(kz, —ki, kz, —kp)
k1, k2

X(A4:,'A ~,)(A4,'A i,) (16)
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(iii) The Green's Functions

The equation of motion for the Green's function Gk, is

—(d2/dt2+~k2)Gkq=2~k~kq&(t —t')+6~k 2 V"'(k1, k2, —k)((A»Akq A'(t')))
kl, k2

+8o&k p V&4&(kr) k2) ks, —k)((Ak, Ak2Akq)Aq (t'))). (17)
kl, k2, k3

The Green's function of the last term is now decoupled according to relation (15).To evaluate the Green's function
rkk„&» = ((A k Ak„A qt(t'))) contained in the second term, we need the Green's functions rkk„&"= ((Bk A k„A qt(t'))),
rk, k„&2&=((Ak,Bk„A t(t'))) and rk, k„~'&=((Bk,Bk„Aqt(t'))) as can be seen from the equations of motion given
below.

i(dr&'&/dt) =o&tr ' +o&sr '

;(dr~»/dt) =~,r&4&+~,r&»+6 p V& &(q„q„—k)((A„A„A»,A,t(t')))
QI2 I2

+8 2 V'"(q1, q2, qs, —kr)((Aq Aq AqqAk2 A'(t')))
912 922 Q3

j(dr&»/dt) =o&,r&»+o& r&'&+6 Q V~2&(q, q, —k )((A„A„Ak„A,t(t')))
Qlr g2

+8 Q V'"(q1, qs, qs,
—ks)((A„A„A„Ak„A, (t'))), (18)

011922C3

i(dr~4&/dt) =»r&2&y~, r&»+6 p V~s&(q, q2, —k)((Bk,A«A„,A,t(t')))
Qlr Q2

+8 p V ' (q1, q2, qs, —ks)((B»A«Aq2A„, Aq (t')))+6 p V "(q1, qq,
—k1)((A„A„Bk„A,(t')))

911022 93 Cl) C2

+8 p V'"(q1, qs, qs, —k1)((A„A„A„Bk„A,'(t'))).
012 922 g3

Thompson' has tried to shorten the procedure by writing
the equations for I'(') and 1 "' only, and his second-order
differential equations for I'(') and F("are approximately
true. The Ave-operator Green's functions can be de-
coupled as sums of products of the three-operator
correlation functions (and Green's functions) and two-
operator Green's functions (and correlation functions).
After these decouplings are done, one can proceed to
solve for Gk, . It is easily noticed that the contribution
from the terms obtained from decoupling the five-
operator Green's functions are small, being of the order
of the product of cubic and quartic coupling parameters.
We neglect them because such terms are comparable
to the contributions that can arise from the higher order
expansion of the potential energy of the crystal beyond
the quartic anharmonic term. However, in an analysis
of the type attempted by Thompson' (where he takes
into account higher order effects in the neutron-scatter-
ing problem) these contributions have to be considered.
So we obtain the following two equations for the Fourier
transforms of the Green's functions.

where'

F(kr, ks, o&) = 6(N1+N2)
O&1+O&2

CO CO] C02

+6(N2 —N1)
CO CO]

—C02

and

+6(N1'+N2')
+1 &2 + +1 &2

Nk= (Ak Ak), Nr'=(Bk, Ak, t) and N2'= (AkqtBkq). (20)

Finally we get from Eqs. (19)

Gk(o&) = (o&k/qr)(o&2 —o&k2 —2o&kMk(o&))-',

where

(21)

Mk(o&) =3 p ~

V&2&(—k, k1, ks) ~2F(kr, ks,o&)

kl, k2

+12 P V&4&(kr, —k1, k, —k)Nk1.
(o& o&k )Gk = 4 +6Mk 2 V (k1 2 k)rk1k q

7r kl, k2

+24o&k P V'"(klan k2( k21 k)GkrqNkr
kl, k2

Let us define

cvk(co+is) = t&,k(o&) irk(o&), —
and

The last term in first equation of (20) is missing from Ref. 4.
rk1kqq P(k1yk2)o&)Q V ( k1p k2p ql)Gq~q y (19) It is, however, seen by evaluating (Xz'+%2') from (9) that

