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Spin-Orbit Coupling and the Knight Shift in Nontransition-Metal Supercon(Iuctors
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The Knight shift E, of nontransition-metal superconductors is discussed in terms of three contributions,
namely: (a) The Van Vleck part of the contact shift at tributed to the spin-orbit coupling force of the periodic
potential which, in the presence of an external magnetic Geld, causes virtual high-energy rearrangements
of conduction electrons near and inside the Fermi surface; (b) that part of the contact shift which is attributed
to low-energy rearrangements of conduction electrons and affected by spin-reversing scattering; and (c)
the diamagnetic orbital shift. For the calculation of (a), Wannier s theory of a Bloch electron in a magnetic
Geld is generalized to the original Pauli Hamiltonian Ã0, describing the relativistic dynamical behavior of a
conduction electron in the effective periodic potential of the lattice. This leads to an effective Hamiltonian
which couples only Bloch-type spinors of the same band index, but of the same and of different spin indices.
With the he]p of the eigenfunctions of 3'.0, the hyperGne contact interaction is treated by perturbation
theory. To arrive at simple expressions for the corresponding Knight shift and nuclear spin-relaxation
time, valid for arbitrary strength of spin-orbit coupling, the energy-band function in the absence of the Geld

is approximated by a parabola. Formulas for (b) and (c) are taken from the literature. The relative im-

portance of the three contributions to E, is discussed for Al, Sn, and Hg, where the Knight shift has been
observed in the normal and in the superconducting states. If one assumes that spin-reversing scattering
is caused merely by spin-orbit interactions at atomic imperfections such as displaced surface atoms of small

particles, and not by paramagnetic impurities, one Gnds that in Al neither of the two spin-orbit coupling
effects is sufficiently strong to account for more than 2% of the residual shift Z„(0).For the experimental
Sn sample, (a) and (b) have the ratio 1:3 and, together with the orbital shift, can account for -', of the
observed E,(0). For Hg, (a) and (b) are of comparable magnitude at T=O and together account for more
than e of the observed shift E.(0).

INTRODUCTION

A LTHOUGH the original BCS theory of super-
conductivity uses a rather simplified effective

electron-electron interaction, ' ' it is by now widely ac-
cepted that this theory gives the correct answer for
the ground-state wave function of the many-electron
system in nontransition metals —namely, that it con-
sists of some coherent superposition of quasibound
electron pairs which are in singlet spin states. Since the
BCS theory is a nonrelativistic theory, spin-orbit
coupling and other relativistic effects which arise from
the periodic electric field of the crystal lattice are
ignored. Then, each electron of a "ground pair" is in a
pure spin state; one is in a spin-up state and the other is
in a spin-down state. The corresponding spin suscepti-
bility is associated with the low-energy rearrangement of
electron spins in the vicinity P,H of the Fermi surface

(—P,=Bohr magneton). In the superconducting state,
it decreases with temperature as some exponential func-
tion and vanishes for the ground state. ' This prediction
of the BCS theory was apparently contradicted by
earlier nuclear-magnetic-resonance (NMR) rneasure-
ments on Hg and Sn, where it was found that the Knight
shift does not vanish as T~O.' ' The contradiction
occurs if one assumes that the Knight shift is merely
caused by the contact part of the hyperfine interaction.

' J. Bardeen, L. N. Cooper, and J. R. Schrieffer, Phys. Rev.
108, 1175 (1957), referred to as BCS.

' P. Morel and P. W. Anderson, Phys. Rev. 125, 1263 (1962).' K. Yosida, Phys. Rev. 110, 769 (1958).
4 F. Reif, Phys. Rev. 106, 208 (1957).' G. M. Androes and W. D. Knight, Phys. Rev. 121, 779 (1961).

A

With this assumption, several distinct explanations
have been offered to resolve the discrepancy. ' In particu-
lar, Anderson, ' Ferrell, ' and Abrikosov and Gor'kov'
have shown that spin-reversing scattering, arising from
spin-orbit interactions at displaced surface atoms, plays
an important role in small specimens. " Consequently,
NMR experiments were undertaken on two super-
conducting metals with small atomic numbers, V
and Al.

For vanadium, a 3d transitional metal, Noer and
Knight" observed no change in the Knight shift below
the transition temperature T,. This result is attributed
to the dominant role of the orbital part of the hyperfine
interaction. " The significance of this interaction for
transition metals, where it gives rise to virtual high-

eeergy transitions of d electrons, was suggested by Kubo
and Obata. "The orbital paramagnetic Knight shift was
first observed on VsGa and VsSi by Clogston, Jaccarino,

e See J. M. Blatt, Theory of Superconductivity (Academic Press,
Inc. , New York, 1964), p. 301 B., for literature references.

' P. W. Anderson, Phys. Rev. Letters 3, 325 (1959).
R. A. Ferrell, Phys. Rev. Letters 3, 262 (1959).

~ A. A. Abrikosov and L. P. Gor'kov, Zh. Eksperim. i Teor. Fiz.
42, 1088 (1962) )English transl. : Soviet Phys. —JETP 15, 752
(1962)g."Small specimens, with a dimension d«s (=penetration depth)
must be used in order to obtain a homogeneous magnetic field
(Meissner effect)."J. Noer and W. D. Knight, Rev. Mod. Phys. 36, 177 (1964).

"The observed temperature dependence of the nuclear spin
relaxation time, which is found to be the same in the normal and
the superconducting state (Ref. 11), can, however, not be ex-
plained in terms of the orbital interaction.

"R.Kubo and Y. Obata, J. Phys. Soc. Japan ll, 547 (1956).
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Gossard, and Yafet. '4 These authors" have also pre-
sented a theoretical analysis of the orbital Knight shift
for the 5d transition metal Pt, based on the tight-
binding approximation and with incorporated spin-orbit
coupling. They have been able to separate the total
Knight shift of Pt into its relative contributions from
(1) the contact interaction with unpaired electron spins
E., (2) the contact interaction with ion-core s electrons
which are spin polarized because of their exchange
interaction with unpaired conduction electrons E,~, (3)
the orbital interaction E„b. A fourth interaction,
(4) the dipolar interaction of nuclear spins with un-
paired conduction electrons, gives rise to the shift E~;,
which vanishes for cubic crystals, provided that spin-
orbit coupling is ignored. Then, in a superconductor,
there is only the orbital Knight shift left as T —+ 0. Of
the four contributions to the Knight shift, only the
orbital shift may be considered as a "diamagnetic"
effect, in the sense that it does not depend on unpaired
electrons in the vicinity of the Fermi surface, but on all
the electrons inside this surface.

As for Al, one is concerned with a nontransition-metal
superconductor which, because of its simple electronic
structure' ' and its weak. electron-phonon interaction,
comes closer to the assumptions of the BCS theory than
any other superconductor known at present. One can
ignore Reap (cubic symmetry), and E»b is expected to
be small compared with E,. A NMR experiment on Al
then provides a relevant test on the significance of spin-
reversing scattering in small particles. If the lifetime of

' A. M. Clogston, A. C. Gossard, V. Jaccarino, and Y. Yafet,
Phys. Rev. Letters 9, 232 (1962); Rev. Mod. Phys. 36, 170
(1964).

~5 A. M. Clogston, V. Jaccarino, and Y. Yafet, Phys. Rev. 134,
A650 (1964); see also, M. Shimizu and A. Katsuki, J. Phys. Soc.
Japan 19, 614 (1964}."W. A. Harrison, Phys. Rev. 118, 1182 (1960),see, in particular
Fig. 4 of this paper.

"W. A. Harrison in The Fermi Surface, edited by W. A.
Harrison and M. B.Webb {John Wiley 8z Sons, Inc. , New York,
1960).

an electron in a pure spin-up or spin-down state
r,))0/2ep, where the energy gap 2e& 3.5kT„ the
Knight shift should vanish as T~ 0. For Al, this condi-
tion requires v, &10—"sec, which is not a particularly
large time, ' so that a nearly vanishing Knight shift may
reasonably be expected as T —+0. However, careful
experimental observations by Hammond" on Al films
of 200-A thickness show (see Fig. 1) that the Knight
shift decreases by only 25% of its value at T, (= tran-
sition temperature) as T~ 0. In view of this result, the
question was raised by FerrelP' as to whether the spin-
orbit coupling forces, arising from the periodic crystal-
line field and causing virtual transitions from the BCS
ground state to excited states with energies ))2&0, can
produce a significant contribution to the spin suscepti-
bility which is, as the paramagnetic orbital suscepti-
bility of transition metals, temperature-independent
and of the type known as Van Vleck or high-frequency
paramagnetism. This spin-orbit coupling effect is a bulk
effect, that is, it is size-independent and, therefore,
should be separable from the one caused by scattering
of electrons at atomic imperfections.

It is the primary. purpose of this paper to calculate the
effect of spin-orbit coupling, caused by the periodic
electric field of the perfect lattice, on the Knight shift
E, of nontransition-metal superconductors. To this end,
we calculate the high-frequency or Van Vleck —type con-
tribution in the normal state and assume that this
contribution remains unaffected by the transition to the
superconducting state. As for the legitimacy of this
procedure, we follow Anderson~ and Ferrelp' in con-

'8 For Na—which has the atomic number 11 as compared to 13
for Al—G. Feher and A. F. Kip LPhys. Rev. 98 337 (1955)g Gnd
an experimental value of 9&&10~ sec for the electron spin re-
laxation time, in fair agreement with the value of 2)&10 ' sec
obtained from Elliott's theory of electron spin relaxation due to
spin-orbit scattering LPhys. Rev. 96, 266 (1954)].

» R. H. Hammond and G. M. Kelly, Rev. Mod. Phys. 36, 185
(1964).