Ql (X1'+N2') can be omitted in the desired degree of accuracy.
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where

~,(M)=186 P ~V&»( —k, k„k2)~2
k1, k2

M1+M2 G) j—G)2

(1V1+Ã2) + (X2—X1)
GO M] G)2 GO COg G02

+12 Q V'4'( —k, k, —k1, k1)A2„(22)
k1

where

e(M) =1 for M) 0
for or(0.

and
(I' )=18 ( ) P ~

V"'(—k, k, k )~'
k1, k2

XLP 1++2)(Ml+M2) ~(M (M 1+M2) )
+(%2—X1)(M1—M2) 8(M2 —(M1—M2) 2)$, {23)

It is obvious also that 62(M) ancl I'2{M) are the
Hilbert transforms of each other and 62(M) is an even
function of M and I'2(M) an odd function. The above
results agree with previous calculations' ' if Ek is pre-
assigned the value F2= 2222+1.

(iv) Physical Properties of the Anharmonic Solid

22'=M2'+2M2~2(22) . (24)

The correlation function Ek which is obtained directly
from the spectral density function is

The poles of the Green's function will be given by the
zeros of the denominator of Eq. (21). The real part of
the pole gives the dispersion formula and the imaginary
part gives the half-width of the phonons. ' In our case
the perturbed normal mode is given by the equation

„(eI2"—1) (M' —M22 —2M252(M)+2iM21'g, (M) p(M))

coth-', pM r2(M)
dGO—

(M —M2 —2M244) +4M2 12

The physical quantity n& is given by Eq. (10) and after appropriate substitutions becomes

M +M2 +2MM2
Im dG0

22rM2 „(e~"—1)(M2—M —2M2+2(M)+2iM21 2(M) p(M))

1 t (M +M2 ) CotllppM 2MM2]I2(M)
des

p (M' —M22 —2M2&~) 2+4M221'22
(26)

There is no direct relationship between Ek and ek.
The idea of a number density is physically meaningful

only when the damping is considered to be small. In this
limit we see that the spectral density function J2(M) has
a steep maximum at the value co= ek. If we replace the
Sreit-Wigner form of the spectral density function by a
Dirac 8 function, then the integrals are easily done and
we get the following fairly accurate expressions for the
number density and the Xk.

n2 (1/4M 42)[((o2——e2)'+ {M '+ e—')(COth-,'P p 1)), (2—/)
&2= (M2/p2) cothppe2. (28)

When M2 is close to e& one can replace X2 by 2222+1.
The expression for the number density ek has been
written in a form such that in the limit p ~ pp the second
term vanishes. At absolute zero the particles (phonons)

are distributed over various normal modes and it
follows from Eq. (27) that

~2(2'~ o) = L(1/2M. )~2(2'~ o)j' (»)
In the harmonic approximation this number vanishes

whereas it is proportional to the square of the fractional
change in the normal mode frequencies. This may prove
useful for qualitative discussion of the effect of an-
harmonicity on the thermodynamic properties of solids.

The contribution of quartic anharmonicity to the
energy of the system, according to our approximation,
is given in terms of Eks as

(V4) =3 Q V"'(—k1) k1) kpy k2)1V211IITQ2. (30)
ky, kp

The total energy is

1
E=Ep——',(V4)——Im P

6x

SM'+M2 +6MM2

„(ee"—1) (M2 —M22 —2M262+2iM21'24(M))

1 " (SM'+M ) coth2pM I'2(M) 2
=Ep —p(V4)+—p Mp IEM ——g M2

32r & p (M —M2 —2M262) +4M2 I 2 7I & p

dMM I 2(M)
(31)

(M' —M2'-2M244)'+4M2'I"2'
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This is our final expression for the energy of the
system. The specific heat can be obtained by using the
relation

C„= ksP—2(BE/BP) . (32)

Very accurate results will be obtained if expression (31)
can be evaluated for any specific model of a crystal. It
seems to us that it is impossible to evaluate this expres-
sion in closed form in all generality without the aid of
computers. Finally we obtain the energy in our approxi-
mation as

E=EP—Q V&4'(—k1, k1, k2, —k2)
k1, k2

X ((4p21/42, ) coth2 pp2, )((&p42/p22) cotl12 p 422)

+—,', p((4p22+5 422)/c2) coth-,'p p2 (3.3)

The expression for the energy given by Eq. (33) is a
useful nonperturbative result. The cubic anharmonicity
does not enter explicitly. It alters the normal mode
frequency in a significant way and hence the energy.

III. APPLICATION TO A MONATOMIC
LINEAR CHAIN

In this section we shall work out various anharmonic
properties of a monatomic linear chain. It is quite
obvious that the model of a linear chain is nonphysical
as well as unrealistic; however in the absence of accurate
calculations of anharmonic properties of solids beyond
perturbation theory, we feel that it is worthwhile to
study the anharmonic properties of a linear chain. Apart
from this, the one-dimensional model will serve as a
guide for calculations in three-dimensional models.
Similar calculations for the free energy of a linear chain
have been made by Maradudin and co-workers. ' They
have shown there that for a monatomic linear chain

j
V&"(—k, k1) k2)

~

'= (B'/288''1V) 6(—k+k1+k2)4p14p2, (u22

and
V&4'( —k1, k1) k2, —k2) = (2/96''N)rd2, 4pI,„(34)

where y, 8, and e are harmonic, cubic, and quartic force
constants (nearest neighbor) for the linear chain. The
unperturbed normal mode frequencies are given by

pp22 p1L2 sin 21k ppL (4y/~) 1/ 2

k=22rl/N where l lies between 2N and +2N. (35)—

(i) Lifetime of Phonons

The cubic anharmonicity gives a finite width to the
normal modes and is responsible for dissipation of
energy, so that the transport properties (e.g. thermal
conductivity) turn out to be 6nite. In fact at high tem-
peratures the thermal conductivity is essentially
governed by the cubic anharmonicity. We have already
deduced in Eq. (23) an expression for the width at all

temperatures and we shall see that it turns out to be
finite. Furthermore the contribution from normal and
umklapp processes can be discussed clearly and easily
in the case of a linear chain. Maradudin' has also ob-
tained a finite width at high temperatures.

For the linear chain we omit the polarization index,
and we obtain the width from Eq. (23) after substitution
for V&'&. By rearranging the terms we write it as

I' (4p) = (2r(p 5'/16''N) p(p1) Q 6(—k+k1+k2)a&14p2
k1, kg

X$(1V1a)2+N2p11) (5(4p' —(cp1+4p2)')

+B(4p (&1 4p2) ))+(N14pl+N24p2)

Strictly speaking, the observed width is of the per-
turbed normal mode. However we assume this to be
equal to the width at the unperturbed frequency which
can be written as

I2(4pp) = (2IM28 /4'r 1V) p 6(—k+k1+k2)Q&1 M2

ky, kp

XB(~2 24pk (apl +4p2 )+(pp1 4p2 ) )

X L(N lpga 2+ N2~ 1)+(N 1~1+& V2pp2)

X p(cpI,
'—co1'—(o2') 7, (36)

where we have used the formulas

and

The advantage of writing in this fashion is that the
argument of the Dirac 5 function now contains the
square of the normal-mode frequencies and the trouble-
some modulus-of-the-sine functions do not arise.
Furthermore, the roots of the argument of the Dirac
delta function turn out to be very simple. The important
point is to sum over k2 (or k1) keeping the properties of
6(—0+k 1+k2) in mind. We use the indices l=Nk1/22r,
n2=Nk2/22r, and n =Nk/22r and write Eq. (36) as

'J4'//2

I'„=(2r(v "p2/4ypN)Q Q 6(—l+n2+n) p:(2co„2
l m=NI2

X8(4p„4—2pp„2(&pi2+cp 2)+(4pi' —co ')')

X [(Nl4ptn+Nna~l)+&(4pn 4pt pram )

X (~~ 1' r+Nmppm7 .