'0R. A. Ferrell, University of Maryland, Technical Report
No. 329 (unpublished).
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Fn. 2. Schematic sketch of the spectral decomposition of the
absorptive part of the spin susceptibility. Curve 1 is a 5 function
centered at the Larmor frequency au~ =2 ~P, ~

II; with the Kramers-
Kronig relation it yields the Pauli susceptibility of a free-electron
gas. Curve 2 exhibits spin-orbit scattering and the spin-orbit
coupling effect arising from the crystalline 6eld with the broad-
ening of the low-frequency contribution and the occurrence of a
high-frequency contribution, respectively. The "paramagnetic"
part of the residual Knight shift E,(0) in the superconducting
state, which depends on the unpaired electron spins, is determined
by the area under the curve for (u)cop= 2ep(01 /A.

sidering the spectral decomposition of the absorptive
part of the spin susceptibility, y" (&o) (see Fig. 2), ignor-
ing the effect of the magnetic Geld on the orbital motion
of the conduction electrons. For free electrons, y" (a&)/&v

is a 8 function centered at the Larmor frequency
rei (curve 1). Spin-orbit scattering broadens g"(ce) to
an extent depending on r, (see low-frequency part of
curve 2). Spin-orbit coupling caused by the periodic
electric field. gives rise to the high-frequency contribu-
tion of curve 2 (ce))ee/A=~e). The residual spin sus-
ceptibility and the comparable part of the contact shift
in the superconducting ground state depend on the area
under the curve 2 for frequencies co&coo. Furthermore,
in the presence of spin-orbit coupling there is a second
contribution to the contact shift which has no com-
parable part in the spin susceptibility; it arises from
electrons inside the Fermi surface, also because of the
interplay between spin-orbit coupling and the coupling
between orbital motion and magnetic field. To ca,lculate
the total Van Vleck—type contribution to E„we employ
Wannier's powerful and compact formalism for Bloch
electrons in a magnetic field (see also Kohn, 2' Blount 2'

and loth"). In Sec. I, Wannier's theory is properly
generalized to a relati~isHc Bloch electron in a magnetic
6eld. Thereby one is led to an effective Hamiltonian
which couples only Bloch spinors of the same band
index, but of different, as well as the same, spin indices.
As an interesting by-product of this calculation, the
correct g factor for conduction electrons is readily ob-
tained. It may be mentioned that recently Wannier and

~ W. Kohn, Phys. Rev. 115, 809 (1959).
"E.I. Blount, Phys. Rev. 126, 1636 (1962).
"L.M. Roth, J. Phys. Chem. Solids 23, 443 (1962).

Upadhyaya24 have derived, with a brief calculation, the
field-independent susceptibility of nonrelativistic Bloch
electrons and have found the same result as Roth" and
Hebborn and Sondheimer. "With the help of the two-
component wave functions for a Bloch electron in a
magnetic fieM obtained in Sec. I, the hyperfine contact
interaction is treated by perturbation theory in Sec. II.
In order to arrive at meaningful and tractable expres-
sions for the perturba, tion energies, we introduce what
will be called the parabolic approximatiorI, ; that is, we
approximate the energy-band. functions for the spin-up
and the spin-down band, in the absence of the Beld, by
parabolic functions. The corresponding conduction-
electron wave functions exhibit with fair accuracy the
effect of the periodic potential, including spin-orbit
coupling, and will be used to derive explicit expressions
for the Knight shift E, and for the nuclear spin relaxa-
tion time T„valid for arbitrary strength of spin-orbit
coupling. In Sec. III, the experimental situation for the
three non-transition metals Hg, Sn, and Al, on which
the Knight shift has been measured above and below T„
is analyzed in terms of (a) the spin-orbit coupling effect
due to the crystalline field, (b) spin-reversing scattering
caused by spin-orbit interactions between conduction
electrons and nonmagnetic imperfections and by ex-
change interactions between electrons and paramagnetic
impurities, and (c) the hyperfine orbital interaction.
Taking the available experimental data on the Knight
shift and the nuclear spin relaxation time and using the
known experimental and theoretical results on the
electron structure, we And that a large fraction of the
Knight shift observed on the three superconducting non-
transition metals Al, Sn, and Hg can reasonably be
accounted for by (a), (b), and (c).

I. RELATIVISTIC BLOCH ELECTRONS IN
A MAGNETIC FIELD

As for the relativistic eigenvalue problem for Bloch
electrons belonging to a, simple band, one is concerned
with the solution of the original Pauli equation" for a
single conduction electron moving in an effective
periodic potential V(r) and a homogeneous magnetic
field:

P' A.e
(gxP) o —— 8 P— o'H

2m 4m'c' 4im'c' 2mc

In the present case, e8= —BU/Br and P= p —(e/c)A is
the canonical momentum of an electron in the presence

24 G. H. Wannier and A. N. Upadhyaya, Phys. Rev. 136, A803
(1964).' J. E. Hebborn and E. H. Sondheimer, J. Phys. Chem. Solids
13, 105 (1960).

2' W. Pauli, in IIarldbuch der Physi&, edited by H. Geiger and K.
Scheel (Julius Springer-Verlag, Berlin, 1932),Vol. XXIV/I, p. 161.



SPIN —ORB IT COUPLING 1539

of a vector potential A giving rise to the homogeneous
magnetic field H. The pa.rticular gauge is of no real
importance; here we take also A=-,'H x r (see W).

Bloch and. Wannier Sjpinors

To find a stationary-state solution of the gauge-
invariant Pauli equation, Wannier's theory" is extended
to the relativistic Hamiltonian 3Co, defined by Eq. (1),
which incorporates spin-orbit coupling, the s shift or
Darwin correction, and the mass-velocity correction. To
this end, it is convenient to choose as basic functions the
two-component Wannier spinors, given by

,(r,Ri) = exp L
—sr i(e/Ac) H r x Ri]a~, (r Ri)—, (2)

where

(r Rl) oo (r Rl)rr+X (r R&)P (3)

Here, R~ is a lattice vector in a simple cubic lattice with
unit cell a'. The Wannier spinor 3 p depends on the
magnetic field through the Peierls phase factor aed
through the spinor components y p a,nd X,. The index
p is the quantum nuinber t' or $ which refers to the
electron spin but, because of spin-orbit coupling, does
not correspond to a pure spin state. In order to arrive
at the basic set of relativistic wave equations for the
spinors a „which is uncoupled in the band index m, one
can proceed in precisely the same fashion a,s Wannier
does. Then, one arrives at the following set of defining
equations for the Wannier spinors a p:

and by using the identity

Lp —-', (e/c) H x (r—R )]b,(r,k)
=

t p —-'(%)H x (r+ir)/Bk)]b, (r,k), (7)

one Ands the defining set of equations for Bloch spinors:

KoLp ——,'(%)HX(r+i )r/ )rk), r, e]b, (r,k)

=P Pro „, (Ri) exp(ik R()
p' l

XexpL —-', i(e/hc)H x Ri r]

Xb;(r, k+-', (e/Irc)H xRt). (8)

This equation defines a Bloch spinor b p which can be
written in the conventional splitup form:

b, (r,k) =exp(ik r)Lu, (r,k)n+v, (r,k)P], (9)

where n p and v p arc field dcPcndcllt fullctlons Thc
periodicity of these functions in r follows from the
observation that on the left-hand side of Eq. (8), r
occurs in the periodic combination r+iB/r)k which,
operating on b „gives i(r)/r)k) $u, rr+ v,P]; this
expression is clearly periodic in r. With the help of
Eq. (9), Eq. (8) can be rewritten in the form

3Cot,p+ flak ——',i(e/c)BCX e)/&k, r, rr]

XLu „(r,k)n+v, (r,k)g
=P P~ „.(Ri) exp(ik Ri)

p' l

XLu, (r, k+-,'(e/hc)H x R&)rr+v;g (10).
3CoLp —-', (e/c)HX (r—Ri), r, o]a, (r—Ri)

This equation for the periodic part of the Bloch spinor
can be decomposed into two simultaneous equations
for the sPinor comPonents u p and v, a,nd for the capp .
In the limit II=0, the nondiagonal components of the
energy band function va, nish,

=Q P expt-,'i(e/Ac)H (r xRi+R, xRi+R, xr)7
pf )I

X -„(«—R ) -, ( —R ). (4)

The significant difference between this set of equations
and the corresponding one for the nonrelativistic case
comes about because of spin-orbit coupling effects.
These, in the presence of the magnetic field, cause an
admixture of spinors A, (p'Np) into the quasicyclic
expansion of the left-hand side of Eq. (4). The admix-
ture is determined by the Fourier components Go pp of
the field-dependent energy-band function

lim W». (k) =0, for p4p',
H-+0

and, consequently, co» (H=O)=0 for pWp', so that
Eq. (10) goes into the correct zero-field equation for the
periodic part of a Bloch spinor. Assuming that the eigen-
value problem has been solved for H= 0, we can calcu-
late for a finite Q.eld the I „v „and co pp as Power
series expansions in H. Before the g factor of conduction
electrons is determined for arbitrary k in this fashion,
let us proceed to the derivation of the proper effective
band Hamiltonian for relativistic Bloch electrons.