Thek function implies that m= e—l&M, whereM=0,
~E, &2Ã, Since the ranges of summation of / and
n2 are only from —1V/2 to +1V/2, the value of M can
only be 0 or ~Ã. When M=O the process is called a
normal process and when M= &E the process is called

A. A. Maradudin, Phys. Letters 2, 298 (1962).
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an umklapp process. However, for any value of where x; are the roots of f(x)=0, we obtain an expres-
M (0, &N, &2N, ) co„~~——co so that the summand sion for the half-width for all temperatures
in 1 „is independent of M. Therefore we can write

$2

$2 x'

p normal—
GQGOq GO@ q

X8(f(~y,~„~z,))g(N„N~ „cv„MI, ,)

j pm&lapp— dgGOq GO& q
8y'

X8(f( ., —))g(N. ,N.—.. ., —,) (3g)

The argument of the Dirac 8 function is

GO&&GOq~GOIc q

=cor4I sin42 k —2 sin'-,'k(sin'-,'q+ sin'-', (k—q))
+(sin'-,'q —sin'-'(k —q))'j

= —4cur, '(og' sin'-', q sin'-,'(k —q)

so that the poles are at q=0 and q=k. If we take
N& ——coth2Pa&z and use the property of the Dirac 8

function

8(f(*))=2 8(~-*')/If'(*') I,

+N /2
I' = (7r(a„82/4y'1V)g I P 6(—e+i+m)$(oP(o„P

l m=X/2

X8(f(~n, ~lq~n —l))g(Nl p n—l q~l, ~n —l) ~ (37)

The quantity in the square bracket can only be 1; i.e.,
there exists only one value of m such that m=e —l or
n —/&X. However, if e&0, it is easily seen that, for
normal processes (i.e., e—3=m) to occur, we should have
the range of / restricted by e—-,'E&l&-,'E and for
umklapp process (i.e., n —i= m —N) by —~N(l
&e—2E. Thus the normal and umklapp contributions
(for k)0) are

P normal P 8(~—q)8(q —k+m)co, '(uI, ,'
32+ GOI, q=O

q=k

XL(N,~z,+N&, a&,)+e(sin2~q sin~~(q —k))

X (N M +1Vfg (0Jg q) jD s—in-,'q sin'-', (k —q) cos-', q

+sin'-', q sin-', (k —q) cos-,'(k —q) I g '.
To evaluate the above expression we use the fact that
lim, 0 ao,N, = 2/P and we get

I "™1=(8'/gv')(-./~)8(--k).

Similarly,

I'g™~~= (8'/1&y') (col/P) 8(k—n ) .

Finally we get the total contribution to the half-width as

I'g ——(8'/16'') ((uz/P) L1+8(vr —k)j for k) 0. (39)

In general the half-width is

I' = (82/16'')((v /P) I 1+8(x—k) 8(x+k)j, (40)

which can also be obtained directly from Eq. (37).If we

take the implications of the Heaviside 8 function seri-
ously (i.e. 8(0)= 2), we see that when k falls on the zone
boundary the width is reduced from (4h'/32'')(coz/P)
to —,', (8'/y')(cur, /P). (The experiments of Ref. 13 show
such a drop in width. )

(ii) Frequency —Wave-Vector Relations and
Energy Shifts

It is not possible to evaluate 61,(~) in closed form at
all temperatures. Therefore one has to be satisfied with
evaluating it at high and low temperatures only.

At high temperatures we have N~~2/P&u~ so that we
obtain for the energy shift, after substituting (34) in

(22) and simplifying, the result

cup(e 8') P I,co' + — k ( k)-
L4(co) =—

I

——I+ (P dq ar' cur, '+cur, ' cos—c—osI q
——

I

4P Ey' ys) Sn y~P 2 E 2I

XL~'—2a'Ml, '+2m'cur, ' cos-', k cos(q ——,'k)+~1.' sin'-', k sin'(q ——',k) $ '.
This integral is evaluated with due care to the principal value problem and the result for the shift is

(oj, $ e 8') 8'cog(u

hp(cv) =—
I

——I+ L8((o'—4(oz' sin'-,'k)/(co' —4(oz' sin'14k)'I' —8(oP—4(oz, ' cos'~1k)/((u' —4&os, ' cos'-'k)'I'j. . (41)

The modified normal mode frequency eI, is determined by the equation

~a' f ~ &') &'~~'~a
~& =~A, + I

—I+

X L8(M2 —4&g12 sjn2~k)/(~2 —4~&2 sjn2&~k)~&2 —8(~ —4~L2 cos2~k)/(~2 —4~r cos ~k) 12j. (42)
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This we rewrite as

es 'Ms +Pi(vs +Psois'e&$0(es' —4cvz, s sin'sk)/(e&s —4cor, s sinssk)'I'

8(es—' 4eir,—' c os' sk) /(
e's4oir, ' cos'-,'—k)'Is), (43)

where Pi and Ps are to be read from Eq. (42).
We notice that ess) 4'&s cos'sk is not satisfied for any k. For values of k such that ebs)4oir, ' sin'srk, (43) becomes

a cubic equation in ~&. This cubic equation has been solved for various parameters which characterize anhar-
monicity, and temperatures and graphs for es versus k have been plotted in Figs. 1(a) and 1(b) for Pi ——Ps ——0. ,
P =—P2 ———0.2 and P~= 1.0 P2= 0.1.It appears to us that the existence of three acceptable roots is an interesting
feature of the solution, although we can not comment on their significance. The drop at a particular value o infkin
Fig. 1(a) strongly resembles the Kohn type of effect in three-dimensional solids.

At low temperatures At~1+2 P =t" e 'e"', and we get, after substituting (34) in (22),

8 GO GPI,

As(co) =
16m''

q k —
q q k —

q i k q k —
q )' ' eoisoil.

dq sin — sin sin —+sin
~

sin'—sin —+sin
~

+
2 2 2 2 ) 2 2 2 ) 4+y'

$2Q) eo +1K

+
4~y3 n=s

dq" s"&-s e " "'(o~ss+o~s —~s-s )L~s —2n s (ops +o~s-s )+ (ops
—o~i &')'$ '

+
+=i

g
e
—se~s Sins/2 (44)

2

(47)

In Kq. (47) e& is the new maximum frequency. Dis-
persion relation at low temperatures remains a sine
curve except that the maximum frequency is changed.

(45)

The first integral in (44) is evaluated by breaking it up This can be written as
into three integrals between the limits —x to 0, 0 to k,
and k to x, so that moduli are correctly accounted for
and we obtain

The dispersion relation is

(iii) Number Density

We have already shown that for a solid, the number
density at absolute zero is nonvanishing. For a linear
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The number density at absolute zero is

e~=-,'(hz/~&)'

Maradudin and Fein' have given plausible values for
e, 8, y, and GoL for a model of lead which are

6=4.016&&10"erg/cm4, 8 = —9.693X10"erg/cm'

y=1.819X104erg/cm' and orz=2.057)&10"sec '

Putting in these values we get the number of phonons
to be 8.5)&10 %%uo. This corresponds to about 10'
vibrations per mole. '

At low temperatures, we obtain for the energy

JV coz +5hz 'E7r (SR@ +Mz, )
~l

6x ez, 18P' 6L

eX (arz, '
+

24p2k~e, P'e, li

E raz'+Scz, "
g(0)—

6x

6SGOL

24+2y2eL"
(49)

from which the specific heat can be easily evaluated.
The zero point energy is

(iv) Energy and Syecific Heat
where eL' is the maximum frequency at absolute zero.
In a perturbative sense our result (49) for the zero point
energy does not agree with the result of Ref. 1.

However, if we make a series expansion of our Breit-
%igner function

For E&, the energy at high temperatures, we obtain
from Eqs. (33) and (43)

p )
E&=—

I 5+
6P 5 PyPi 24p2P P+P

'
2~& I'& (~)

~Ply(Ql Ek )+ + ~ (50)
((gm —

q&, 2)2+4(g&,21'z2 GO
—

COp

where

P =PPz.