W „(k)=Pro„„(R()exp(ik R,),
l

which, for a 6nite field strength, is nondiagonal in the
spin quantum numbers p and p'. To find the Bloch
spinor equation implicitly contained in Eq. (4), this
equation is multiplied by exp(ik R~) and summed over
L By writing a field-dependent Bloch spinor in the fo

Effective Hamiltonian

rm For this purpose, the basic set of uncoupled equations
for the a „given by Eq. (4), is not a proper starting
point. Instead, Wannier'r found it convenient to begin
with a relation of the form

b,„,(r,k) =Q exp(ik R()a, (r Ri), —

"G.H. Wannier, Rev. Mod. Phys. 34, 645 (1962), referred to (p r (e/c)H x r] expLi), (r)]a (r R,)as W; G. H. Wannier and D. R. Fredkin, Phys. Rev. 125, 1910
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A(r) —+ A(r)+gradX(r),

which follows from Peierls observation' that with the strength vanishes. When BCO is applied to an eigenfunc-
help of the gauge transformation tion f„one finds, after a shift of the momentum

(»)
variable k to k—sr (e/hc) H x Ri,

where

X(r) = ,'—(e—/hc)H (r x R,), (14) lb, ()=~K2 2 f- 5—l(/& )H
p p S gg

the Schrodinger equations for localized functions
centered at Ri (l= 1, 2, 3, ) can be brought into one
and the same form, that is, into a set of equations cyclic
in R~. lf, for our case, the basic spinors are taken in the
form of Eq. (2), Eq. (12) yield. s

xpLy —-', (%)H x r, r, o')A, (r,R&) = expLiX (r)j
X3('.pt y ——',(%)H x (r—R&), r, sja„,(r—Ri) . (15)

Into this equation, one can substitute Eq. (4) and, then,
one Ands a set of uncoupled equations for the A p

given by

Kp(p ——', (e/c)H x r, r, e)A „(r,R&)

=P P exp)-', i(e/fic)H Ri x Ri g
p

I 'tr

Xco „(Ri—Ri )A, (r,Ri ) . (16)

This equation can readily be rewritten in terms of
Bloch-type spinors

Xco~, , ~ (R~) exp(ik Ri)B~; (r,k)dk. (20)

If the amplitude function f» (k) can be Fourier
analyzed, it is easily seen that

fo& (k—kp) = exp( —skp 8/r)k) f&o (k) . (21)

With the help of this equation and the Pauli equation
for the stationary state, Eq. (20) becomes

P P P' „.,-Pk —-', s(c/Pc)H xg/al j
pf pl/

Xfo,.(k)B o" (k) =8, P foo. (k)B„,(k), (22)
pf

where Ep is an eigenvalue of 3'.o. Let us now interchange
the spin indices p" and p' on the left-hand side and,
furthermore, assume that the 8 p are linear-independ-
ent; then one arrives at the simultaneous set of eigen-
value equations

B„,(r,k) =b„,(r, k—-,'(e/fsc)H xr) P W„,",. (K)f„"(k)=E,f„,(k), (23)

=P exp(ik Ri)A„,(r,Ri), (17)

the components of which are not identical to Harper
functions" because of the 6eld dependence of the A
beyond that given by the Peierls phase factor, that is,
because of the Geld dependence of the q „X,. Multi-
plication of Eq. (16) with exp(ik. Ri) summation over
l yields

x,pfy ', (e/c)H —xr-, r, rsjB, (r,k)

=P P exp(sk Ri)co „(Ri)
pl

XB,pr, k+-,'(e/hc)H x Ril. (18)

With the help of this equation, one proceeds directly
to the effective band Hamiltonian if an eigenfunction
of the original Pauli Hamiltonian is written in the form

P, (r) =C P f„.(k)B„;(r,k)dk,

pt I

where the operator K=k ——,'(e/hc)H x r)/Bk. The four
components 8' » (K) represent the effective band
Hamiltonian for a relativistic Bloch electron in a
magnetic field; the W». (k) are given by Eq. (5) and
can be found as power series expansions in H from Eq.
(8). The first-order term of this expansion determines
the g factor'P (see Appendix A).

where

+1 +0++Orb++dip yl

3('.,=+K, (l,j)=—8z./3 P p, (r,) p„(R&)3(r;—Ri) (25)

II. KNIGHT SHIFT AND NUCLEAR SPIN
RELAXATION

The total hyper6ne interaction between the conduc-
tion electrons and the nuclear magnetic moments,
located at lattice points Ri, is given by":

where C is a constant and where 0*= (2rr/a)P is the
volume of the elementary Brillouin zone. Because of
spin-orbit coupling effects, Bloch-type spinors 8 p from
both bands are admixed into an eigenfunction f,. The
admixture depends on the amplitude functions J'».
for p/p, it must vanish if the spin-orbit coupling

"R. Peierls, Z. Physik 80, 763 (1933).
PP P. J. Harper, Proc. Phys. Soc. (London) A68, 879 (1955).

'0 I or a detailed theoretical discussion of the g factor in solids,
the reader is referred to Y. Yafet, in Solid State Physics, edited
by F. Seitz and D. Turnbull (Academic Press Inc. , New York,
1963), Vol. 14.

"A. H. Bethe, in Handbook of Physics, edited by S. Fliigge
(Springer-Verlag, Berlin, 1957},Vol. XXXV/I, p. 193; here one
Gnds a formal derivation of the total hyperfine interaction whereby
it is shown how its various contributions arise as lowest order
relativistic corrections, linear in p„, from the relativistic theory of
two interacting particles.
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is the contact interaction, and where"

) e/ r,—Rt
X.,b —— Q ts„(R)) .

mc ~, ~ ~r;—R)~s

where Fp is the free energy of nucleus and conduction
electrons in the presence of the external 6eld, and where

F&——Tr(p&(1,2, ,N) P X,(0,j)) .

is the orbital interaction. The dipolar interaction GC~;~

will not be considered here, since, for most metals, it is
small compared with 3C,. and 3C„b. Furthermore, it
depends on the number of unpaired electron spins. In
particular, for the noncubic metals Sn and Hg, the
observed anisotropic Knight shifts, which are partly
caused by Kd;„, amount to only a few percent of the
total shift. "3C„b, the spin-orbit interactions between
nuclear spins and electron orbits, differs from its
standard form (see Ref. 31) where the spin-orbit inter-
action between electron spins and electron orbits is
ignored. Equation (26) contains the usual convergence
factor, y(r) =L1+ (F. V)/2nsc'7 '—

, which can be
omitted if Bethe's prescription is used in calculating
expectation values of 3C„b.

Since for the three superconducting metals, Al, Sn,
and Hg, the hyperfine contact interaction is the domi-
nant source of Knight shift and nuclear spin relaxation,
we shall treat both in some detail, with emphasis on
spin-orbit coupling effects, first the effect arising from
the crystalline field and then the one caused by scatter-
ing. ~ ' As for the orbital interaction, its relative im-
portance for the three nontransition metals will be dis-
cussed with the help of recent work by Hebborn'4 and
Yafet. 35

Here p~ is the electron density matrix operator. Since
X,(0,j) is a one-electron operator and. since electron-
electron interactions are ignored to the extent that they
are not incorporated in the effective local potential V(r),
Fj is given by

Fr=+ (ip~X, (0,r) ~ip)Lexp(Z; l)/—kT+1j '. (29)
'Gy p

In order to determine Fr, correct to 6rst order in H,
the expectation value of the contact interaction between
eigenfunctions lf„of Xp is calcula, ted to this order in
the field strength. To this end, let us write the conduc-
tion electron wave function in the form of Eq. (19);

P;,=CP c„.$f;,,(k)+H f, , (k)j
pf

Xfb„,., p(r, k)+H b„, , (r,k)j, (30)

where f; , p is an eigen. function of W». p(K). The normali-
zation constant C and the coeKcients cpp are deter-
mined as in ordinary perturbation theory. It is assumed
that

(f';pf';-*+f'; p*f';-)dk=o

A corresponding relation is assumed for the Sloch
functions b p'0 and b p' Then, from the condition

Spin-Orbit Coupling and K,

In the representation found in Sec. I for Bloch
electrons in a magnetic 6eld, the contact interaction
between a single nucleus with moment p„ located at
the origin of a simple cubic lattice, with dimensions

Gn/2&—x,y,s&Grr/2, and the system of N=G' con-
duction electrons, is treated as a small perturbation.
Then, from the corresponding thermodynamic perturba-
tion expansion for the free energy F of electrons and
nucleus, the first-order term F~ is taken for the calcula-
tion of the Knight shift, Z,= Fr/y„H. We write—

[ f;,.p)'dk=1 and from P [c» )'=1, (31)
pl

one has

where dtq and dl, t are given by Eqs. (A19) and (A20),
respectively. The constant C is determined by the
normalization condition for Bloch spinors in the absence
of the field. Kith

F=Fp+F t+ (27) ~b„, p(r, k) j'dr=1,

"See, e.g. , Ref. 15, p. A658.
"T.J. Rowland, Acta Met. I, 731 (1953);F. Reif, Phys. Rev.

102, 1417 (1956); a large anisotropic Knight shift, however, has
recently been observed by R. R. Hewitt and B.F.Williams (Phys.
Rev. Letters 12, 21b, (1964)g on Bi. The physical origin for this
experimental result is not dipolar interaction, but the long-range
part of the orbital interaction which makes the corresponding
part of X»b proportional to g', whereas Xp;p~ggp Lgp

——2, free
electron g factor; g=effective g factor; this conclusion can be
drawn from the work of Yafet (Ref. 35)].

34 J. E. Hebborn, Proc. Phys. Soc. (London) 80, 1237 (1962).
"Y.Yafet, J. Phys. Chem. Solids 21, 99 (1961}.

and with (33)

lim
H~O

)P;,(r) )'dr=1,

where Q=u', one has C= (0*)'I'. Knowing the coeK-
cients C and c»., we take the wave function iP;„given
by Eq. (30), and calculate the expectation value of the
hyper6ne interaction. To Qrst order in H=H„ it is
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given by"

(iP I& (Or) liP) =—(grr/3)/tr .*P.(I/&*)

X P P c,p.*c„p- dk dk'f, , p*(k)f, , p(k')

Xt u„p. , p*(k)u p", p(k') —v„, p*(k)v„p-., p(k')]

+II Q P c,„- dk dk'f, , p*(k)f, , p(k')

(k)u p";p(k)+u 'p*(k)" p" ( )

—v„,...*(k)v„, p(k') —v„, p*(k)v„,-, ,(k')] . (34)

Here, u, , p(k) =u, , p(r= 0, k). In the first term on the
right, -hand side of Eq. (34) we have omitted the term
linear in Hf. ..since it does not contribute to Fr If the.
expression (34) for the expectation value of the contact
interaction is inserted into Eq. (29), one has, to first
order in H, the exact expression for the free-energy
correction F& caused by the contact interaction between
the conduction electron system and a single nucleus.