The speci6c heat C, is given by

C„1 Pm ) e 2P+P=- 5+
(P+P)2i 24/2 (P+P)2

which of course agrees with the result of Maradudin
and co-workers' if we make a perturbation expansion
of (48) in powers of the parameter Pz.

E=Ez+E2+Es,
where

and integrate over Go, and then further expand the result
for small dj„we get the perturbation-theoretic results.
If one adds the second term as above, one cannot be sure

(48) whether one can still talk of phonons in a meaningful

way. ' Using Eqs. (31) and (50), one can write the energy
as the sum of three terms

Ez —-', (V4)+—,', g((——(u&'+So&')/e&) coth-,'pez,

E2——6 Q I
V&3&(—k, kz, k2) I

'~z
(lV1/ling) coth2p(Mz+'M2) (lVg 1Vz) coth2p(M$ M2)

GO] GO2 GOg GOq
—

GO2

E,=9 P IV&'&(—k, kz, k,)I'~, P((~1+~2) +(ok ) coth2p(col+&2) —2~@(~1+~2)3
1 GO2

2 GO~2 2

E2—Ãj
+ p(((g, —~2)'+~z') coth-', p(~z—~2) —2~z(~z —~2)j . (52)

GOg
—

GO2
—

GOy

From Eqs. (52) we get for the zero-point energy

ALGOL ~z+~~
Ez'0&=-,'P(vp — (g(vg)'+ P(op+12 P I

V&3&(—k, kz, k2) I'
96''g z 12'' & &'.».z2 co&,

'—(~q+a&2)'

E,&'&=12 p I
V&'&(—k, k&, k2) I'

y, a1,~2
(53)

E,&» =18 P I
V&'&(—k, kz, ks) I

'
k, ky, k2 GOy GO2 GO&

The author is thankful to Dr, A. A. Maradudin for bringing to his notice the importance of the number density.
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Therefore from Eqs. (51) and (53) the zero-point energy is

g(o)—
NorL, Tea)g' 07&CO ~M Ic

8s.sys 48ysN & s ois+ois+(os

E(0) cog eo)1.2 col,~62 x'
=—+ — —(12—s')

S m Sm'y' 6x'y' 16
(54)

where ao is the separation between two atoms. At low
temperatures

(v) Thermal Conductivity

Having calculated I'~ one can use the expression"
for lattice thermal conductivity

E=kePs g r;oi C (e~"&&/Lee s&—1$ ) (SS)

Ki/N =kansas'/P.

Thus the thermal conductivity at absolute zero is
finite and at high temperature it decreases as 1/T.

qi

which is essentially the perturbation result of Ref. 1. This reduces at high temperatures to
Continuing as above, it can be shown that the specific
heat at low temperature also agrees with the previously
obtained result.

where 21's (rs) ' ——and Cq, is the velocity of (qj)
phonon, to calculate the thermal conductivity of a
linear chain. It is

4kePsys
Q ops Cs

lessor r, v (ee"s 1j'—

IV. APPLICATION TO SOLIDS

For a solid it is dificult to obtain any result without
reference to a model. For the sake of simplicity we shall
take the form of anharmonic coeKcients V&'& and V&4'

as taken by Klemens" in preference to the more realistic
calculations of Maradudin, Fien and Vineyard' "

and
V"'(—ki ji, ks js, ks js) = (X;/288oi»N)&vioiso~sh( —ki+ks+ks)

V&"(ki jr,ks j&,ks js,k4 j4)= (i);/96oi&P')(oi&oi»soi4) '~'A(ki+ ks+ ks+k4), (56)

where 'A, and p, are dimensionless parameters. Further we assume that the summations over j& and j& implied in
Eqs. (22) and (23) are such that the maximum contributions come when ji——js——j.We can now write 6» and 1"&, as

X&'co&~' o'er+ ois CO]
—M 2

Ai,;(oi) = Q 6(—k+kr+ks)oirois (Nr+Ns) +(Ni iVs)—
16')g;E &i,&2 GO

—M g 602 07 —M g G02

Mg~'g~' GOqj ~tq~'.2

+ -P -coth—,
8a)L,;Ã q e„2

s )i~'Mg~'e(&0)

I'i, ;(&u) = p 6(—k+kt+ks)oitsoi '
4' J.;S

X LNlois+Nsoil+(Nioil+Nsois)e(~ oil ois )$~(oi 2oi (oil +ops )+(oil ops ) ) ~

To proceed further, we have to (i) assume a particular
form of harmonic dispersion relation which we have
taken as

coy„=a)1,; sin zxkGO,

where as is the lattice constant, (ii) indicate the method
of evaluating the summation ki, ks. We replace
p~, ~ (N/Q) J'ktsdkr singd8dqr, where 0 is the volume
of the first Brillouin zone.

A simple Debye model calculation of 6» has a
logarithmic singularity due to poles at forward and
backward angles. This means that the self-energy term
is divergent for the anharmonic phonon whose frequency

's P. Carruthers, Rev. Mod. Phys. BB, 72 (1961).

is proportional to wave number. It appears to us that
this is sufhcient reason not to use the Debye approxima-
tion for calculating anharmonic contributions because
there is no way of getting rid of this infinity. A phonon
with Debye dispersion relation (or a photon) can dis-
integrate into two phonons (or two photons) only in the
forward direction, according to momentum and energy
conservation considerations. Thus, the probability for
disintegration into a pair and subsequent recombination
to form a phonon is maximum at forward and backward

"P. G. Klemens, Solid State Physics, edited by F. Seitz and
D. Turnbull (Academic Press Inc. , New York, 1958), Vol. 7, p. 1.

'~A. A. Maradudin, A. E. Fien, and G. H. Vineyard, Phys.
Status Solidi 2, 1479 (1962).
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angles. Itis notunreasonable to assume that the kernel I'j, the dispersion relation shows a dip for kap close
of Eqs. (57) [call it E (k&, cos8)] possesses maxima for to unity.
cos8= &1.We approximate the kernel by

(ii) Thermal Conductivity
E'(ki, cose) =-', [K(ki, +1)+E(ki, —1)),

which implies that the kernel goes linearly from its
maximum to zero at 90' and then rises linearly to a
maximum at 180'. To us this appears to be a very
reasonable approximation and may be termed a soft
phonon approximation. With this approximation the
integrals involved in calculating physical quantities are
very similar to those encountered in the linear chain.
Proceeding exactly as in Sec. II, the following results
are obtained:

The integral in (58) is evaluated in the same way as
the integral of Eq. (37) and we get

I'kg = (3)I.,/32p) (kap) '0(k„—k) . (59)

This final result is not invariant under reciprocal lattice
vector translation even though the original expression
for I'k, [Eq. (23)]is invariant. A possible translationally
invariant quantity could be

(i) Width

It is diKcult to separate the normal and umklapp
processes. In view of the approximation for m~;, the
summand is no longer invariant under translation by a
reciprocal lattice vector. Ignoring the distinction be-
tween these processes, we obtain for the width

Xqyru klVqr)
I'k; ——

~
dq q'~q'(ak q'

4(pr, &' 0 I p

X[Xq(uk q+Ek qCuq+(Xq&vq+1Vk q(Ok q)

Xp(sin-,'s.qap sin-, s (q—k) ap)]

X8(—4~r,,'&uk, P sin'p 7rqa, sin'2qr(k —
q) ap) . (58)

Since the width is proportional to temperature, the
anharmonic contribution to the lattice thermal con-
ductivity is inversely proportional to temperature at
high temperatures. At low temperatures however, it is
constant because the width varies as (kap)'. Thus the
variation of the thermal conductivity with temperature
is similar to that of a linear chain.

(iii) Frequency —Wave-Vector Relations

We now proceed to calculate the energy shift and
subsequently the dispersion relations for solids. We
will consider both the high temperature and low tem-
perature limits, and make use of our "soft-phonon"
approximation.