In its general form given above, (ip I
BC,

I ip) is not in
a suitable form for a quantitative discussion of spin-
orbit coupling effects. Therefore, at this point we
introduce what will be called the parabolic approxima, —

tion. The energy band function in the absence of the
6eld is approximated by the relation

Wpp, p(k)=(A'/2m*) Ikl'. (35)

This equation is to be considered as a rough interpola-
tion formula for the energy of Bloch states within the
occupied part of the Brillouin zone, rot as the nearly
free-electron approximation. For H/"p p'p the effect of the
lattice, and thus of spin-orbit coupling, is contained in
m*, which depends in second and higher order on some
characteristic parameter for the spin-orbit coupling
strength. The energy levels E,, p of (As/2m*)Ks, where
K=k ——,'(e/Ac)H x 8/r/k, are highly degenerate, as they
are for free electrons. For Bloch electrons, the correct
eigenvalues E,p of W»'(K) are also degenerate, but each
degenerate level is broadened into a band, as one knows
from the work of Kohn and Blount. Here, this
broadening is ignored because (a) the correct effective
Hamiltonian 8'pp is replaced by its zero-order term
W». , p (small fields), and (b) the energy band function
in zero field is taken in the parabolic approximation

"Iam indebted to Dr. Y. Vafet for pointing out that the second
term on the right-hand side of this equation leads to a contribution
to the contact shift which depends on all occupied states.

Q'. Kohn, Proc. Phys. Soc. (London) 72, 301 (1958); see also
A. D. Brailsford, ibid. Aio, 275 (1957) and G. E. Zil'berman, Zh.
Eksperim. i Teor. Fiz. 32, 296 (1957) /English transL: Soviet
Phys. —JETP 5, 208 (1957)j. It has been pointed out hy Kohn
and Blount, for example, that at low 6elds this broadening is small
compared with Landau splitting when the classical trajectories in
k space do not touch each other, which is the case if the Fermi
surface does not come close to the surface of the Brillouin zone.

where

F;(n, K„K,) = (n*)—'/'
+7r/a

2r/a

dk '

-
)iKyq

— h, h.'q
Xexp

I

—I(h, ' —h.) h. h„-
4 s / s'" s'"/'

X f u.p'p*(h. ;„,K,.)u.p, (h, ',K„K,)

and where
+7r/a

—v p, p'v p', p], (4I)

+2r/a

G, (n, K„,K,) = (0*) '/' dh
—7r/a 2r/a

t h, h, '~
xh

I
h„ l(expL(iK„/s) (h, '—h,)]

i,s'" s"f
X Lump';p (ha rKyqKp)u~p~ p(hp )Ky)Kp)

—v„, ,*v, p]+complex conj.}. (42)
"It is convenient to choose this gauge, and not the —',(H)(r)

gauge, since it allows for simple Fourier transformations between
coordinate and momentum representations.

LEq. (35)]. Then, with the gauge" A= (O,Hx,0}, the
eigenva, lues of (A'/2m*)K' are given by

&;;P=J-'(n, K,)= (A's/m*) (n+sr)+K, s/2m*, (36)

and the corresponding eigenfunctions have the form

f;, p f(.n——,K„,K, ; k)
(s)/(Q*)'/'] exp/(i/s)h„&, ]

Xexp (—h, '/2s) H„(h /s'/')

XB(1—h, /K-. )6(&—hy/Ky), (37)
where

s—c+/Ac g (s) —(~1/2sl/2n f2p) —1/2 (38)

and where H, (x) is the Hermite polynomial of nth
degree. The subindex i stands for the three orbital
quantum numbers e, a„, and I~:,. The amplitude function
(37) is the Fourier transform of the Landau wave
function

s'/'2 (s)i"
g(n, K„,K„.r) = expLi(K„y+K,s)]

Ql/3

XexpL —(-',s) (x—*p)']H.Ls'/'(x —~p)], (39)

where ap ———«y/s (see Appendix 3).
With the help of the parabolic approximation, the

Knight shift can be brought into a simple form which
clearly demonstrates the spin-orbit coupling effect.
For this purpose, the expression (37) for the amplitude
function is substituted into the matrix element given
by Eq. (34), then the 8 functions are integrated out, and
it is taken into account that the s part of the contact
interaction (H=H, ) has vanishing ma, trix elements
between Bloch spinors with different spin quantum
numbers; the final expression for the contact interaction
is given by

(iPI3('pliP) = —(8~/3)P. ,.2 I c- I'(J7'+&G') (4o)
P
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The functions k„are defined by the equation

k~(kg/s'~') =A~(s) exp( —k '/s)H~(kg/s"') (43)

Let us substitute this expression for the contact inter-
action and the energy eigenvalues of the parabolic
approximation

E;p
E——(n,a,)W i2g (n, lr,)P,H,

I upper (lower) sign for p= f(J,)7 (44)

into Eq. (29) for the free-energy correction. Then the
Knight shift E,= F/p„—,H, is given by

Writing G, in terms of the series expansion (C1) and.

observing that, when H —& 0, the number of states P;
goes into Pt, Jp——(E)dE, where p(E) is the density of
states in the parabolic approximation, we obtain the
Knight shift in the form

167r p, 'ggo
pG) 2 I«.l'Llu-', o(kr) I'

3 4 p

16m

+ I ., '(kr) I'7+
3 k p

8s.
t

Q'~'~ '

3 &2grj p —m/a

fg +foal p gp
A, (m, p, k; m', p', k)

Xtump;0 um'p';0 Ump;0 Um'p';07

gp Icp, I'L(1/H)F, (n,x„~,)+Gp (n,~.,~.)7
X . (45)

exp{ LE (n,a,)W-,'g (n,~,)P.H—|7/kT)+1

This expression for the Knight shift is correct, in the
parabolic approximation, for small magnetic fields and
for arbitrary strength of spin-orbit coupling. The first
part of E, depends on P„which has opposite signs for
"spin-up" (p= $) and "spin-down" (p= 1) electrons.
Therefore, only the unpaired spin electrons in the
vicinity of the Fermi surface contribute. The first part
exhibits spin-orbit coupling via three parameters,
namely: the dressed" g factor g(n, a,), the coefficients

Qp p which determine the admixture of 3loch functions
from both the spin-up and spin-down band into a
conduction-electron wave function, and the components
I p' 0 and u „., 0 of a Bloch spinor in the absence of the
field. All occupied states contribute to the second part
of the Knight shift. It depends on that part of t"p which
has equal sign for p= t' and p= J, and which vanishes in
the absence of spin-orbit coupling. The first-order
corrections H,u ...to the field-independent Bloch func-
tions occurring in 6, are calculated in Appendix C. At
T=O, the Fermi-Dirac step function leads to the
formula

E,= (87r/3)P, P P Ic„'I'L(1/H)F„+G, 7, (46)
P~P

where P; represents the number of states given by

+compl conj) . (49)

Here p(l) is the density of states at the Fermi surface,

go
——2, and, in the second term, u, , o——u„, 0(r= 0; k). If

spin-orbit coupling is ignored, g=go, t,.pp:0 for pQ p',
and U, .O=O, so that the first part of E, becomes equal
to the original expression of Townes, Herring, and
Knight. "The second part vanishes since A, (p& p, )= 0
for this case. For the special case where spin-orbit
coupling is weak, g depends in first order and Ic,„ I

'
and. Ium, , ol' in second order on a smallness parameter

Xr/AEr, where Xr is an average spin-orbit coupling

energy for Bloch electrons at the Fermi surface and
where AEt- is an average energy gap between conduction
band states at the Fermi surface and excited states to
which the orbital angular momentum connects. The
second part of E, is proportional to X(E)/I AE(E)7', it
depends on the coefficients A„which are defined as
coefTicients in the series expansion (A4) for the first-
order correction to the zero-field Bloch spinor 5 p'0.

These coeS.cients are calculated in Appendix C; it is
seen that 2, is proportional to an energy denominator
times a matrix element which is of a form similar to the

g factor. If one assumes that the corresponding spin-orbit
contribution is positive, the total spin-orbit contribu-
tion to the Knight shift is given by

&p(E) ~(E)
&.-= ~g(l)+ dE Z;. (50)

~ p(l) L~E(E)7—
g2/3 +sa/2 +m/a

sa/2 n. /a

(47)

The upper limit for the oscillator quantum number e
depends on p., one has

l &P,gH/2
Ãp

k's/rn*
(48)

Here g is defined as the mean value of g (n,z,) over eigen-
states with energies E(n,x,)=l The functi. on F, is of
interest only at the Fermi surface, where

F,= lu, 0(kr) I

'—U„, 0(kr) I'.

It is this part of K, which remains unaffected when a
metal becomes superconducting, and T~O. The g
shift Bg is of the magnitude Xr/AEr, but its sign cannot
be predicted, even in this case of small spin-orbit
coupling. %e mention that for the three nontransition
metals the second term in the bracket of Eq. (50) is of
the order

(/~E .)/(p)f= .,1

(n/AE, .b.)~1,
p(l)

3 C. H. Townes, C. Herring, and W. D. Knight, Phys. Rev. 77,
852 (1950).
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if one assumes one conduction electron per atom and if
/1E, b .3. eV. (e= concentration of conduction elec-
trons; D, .b. =average energy gap of conduction-band
electrons. )

Spin-Orbit Coupling and Tj

In metals the pertinent relaxation mechanism for
nuclear spins consists in an energy exchange with con-
duction electrons, caused by the hyperhne contact inter-
action 3', The corresponding relaxation time T1 is
determined by the transition probability E„of a
nucleus between two spin states n and m, in a fashion
well defined by sta, tistical mechanics (see Hebel and
Slichter" 4'). In order to calculate P, the contact
interaction is conveniently written in the form

K,(0,r)= —(8rr/3)P, P„5(r)II,o,+ '(I —o +I o )], (51)

where p„=P„I,and I+ I,+sI„.In ——the representation
of Sec. I, the transition probability for a nucleus from
state rs to m and for an electron from state (i,p) to
(s',p') is given by

2rr 8rr
Pii, , p; m, i p' =i— PePe-

h 3

x P (BII Im)(mlI, Is)
arO' =&~k

X (sp I &(r)~«l s'p') (s'O'I ~(r)~" I sp)

Xf'i(E,,+E„—E,'e. —E ), (52)

where E„is the energy of a nucleus in state e. Summing
this expression for all initial and final electron states and
taking into account the statistical occupation of each
state with the Fermi-Dirac function f(E;,), we have
the total transition probability per unit time

P-=Z 2 P., '.,;-,'., f(E',)L1-f(E';)3. (53)
$)'k p, p

To evaluate this expression, let us introduce the
parabolic approximation for which E;, is given by
Eq. (44) and for which P; is given by Eq. (47). Then,
to lowest order in H, one has

(st I
~+&(r) Is'l) =—

0* g*

X dk'k (k,/s'I')k ~ (k, '/s'~')Li(1 k,/z,)—
Xb(1—k„/ )h(s1—k, '/z, ')8(1—k„'/rc„')

X Z ~2ct,*ca,I,;o(k)u p', o(~'). (54)
pip

"L.C. Hebel and C. P. Slichter, Phys. Rev. 115, 1504 (1959).' C. P. Slichter, I'rieci p/es of 3Eagwetic Resonance (Harper and
Row, New York, 1963).

Since o-+ and 0:are Hermitian conjugates, we also know
the matrix element of o+5(r). The third element, i.e.,
tha, t of o.,b(r), gives no contribution to W „, if one
assumes E;,=E;, . This assumption, however, is well

justified since E —E„((kT.Then, taking into account
the 8-function character of f(1—f), eliminating with its
help the integration over ~„and eliminating the inte-
gration over a,' with the help of the 8 function in the
transition probability LEq. (52)7, we have

P =Cop P (rsII
I
w)( riIsI Irr), (ss)

d~„d»„' P D. (k's/—rN') (rs+ ')+gP-IIj-'
n n'

XL|'—(k' /snz*) ( +rs', )—gP.II-j—'

x I('ll.+t (r) I
"ol'. (56)

Here the matrix element of o+8(r) is given by Eq. (54),
with k = (k„~„,ir, (n) ) and with e determined by
E(rs,s,) gP,II=L. If—one assumes that at the Fermi sur-

face, the matrix element is constant (i.e., independent
of the direction of k), the summation over e and the
integration over ~„can be performed; this leads to the
density of states per unit volume,

p (t )= (2m*) '~'i'~'/47r'k'

and to the relaxation rate

1 4x 8x
e.L3. "(r—)»

T1

X lv2 p ct,*cg;I„,o*(kr)u„; p(kr) I' .
, (57).

p~p

When spin-orbit coupling is neglected, only the term
with the factor

I crt*el, s I

= 1 contributes to the relaxa-
tion rate; then Eq. (57) becomes a well-known result
(see Ref. 41, p. 126). For weak spin-orbit coupling, 1/Ti
has a contribution quadratic in X/AE. Assuming arbi-
trary strength of spin-orbit coupling, we Q.nd, from Eqs.
(49) and (57), the proper low-field Korringa relation for
noninteracting electrons. "4'

~ Coherent relaxation of two nuclei is ignored.
4' For an external 6eld B large compared with the local 6eld

(~10 G) but small compared with ke/ekrr (so that s k /i&1&), the
high-6eld Korringa relation contains a factor 2.

~ To incorporate electron-electron interactions, the right side
is multiplied by Pines' factor (see Ref. 41). The electron-phonon
interaction has no eBect on the spin susceptibility PJ. J. Quinn,
Ref. 17, p. 58; P. A. Wolf, Phys. Rev. 120, 814 (1960)j; its effect
on the density of states in T& is not known but is likely to be
temperature-independent, as indicated by the experimental fact
TIT=const for Al and 1'&T&1000'K (J. I. Spokas and C. P.
Slichter, Phys. Rev. 113, 1462, 1959).

where the sum excludes the term n=n', and where aoo

defines Tt."The Low fieLd rel-axation time is given by

1 4rr 8x ' V@s (2rm*)'~' '
—= 2apo ————P,P„kT
T 5 3 4m
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As for the effect of spin-orbit coupling on the nuclear
spin relaxation in a superconductor, the theory of Hebel
and Slichter remains formally unchanged. The reason is
that the spin-orbit coupling term in BCO has the sym-
metry of the Bravais lattice so that a ground pair
occupies the states (nz, k, t') and (m, —k, $) related by
time-reversal symmetry. The corresponding BCS wave
functions lead, aside from a constant factor, to the same
nuclear spin relaxation time as that of the original
theory. Therefore, for a given temperature T(T., the
ratio of the relaxation times in the normal and the
superconducting state, Tr /Tt„ is not affected by the
spin-orbit coupling force arising from the periodic
crystalline Geld.

Spin-Reversing Scattering

Besides the spin-orbit coupling eGects which were
considered above and found to be of the Van Vleck type,
there is another effect which gives rise to a broadening
of the low-frequency contribution of the absorptive part
x"(ce) of the spin susceptibility (see Fig. 2) and which
therefore affects E„,namely spin-reversing scattering.
This eGect has been discussed in the literature' ' and
more recently also the nuclear spin relaxation time T&,
has been calculated by GriKn and Ambegoakar, 4' in-
cluding spin-reversing scattering. Here we shall merely
summarize the results, so that we can assess the relative
importance of both the total effect arising from the
crystalline field and the one caused by spin-reversing
scattering.

The 6rst quantitative result for the spin susceptibility
of small particles, where surface scattering plays an
important role, was derived by Anderson. ' He intro-
duced exact one-electron states, the scattered states
P„,e„, and then calculated the perturbation theoretical
expression for the susceptibility in terms of the matrix
elements S„„.= Q ~o, ~iP ). The energy dependence of
these elements is taken from the function X"(co)
~ (1+aPr,') ', where r, is a spin lifetime. The final
result is given by

lim(X, /X„) = 1—2epr, /A, is/r, ))ep,
T~O (5g)= ft/6esr„ 5/r, ((ep.

'A. GrifBn and V. Ambegoakar, Proceedings of the Ninth
International Conference on Low Temperature Physics, Co-
lumbus, Ohio, August, 1964 (to be published).

Anderson's consideration ignores the eBect of spin-re-
versing scattering on the energy gap and on the density
of states for quasiparticle excitations in a super-
conductor. Nevertheless, Eq. (58) will be approximately
correct, since themajor contribution to the second-order
perturbation expression for X,, comes from matrix
elements 5„„.with energy differences larger than eo

(Fig. 2). The corresponding density of states, however,
remains unaffected by spin-reversing scattering, p, (E„)

p, (Eq) for E&)2es. Therefore, Anderson's result is in
nearly quantitative agreement with the corresponding

one of Abrikosov and Gor'kov, ' although these authors,
with the help of their Green's-function formalism'for
impure superconductors, take all the effects of scattering
into account. It is necessary to do so in a calculation of
the ratio of the nuclear spin relaxation time in the
normal and the superconducting state. Here, it is the
squared quasiparticle density of states, in particular,
near the gap edge, which causes the enhancement of
1/Tr„and not the matrix element S„„.In other words,
it appears that the expression, which Hebel and Slichter
derive for the nuclear spin relaxation time with the help
of the BCS theory, remains approximately valid for
superconductors with spin-reversing scattering centers,
provided the actual gap is taken for 2es(T) and
the actual density of states is used for p, . A correct
formal theory of T~, will be published by Griffin and
Ambegoakar. 4'

As for the crucial parameter r„ the average spin life-
time, a rough estimate can be made if it is limited by
spin-orbit scattering at displaced surface atoms. Then,
in the Born approximation, r, is determined by the
square of the matrix element

+ c)V„/r)r xp o b„;(r,k') I. (59)
4m'c'

Here, the spin-orbit coupling term connects the large
spinor components of b „and b, , and the perturbing
potential t/"„connects the small spinor component of b,
with the large spinor component of b, . The 6rst con-
tribution is of the order of X/hE times the matrix
element for ordinary scattering from a screened Cou-
lomb potential. The second contribution is of the same
magnitude, if one makes the reasonable assumption that
(b,

~ V~~ b,) =DE.4s Then r.~ (d,E/) )' and, since the
ordinary scattering time 7 „which determines the residual
resistance is determined by (b, (r,k)

~ V„~b, (r,k')), one

may consider (X/hE)' to be the probability of a spin
Qip in a single scattering event. For a film with thickness
d, we have r~d/ur, where ur is the average Fermi
velocity, and thus r,~(d/ur) (hE/X)'.

If the spin lifetime r, is limited by the exchange inter-
actions between a conduction electron and magnetic
impurities, one also expects ~, to be one to two orders of
magnitude larger than v„ the reason being that non-
exchange interactions, i.e., Coulomb interactions,
are always smaller than comparable exchange inter-
actions. ""In a concrete case, namely Zn-Mn alloys,

4'The major contribution to this matrix element comes from
the core region of the perturbing potential where V„(r)~V(r) for
a displaced surface atom.