At low temperatures, as before, we have

X~GDg~' ~q+~k —q Cvk, g;
~kj Z PPqPPk —q +

8Mr,&E q (dk —(Mq+Q&k q) 8Mr, zcV

(61)

In the soft-phonon approximation the 6rst term of (61)
gives two integrals which have been evaluated by break-
ing the interval into 0 to k and k to k so that moduli
are correctly accounted for and we obtain

Ak;
——(—3X,(uk;/4~') [~—4+qrkap cot-', m-kap

+(-,'~kap)']+3u k,g, (qr —2)/qr'. (62)

Temperature-dependent terms have been omitted from
(61). Finally we obtain the dispersion relation

pk,
' ~kg[1 (3X,/2~—')(7r 4+~ka—p cot-', mkap

+(-'~kap)')+6g, (7r—2)/vr']. (63)

At high temperatures as usual, we have

—
X&cog& Mg&9E&

(60) Qk. — + (P Q [&k,P ~ .2 &k—,2]
4p(ur, ; 4p(or;, N

rk; = (3z;/8~'p~z, ,)~k,'e(~r,; ~k,)

Xf~kj 2~kg (PPqj +~k q,j )—
Mk&'g&'

+((v„'—(uk q, ,')']—'+ . (64)
4p(or, ,

Here again the soft-phonon approximation leads to two
integrals. They combine together into one integral and
we obtain

GO Ic&'g&'

cos'(-', qrkap)I(kap)+, (65)
4pppr. g

~k~= — +
4Pcor~' 8PMI, &

In our opinion this is a very good estimate of the phonon
width.

The results of Brockhouse and co-workers" for lead
indicate a sin'-', ~kap variation for the width. There are,
however, large experimental uncertainties for higher
k values. We have evaluated I'~, for or =coI,;. In view of
this (and our previous) approximations, the k' variation
as obtained here is not inconsistent with experiment.
An approximate comparison with the results of Ref. 13
shows that for the width to be of the order of 2 to 4 MeV
at kap ——1, we need P~ (X,/4Pcur, ,) to be of the o——rder
of unity. It will be seen below that for this value of

~'B. N. Brockhouse, T. Arase, G. Caglioti, M. Sakamoto,
R.N. Sinclair, and A. D. B.Woods, Inelastic Scattering of Neutrons
in So/ids end Liquids (International Atomic Energy Agency,
Vienna, 1961),p. 531.

where
3

I(kap) =—(P
g

cosg —cos7I QQp

(66)
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FIG. 2. Dispersion
curves for solids.

lead. "'4 The dip however depends on the relative
values of ), and q;.

We repeat that the calculations on solids have been
done using our soft phonon approximation which has
made most calculations possible. A comparison with the
more exact computer calculation of Maradudin and
Fein' for lead will now be made to examine the extent
to which our approximation can be trusted. For trans-
verse modes they obtain (and also the experiments"
agree) that 2F~——0.25X10 ' eV for kas ——0.2 at 425'K.
Using these values we get from our Eq. (59) for the
transverse mode Xr 0.03. From Eq. (65) we now
calculate

~a
for kas =0.25, —= —0.0035XT/0„,

COI,

02 0.4 0.6 0.8 1.0
icy,,

The dispersion relation is

'Ay

eI„'——a&I„' 1— (2+cos'(-,'s kas)I(kao))+
4Pa)r, ; 2PMr, j-

=&oIPL1—I'~(2+cos'-,'(7rkas)I(kas))+Esj. (67)

m' q2 ~2$2g 2

I(kao) =— dq
p cosg —cos7l kQp

(68)

Curves depicting the eq(k) relation from Eqs. (63) and
(67) are presented in Fig. 2. It is easily seen that the
shape of the curve for I'& ——1.2, 82=1.8 is very similar
to the experimentally observed dispersion curves for

Integral (66), as it stands, has poles at q= +skas. We
subtract an integral which is zero to remove these poles,
and evaluate the following integral numerically:

GOg

for kas ——0.50, —= —0.0061XT/8„;
COI,

whereas, Maradudin and Fein' obtain —0.00306XT/8„
and —0.0033XT/8„, respectively, where 8„=143.4'K.
In view of this agreement as to order of magnitude with
an entirely different model, the approximation scheme
suggested here seems to be reliable for obtaining esti-
mates of anharmonic contributions to properties of a
solid.
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