A. A. Abrikosov and L. P. Gor'kov, Zh. Eksperim. i Teor. Fiz.
39, 1781 (1960) /English transl. : Soviet Phys. —JETP 12, 1243
(1961)1

P. W. Anderson, in Solid S/ate I'hysics, edited by F. Seitz
and D. Turnbuli (Academic Press Inc., New York, 1963), Vol. 14,
p. 169.
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the s-d exchange integral
~ J~, indicated by the re-

sistance change when magnetic ordering occurs, is
~1.5)&10 " erg or yp of the Fermi energy for
zinc"; in another case, that of dilute Cu-Fe alloys,
the observed resistance minimum is accounted for by
Kondo's theory "if

~

J
~

~2.5X10 "erg.

Orbital Interaction and Knight Shift

In the special case where spin-orbit coupling is
ignored, one takes yp in Eq. (26), instead of the bracket,
and then 3'.0 on the right-hand side of this equation
must be omitted, since E, is exactly compensated for
by the shift arising from the spin-orbit coupling term
alone. Ignoring spin-orbit coupling, Hebborn'4 has
derived an exact expression for E„~,' including it,
Yafet35 has worked out E„q for a small number of
degenerate conduction electrons. In both cases, X,„i, is
conveniently split into a long-range part, where, in Eq.
(26), r, is outside the unit cell centered at Ri, and the
residual short-range part, which is periodic in r;. Some
results of these authors are as follows:

The long-range contribution K„i,(l) consists of a
diamagnetic part, caused by the interaction between
nuclear moments and diamagnetic surface currents,
which give rise to the induced magnetic moment
M=X&(l)H, and a Van Vleck —type paramagnetic part
arising from the interaction between nuclear moments
and the orbital magnetic moments of the conduction
electrons given by Eqs. (A5) and (A6). For a small
number of degenerate electrons, the total K„i,(l) is
approximately given by

Ko b(I) (4 —D)Lxti(l)+ (p.'/2)g(g go)p(t—)j, (60)

where we take X~(l)=XLp= —e'kr/12irm*c, i.e., the
I andau-Peierls susceptibility, and where D is the de-
magnetizing factor. The short-range contribution
K„i,(s) plays a significant role in transition metals, "be-
cause of its paramagnetic (Van Vleck —type) contribu-
tion which is ignored here. Its diamagnetic contribution
is difficult to assess, except for Bloch bands which can
be treated in the tight binding approximation, then it is
approximately given by the diamagnetic core suscepti-
bility of the metal ions. "For simple metals like Al, how-
ever, one knows from the work of Kohn and Kjeldaas"
(Li,Na) that XLp alone gives too large a value for the
total diamagnetic susceptibility. Short of a calculation
of this type, we take the total orbital shift in the form

K-~= (4~—D)Lx —P'(gsg/2) p(|)j, (61)

where x is the total observed magnetic susceptibility. "
4~ K. W. Collins, F. T. Hedcock, and Y. Muto, Phys. Rev. 134,

A1521 {1964).
'0 J. Kondo, Progr. Theoret. Phys. (Kyoto) 32, 37 (1964).
~~ R. Peierls, Z. Physik 80, 763 (1933)."T.Kjeldaas and W. Kohn, Phys. Rev. 105, 806 (1957).
"As for an evaluation of E,b(s), in a fashion similar to the

calculation of X, in Sec. II, the calculation is straightforward if
one uses the parabolic approximation. In the limit B=O, one
has (ip~XO b(s) ~ip)=0, since the two contributions from 5C,

III. DISCUSSION OF THE EMPIRICAL DATA

For this purpose, the total Knight shift of a non-
transition-metal superconductor is written in the form'4

K,=K.,i+K () /DE)+K (r es/h) . (62)

Here, the orbital shift, E„~,and the Van Vleck part of
the contact shift E," are assumed to be temperature-
independent and to remain unchanged by the transition.
The third term of E, is given by

K."= (X./X. ) (K.—K.-)- (63)

where X,/X„ is the temperature-dependent ratio of the
spin susceptibility determined by the spin lifetime

1/r, = 1/r, ' +1/r, '*.
7., is limited by spin-orbit scattering at nonmagnetic
imperfections and by exchange scattering at paramag-
netic impurities. We wish to discuss the relative im-
portance of the different contributions to E, for Al, Sn,
and Hg, where the Knight shift has been measured in
the normal and the superconducting state.

This discussion is confronted with some serious
difficulties. First, we do not know the signs of the two
di6erent contributions to E . However, it appears un-
likely that the two terms nearly cancel one another,
since the first is determined by spin-orbit parameters at
the Fermi surface, whereas all occupied states contribute
to the second. For the following discussion, it is assumed
that K /K )//AE. Second, there are no quantitative
values for bulk parameters, such as the average spin-
orbit coupling energy X of electrons at and inside the
Fermi surface and the corresponding energy gap AE,
nor for impurity parameters such as the spin lifetime
v-,"or, if magnetic impurities are present, the exchange
integral J. Furthermore, in none of these three metals
has electron-spin resonance, from which one could
obtain some information regarding )/DE and r„been
observed. A convenient theoretical estimate of )/hE
would presume the knowledge of Sloch functions in
the orthogonalized-plane-wave (OPW) approximation,
where"

(r,k) =PW+AO= P C,„„f(PW,e)—P C „rp $. (64)

Here, AO= atomic orbital, (PW, ss) is a plane wave with
wave vector k+K„(K =27r times vector in the recip-
rocal lattice), and q i is an atomic orbital in the potential
U(r). The spin-orbit matrix elements between the p&'s

can, in a good approximation, be determined from the
tabulated atomic energy levels. These elements and the

(=X,(s)) and from the spin-orbit coupling term, cancel one
another. To first order in II, there occurs the paramagnetic Van
Vleck term, i.e., interband matrix elements of the orbital angular
momentum, and an "intraband" diamagnetic term.

'4Equation (62) also holds if there is a significant contact
interaction with ion-core s electrons; then E, is to be replaced by
&e+&Sp

"See V. Heine, Proc. Roy. Soc. (London) 240, 354 (1957).
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constants C „and C&„determine X. Finally, the experi-
mental Knight shift results do not allorv for a clear-cut
interpretation because of the complex temperature de-
pendence" and 6eld dependence" of the energy gap in
the small particles used in NMR experiments. These
dependences have not been measured directly on either
of the samples on which the NMR phenomena have
been observed; however, all authors"" have been
aware of this difFiculty. Because of the reasons given
above, the following discussion is of a qualitative
nature only.

TABLE I. Estimated Knight-shift values for
nontransition-metal superconductors.

Metal

E„in percent' (expt)
E„b/E
lim E,/E„(expt)
T~O

particles

2pp(0) in 10 ' eV (expt)
Spin-orbit energy X in eV
E,"/E,=7 /AE

(as=3 eV)
ur in 10 ' cm/sec (expt)
r„~d/vr in 10 "sec
r.-/r„= (nz/7)P
p p (A -G parameter &)

x,/x„i (T=O)
E,"/E, (T=O)
E,(calc")/E„(T=0}

Al

0.162
0.09
0.75b

ftlms
d~200 A
3 14e
0.022
0.008

13g
1.6
1.9X104
9.2X10 '
0.007
0.007
0.11

Sn

0.709
0.06
0.760

pellets
d 50 A.
12 Oe

0.36
0.12

5.4h
0.93

70
1.1
0.45
0.36
0.51

Hg

2.5
0.03
0.66d

spheres
d~500 A.

16.5'
0.48
0.16

101
5

39
0.27
0.11
0.22
0.40

ss ReferenCe 61. b ReferenCe 19. 0 Reference S. d ReferenCe 4. Refer-
ence 59. f S. Berman and D. M. Ginsberg, Phys. Rev. 135, A306 (1964).
I h E. Fawcett, Ref. 62. i Estimated. j Reference 9. & Equation (62).

"D.H. Douglass, Jr., and R. Meservey, Phys. Rev. 135, A19
(1964).

57R. Meservey and D. H. Douglass, Phys. Rev. 135, A24
(1964); P. G. DeGennes and M. T. Tinkham, Physics 1, 107
(1964).

"W. D. Knight, in Sold Skate Physics, edited by I". Seitz and
D. Turnbull (Academic Press Inc. , New York, 1956), Vol. 2, pp.
114, 116, Table II, column 3.

Aluminum

As for its electronic structure, aluminum is the
simplest and most carefully studied multivalent
metal. ""Furthermore, because of its small atomic
number and its weak electron-phonon interaction, it
comes close to the assumptions of the nonrelativistic
BCS theory. Why, then, does the Knight shift observed
by Hammond" decrease by only 25% of its value at T„
as T~ 0? The orbital shift is calculated from Eq. (61)
with D=O, and with the help of susceptibility values
tabulated by Knight. "By taking x=total bulk sus-
ceptibility and approximating the paramagnetic term
in Eq. (61) by the bulk spin susceptibility, we find that
E„bamounts to 9% of the observed shift in the normal
state (see Table I). The characteristic parameter for
the two spin-orbit coupling effects, X/AE«1, since (a) in
an OPW wave function for a conduction electron in Al,
the plane-wave part has a much larger amplitude than

the orbital part, and (b) the spin-orbit matrix elements
between atomic orbitals are small. Assuming that
Tse and i'e of the squared amPlitude

~

b (k)
~

' inside the
core, where the spin-orbit interaction is strong, corre-
sponds to PW and AO, respectively, and that a very
rough measure for the spin-orbit energy of the 2p
orbitals in AO is provided by the multiple splitting
(3s 'Pi —3s 'Es) = 1741 cm ' (Al IV"),we have) 0.022
eV. With a band gap DE=3 eV, one clearly sees that
both of the spin-orbit coupling effects give a negligible
contribution to the Knight shift at T=0. The estimated
spin lifetime r." is larger by a factor 10' than the
experimental value r, (expt)~0. 5)&10 " sec, necessary
to account for Hammond's result with Eq. (58). Such
a small value of the spin lifetime in Al can be explained
by the presence of paramagnetic impurities, a possibility
suggested by Matthias. "If, in fact, the oxide layer on
the surface of an aluminum film is paramagnetic, so
that with each surface scattering event an exchange
interaction occurs, then the value r, (expt)/r 10 ' is a
reasonable number. It is mentioned above that the
relevant exchange integral is one to two orders of mag-
nitude smaller than the corresponding Coulomb integral.
Furthermore, the small (20—30%) enhancement of the
nuclear spin relaxation rate 1/Ti, below T, observed by
Hammond, "and also observed in a systematic study of
side effects on T1, by Masuda and Redfield, " is com-
patible with the experimental value of ~„which corre-
sponds to the Abrikosov-Gor'kov parameter p~~4, as
can be seen from the work of Griffin and Ambegoakar. 4'

From the observed temperature dependence of Tj„
Masuda and Redheld find in their sample a reduction
of the energy gap by a factor —', with particle sizes be-
tween 200 and 700 A. Such a reduction is consistent with
the effect of magnetic impurities on the energy gap of
bulk superconductors. Correspondingly, a reduction in
T, is to be expected. Hammond, " for his thin-film
sample, did not observe a T, significantly different from
the bulk T, of pure Al. This must not be a contradiction
to the assumption of a paramagnetic oxide layer at the
film surface, since an increase of T, with decreasing size
parameter has been observed for Al by Douglass and
Meservey" (the phenomenon is attributed to differ-
ential contraction of substrate and film, i.e., to strains
within the film).

Tin

Apparently no band structure calculation has been
performed for P tin which crystallizes in a slightly de-
formed diamond lattice. From the experimental investi-
gation of various electronic-transport phenomena in a
magnetic field, it is known that the Fermi surface (F.S.)
of Sn, containing 4 valence electrons, is rather complex;
it is partly open and extends over a number of Brillouin

"C. E. Moore, Natl. Bur. Std. (U.S.) Circ. 467, Vol. 1, (1949)."Private communication."Y. Masuda and A. G. Redfield, Phys. Rev. 133, A944 (1964).
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zones. "The Hall coefficient is small and changes sign
with temperature. " Since the Knight shift does not
depend on the curvature of a surface of constant energy,
but only on

~
BE/Bk ~, we estimate an average spin-orbit

energy A. for electrons and holes in unfilled bands by as-
suming that one-half of the amplitude of P ~

b (r,k) ~'

corresponds to the AO part of the OPW wave function.
A rough estimate for the spin-orbit energy of AO is
provided by the multiplet splitting —', (Ss sDi —5s 'Ds)
=4311.6 cm ' (Sn V '4). This number, 0.54 eV, is of
the same magnitude as the one found by Herman,
Kuglin, Cuff, and Kortum" in a more reliable estimate
of the spin-orbit energy for a p-like valence-band edge
of gray tin, 0.71 eV. Taking this value, we have calcu-
lated E,"and r,"given in Table I. The spin lifetime
r,"~10 "sec for this particular sample. The two spin-
orbit coupling effects are of comparable magnitude and,
together with E„b, account for most of the residual
Knight shift (T +0). Furth—ermore, the sizable Van
Vleck type contribution E," which arises from the
spin-orbit force of the periodic crystalline field can well
account for the observation of Androes and Knight
that there is no strong dependence on the experimental
particle size.

Mercury

The electronic structure of solid mercury, which
crystallizes in a rhombohedrally deformed bcc lattice, is
apparently not known. The measured Hall constant at
213'K is —8.7)&10 "Gaussian units, comparable with
that of gold at room temperature. The observed Knight
shift is large compared with that of other heavy metals,
like Pb and Tl, which have an even larger hyperfine
coupling constant. To estimate roughly' a spin-orbit
coupling energy, let us assume that a large fraction of
the conduction electron wave functions, say one-half,
corresponds to the PW part of the OPW wave func-
tion, and that the spin-orbit energy of the AO part
is given by sr(6ssDt —6s'D, )=7777.3 cm ' (Hg III").
The corresponding values of E,",r,",etc. , are found in
Table I. The orbital shift E„b is calculated from Eq.
(61) with the help of susceptibility values tabulated by
Knight. It is seen that the spin-orbit coupling effect
arising from the crystalline field is as important as spin-
orbit scattering. The least reliable assumption here is
that one-half of the OPW function corresponds to the
plane-wave part. If, instead, inside the core, where
spin-orbit coupling is strong, three-fourths and one-
fourth of the squared amplitude of the OPW functions
for conduction electrons correspond to the PW and the

'~ E. Fawcett, Ref. 17, p. 197; T. Olsen, Ref. 17, p. 237; A. V.
Gold and M. G. Priestley, Phil. Mag. 5, 1089 (1960); E. S.
Sorovik, 1zv. Akad. Nauk (USSR) 19, 429 (1955).

"La@dolt-Boerlste&z Tables, edited by K. H. and A. M.
Hellwege (Springer-Verlag, Berlin, 1959), Vol. 6/I.

'4 Reference 59, Vol. III."F. Herman, C. D. Kuglin, K. F. CuB, and L. Kortum, Phys.
Rev. Letters 11, 540; F. Herman, LMSC report 895374, Sec. 4
(unpublished).

"Reference 59, Vol. III.

AO parts, respectively, then K,"/K„0.08 and, for
d= 500 A, E,"/'K„0.03. With these numbers, the
calculated residual shift amounts to only 10% of the
total shift in the normal state. Therefore, at present, our
poor knowledge concerning the electronic structure of
solid Hg does not allow for a quantitative estimate of
K,(T=O); one can merely say that such a value lies
between 10 and 50%. The earlier experimental results
of Knight, Androes, and Harrunond' for the Knight
shift in superconducting Hg at 2'K and in a magnetic
Geld of 5000 G, K,/E„0.20', cannot be dismissed as
due to a decrease of E, in high magnetic fmlds. "

IV. CONCLUSIONS

It is seen from Table I (Sec. III) that the effect of
spin-orbit coupling, arising from the periodic crystalline
field, on the residual Knight shift E,(0) of the three
nontransition-metal superconductors Al, Sn, and Hg is
as important as the effect of spin-orbit scattering at
displaced surface atoms of small particles. The two
different spin-orbit coupling effects are separable be-
cause the average spin lifetime r," is size-dependent.
Although the two spin-orbit coupling effects account for
a substantial portion of the residual Knight shift ob-
served in Sn and Hg, they play only a minor role in Al.
To account for the observed residual shift with r„ it
must be smaller by a factor of 10' than r,".Such a small
v, can occur in small particles with a paramagnetic
oxide surface layer, so that in each surface scattering
event a conduction electron undergoes an exchange
interaction with paramagnetic imperfections. Then, one
can also understand the small enhancement of the
nuclear spin relaxation rate observed in small Al parti-
cles. It is emphasized that the true residual Knight
shift, i.e., the shift in the bulk material which, aside
from the orbital shift, is determined by the spin-orbit
coupling effect considered in Sec. II, can be observed
only if the nuclear spin relaxation rate exhibits below
T, the same enhancement as that in bulk Al. This also
follows from Sec. II, where it is pointed out that the
spin orbit couPling eg-ect arising from the crystalline field
sects the residual Knight shift but does not acct the ratio
of the nuclear spin relaxation rate in the superconducting
aed the rIormal state. On the other hand, it is known that
spin-reversing scattering affects both the residual
Knight shift and the nuclear spin relaxation rate.
Therefore, in a light nontransition-metal superconduc-
tor, where spin-orbit coupling can be ignored (Al), the
proper enhancement of the nuclear spin relaxation rate
provides a sensitive criterion for the absence of magnetic
imperfections. In a heavy nontransition-metal super-
conductor, where spin-orbit coupling is important, the
corresponding enhancement is determined by

67 W. D. Knight, G. M. Androes, and R. H. Hammond, Phys.
Rev. 104, 1 (1956)."F.Reif, Phys. Rev. 106, 208 (1957).
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whereas the residual shift is determined by both spin-
orbit scattering and the bulk spin-orbit coupling effect
depending on X.
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ADDENDUM

Assuming that both the spin-orbit interaction and the
orbital interaction between electrons and magnetic field
can be treated as a small perturbation with respect to
the periodic Hamiltonian Ko——p'/2'+ V(r), Y. Yafet
has calculated the spin density at the nucleus with
standard second-order perturbation theory. The corre-
sponding correction to the contact shift depends on all
occupied states. From his perturbation-theoretic expres-
sion for the spin density at the nucleus, it is concluded
that the corresponding contact shift is positive, if the
inner bands involve large energy denominations and if
the amplitudes of the conduction-electron wave func-
tions at the nucleus are much larger than those of higher
lying bands. Then, the result, which he considers to be
an overestimate, is given by

E pa/E = P./(DE)'lpga/p(i) .

APPENDIX A

g Factor

Strictly speaking, one must distinguish between the

g factor for a Bloch electron in the state (m,k) of a
simple (i.e., orbitally nondegenerate) band of a crystal
with inversion center, and the g factor for an exact
eigenstate of Kp, denoted by (i). The former, g(m, k),
measures the splitting linear in H which occurs between
a spin-up state (m,k, l) and the corresponding spin-
down state, whereby the effect of the magnetic 6eld on
the orbital motion is ignored. The latter, g(i), is defined
as that part of the energy difference between a spin-up
state (i, t') and the corresponding spin-down state of Kp
which is linear in O'. To determine g(pl, k)& the b, and
W p p are written as a power series expansion in H:

b„,gr, k+-', (e/Ac) H x R,g
=b, 0+& b, +o(e/Ac)HxR,

(B/Bk)b, p+, (A1)

Wmpp'(k) = Wmpp', 0+& Wmpp';a+ ' ' '
~

(n= x, y, s), (A2)

where the b, 0 are Bloch spinors in zero field and where
the 8'

p p'0 are the corresponding energy band functions;
these are spin-degenerate because we assume inversion
symmetry. The series expansion for b, and the one for
oi », which is found from Eqs. (5) and (A2), are sub-
stituted into Eq. (8). Taking the scalar product of this
equation with b, .o, we obtain to erst order in H the
equation

(b, AX 0(A=0) i b„,p )II.
+ (b;., 0

~

—(e/2 pipe) p.H x (r+i B/Bk) (
b „0)

+ (b„;., pi (5/4ns'c') (BV/Br) t ', (—e/-c)H

x (r+i B/Bk) j 0 )
b p; o)+ (b po )

(k/4im'c')

X ( e/—2c)(BV/Br) H x (r+iB/Bk) )b„p p)

+(b-';ply ~ HI b-.;o)

Wmpp;(8 (bmp';0
~
bmp;a)+Q Wmpp";aH

ptr

X(b, ', ojb,o)+P ~„„„,.0(Ri) exp(ik Ri)
l

X$(—ie/2kc)H x R, (b;, 01 r~ b, .p)

+(e/2hc)HxRi. (b, otB/Bk~b p 0)$. (A3)

The spinor b, , which is periodic in r, is written in
terms of the complete set of Bloch spinors,

b„„., (r,k) = P A (m, p, k; m', p', k')b, p(k'). (A4)
fa', p', k'

Then the first term on the left and on the right cancel
one another. From Eq. (A3), and for p= p' and pW p',
one finds the result given by

W„pp, .H =(b , piPo, e Hib„p;0)
cc~z& g, a

+ (b,„,, 0 ~

—-', (e/c) (fi/4i ppi'c') (BV/Br)

Hx (r+i B~/Bk)
~
b, , p), (A5)

P W», H = (b, , 0 ~

—ot (e/c)H x (r+iB/Bk)

pp/my (b/~ 4~'c')~ x BV/Br(
~I
b„...)

+i P o&„pp., p(Ri) exp(ik Ri)-,'(e/hc)H x Ri

(b;, , I r+i B~ /Bk
~
b„...) . (A6)

The first expression is the spin magnetic moment plus
a term which arises from the Darwin correction and
which has the same sign for the spin-up and the spin-
down band. The second represents the exact expression
for the orbital magnetic moment of an arbitrary state
(m,k) and can be considered as the generalization of the
band edge value for the g factor which results from the
procedure of Luttinger and Kohn. "Equation (A6) has

Po J. M. Luttinger and W. Kahn, Phys. Rev. 97, 869 (1955).
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H Wt~;.ftt+Wii;oft~=Etft~,
Wtt;of~t+H Wit; f~~=Eif~t,
H Wti;.fit+W~i .of~i=E. if~i.

(AS)

(A9)

(A10)

For the special case where the 6rst-order terms in II
are also ignored, the eigenvalues of Eqs. (A7) and (A9)
are degenerate, Et =Eg, for each state (i) and, further-
more, the corresponding amplitude functions ftt and

f&t can only differ by a constant factor, independent
of B.This factor must be determined by the spin-orbit
coupling strength since, if it is neglected, fqt must be
zero. The next step is to consider the nondiagonal
components of the effective Hamiltonian as a small

perturbation which is allowed, even for the case of
strong spin-orbit coupling, provided the magnetic field
is sufIiciently small. Consequently, one may write the
following perturbation expansions in

I
H

I
":

W„.(K)=W„., p(K)+HW„, ,(K)+, (A11)

Eo=Ep+HEip, g+ (A12)

f» (k) =c» I fp(k)+Hf~(k)+ ), (A13)

where fp stands for an eigenfunction f;, p of W», p. It is
assumed that these functions form a complete ortho-
normal set so that fj can be written as a series expansion

fg(k) =P Ag(j) f;,.p(k). (A14)

Then, proceeding as in stationary perturbation theory,
we obtain from Eqs. (A7) and (AS) two equations for

c&& and ct&, namely,

t:(ilW»;~li) —Et;~jc»+(ilW~t;tli)et~=0, (A»)

(il Wt~;ili)«t+I (il W»;ili) —Et;ijct~=O, (A16)

where
I i) = f;, o Li.e. , an eigenfunction of W»; o (K)7 A

corresponding pair of equations for cgg and cgg can be
derived from Eqs. (A9) and (A10). The secular equation
for c&& and ct& yields for the coefficient of that part of
the eigenvalue E, which is linear in H Lsee Eq. (A12)]
the value

Et;~= ~L(il w«;~I i)(il wt~;~li)
+I('lw . 'I')I i", («7)

7o M. H. Cohen and E. I. Blount, Phil. Mag. 5, 115 (1960).
p p

' I is dered with the help of the direction cosines of H
so that HW p p', 1

——H 8'p p', .

been derived before by Roth" and by Blount. " The
derivations given in their papers are, however, much
more involved than the one presented here. To obtain an
exp/icit expression for g (nz, k) one may merely follow the
diagonalization procedure of Cohen and Blount.

As for the g factor g(i) for an eigenstate of BCp, let us
consider the effective Hamiltonian for small magnetic
fields. Then, to first order in II, the four simultaneous
equations (23) become (the band index m is omitted):

Wt t, p(K)ft t (k)+H Wg t, (K)ft g (k) =Et ft t (k) (A7)

and, similarly,
ctg (i)

crt(i)

(il w„,li)

(il wtt;tli)+Et;t(+)
(A19)

and, correspondingly,

cgt (i)

crt (i)

(lwti; I)
(il w~~;ili)+Et:t( —)

APPENDIX B
Fourier Transforms"

(A20)

In the coordinate representation, the solution of the
Schrodinger equation,

(1/2m*)l p —(%)A(r)j'g(r) =Eg(r),
A= (O,H„O), (81)

is given by Eqs. (36) and (37) of Sec. II. In the momen-

tum representation, the solution of the eigenvalue

problem

(h'/2~*)I k—(e/ch)A(r) j'f(k) =Ef(k), (82)

where the operator r =i AB/Bk, is given by Eqs. (36) and

(39).We wish to prove that g(r) and f(k) are the correct
Fourier transforms of one another,

f(e,~„,~„.k) = (1/2')'" g(N, ~„,~, ; r)

)&expL —ik r]dr. (83)

To this end, g(r), given by Eq. (39), is substituted on

the right-hand side. Then, with the integral representa-
tion of the 5 function,

+a/2

expLiz(», k,)jdz=—b(1 k./K, ),—
(k= wave vector), (84)

Eq. (83) becomes

f(k) = (1/2s )'"s'"A „II"'8(1—k„/a„)5 (1—k,/~, )
+a/2

expL —(s/2) (x—xp)'j exp (—ik,x)
a/2

XH„L(s)~IP(*—*o)~~~. (85)

For the calculation of the integral over x, let us assume

here that a is a length su%.ciently large to guarantee the

72 I am indebted to Dr. B. Roos for his help with Appendix B.

where it is taken into account that

(il w„,li) =-(il w» li). (A1s)

The positive root is chosen for Et , q, so . that P,e.H
(where P,= —lelk/2mc) has a positive expectation
value for a "spin-up" electron, provided e is parallel to
the field. In a similar fashion, one calculates Eq,.~,

takes the negative root Eg,.~(1)l =Et.~(+)j, and has

Et,.t Eq,. t —g(i)IP,——IH. From Eqs. (A15)—(A17), one

has
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proper limit values for the integrals below. We take the
generating function for the Hermite polynomials,

(86)exp( —t'+2ty) =g H„(y) (t"/e!),

and evaluate

+a/2

With

P exp f—(s/2) (x—xp)'g exp( —ik,x)
D

&&exp f—tP+2t (gs) (x—xp) jdx. (82)

APPENDIX C

Calculation of b „,(r, k)

In order to calculate the spinor b, , which represents
the first-order correction in the Geld H= H, to the Bloch
function b, p(r, k) and which can be written in terms of
the complete set of field-independent Bloch spinors,
Eq. (A4), one takes Eq. (8) and inserts the power series

exp( —-'s'"x—(s'~'x +2t ik /—s'")j')Cx

= (2pr/s)'" (88)
the result is given by

J= (2pr/s)' exp( —ik,xp) exp( —k,'/2s)

(it)"
&&/ e„(k,/gs) . (89)

et

With Eqs. (89) and (85), one readily arrives at
f(N, ~„,~, ; k) given by Eq. (37).

expansions form b, and, pp» fsee Eqs. (A1) and (A2)j.
Then one equates, as in ordinary first-order perturbation
theory, the coeKcients of H„ takes the inner product
with b ";., p(r, k"), and arrives at the following equation
for the coefficients A, of the expansion (A4):

A, (m, p,k; m', p', k)
= fW„„,.p(k) —W„, , p(k) j-'

&&((b- ';o(k)IP. .Ib-', (k))
+(b;,p(k) I

—
p (%)fr+i&/Bk), ~„

—(r+i8/Bk)„m, jIb„,, p(k))
+i g«p»;p(Ri) exp(ik Rg) ,'(e/-hc)

Xb, p(k) IZg, (r+ip!/ak)„
Rg—„(r+. i8/Bk),

I b~p, p(k) )),

(mmmm'),

(Cl)

where
pp= p+k/(4mc')o x BV/Br. (C2)

On the right-hand side of Eq. (C1) occur only matrix
elements which are nondiagonal in the band index. The
corresponding elements which are diagonal in ns, but
nondiagonal in p', determine the g factor, as can be seen
from Eqs. (AS) and (A6). In general —that is, for
arbitrary strength of spin-orbit coupling —there is no
relation in sign and magnitude between the diagonal
matrix elements (m=m') determining the g factor and
the nondiagonal matrix elements (mmmm') which deter-
mine the A's and thereby the function G,. For the cal-
culation of the Knight shift, one is interested in that
part of 6, which has equal sign for "spin-ap" and
"spin-down" electrons. It is determined by those coeN-
cients A, (m, p,k; m', p', k) for which mAm' and pW p'.


