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Impurity Bands and Perturbation Theory
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Perturbation theory can be applied to calculate the density of states of an electron moving in a random
potential produced by impurity centers, but for small concentrations the usual approximations are unreliable
and do not predict correctly the shape of the impurity band. A new chain of approximations is obtained by
expressing the Green's function of the electron in terms of a "self-propagator. "It is shown that this method
leads to more realistic results.

the propagator leads to nice results in the limit of
small densities. For this purpose, we use a soluble linear
model; for reasons of simplicity, it is assumed that the
potential consists of attractive 8 functions distributed
at random.

I. INTRODUCTION

f OOD theories of random processes are needed in~ many areas of physics, but owing to mathema, tical
difficulties, little progress has been made in this domain
in the past. Indeed, many papers have been devoted
to the study of the motion of electrons in random
potentials and especially to the scattering of free
electrons and the formation of impurity bands, but
usually these effects have been considered separately
and treated by different methods. For instance, the
scattering of an electron can be easily calculated by
perturbation theory and the first-order approximation
gives quite reasonable results. ' On the other hand, the
formation of impurity bands can be conveniently in-
vestigated in the strong-binding limit. '

Our aim here is to build a formalism leading to
reasonable approximations for all values of the electron
energy. Perturbation theory is used as a starting point
and we want to predict the shape of impurity bands as
well as scattering effects. In this paper, we are mainly
concerned with the difhculties which are introduced by
the random character of the impurity distribution. For
this reason all the correlation effects due to electron-
electron interactions are neglected in spite of their
importance, and we deal with independent-electron
models only.

In order to obtain 6nite results, we must sum the
contributions of infinite series of diagrams. Unfor-
tunately, there is no obvious way of knowing which
diagrams are the most important. Actually, it will be
shown that, for small densities of impurities, all the
current approximations lead to unphysical results. Thus
new physical ideas are needed to get a good picture of
the situation. In the following, we visualize an electron
as wandering from atom to atom and in order to de-
scribe this process, we introduce a "self-propagator. "
The one-particle Green's function is expressed in terms
of this propagator and not in terms of the usual self-
energy. A new series of approximations can be found
in this way and we show that a first-order calculation of

~ Detailed studies and references to earlier publications can be
found in the work of J. S. Langer, Phys. Rev. 128, 110 (1962);
127, 5 (1962); 120, 714 (1960).

~ An interesting classification of the energy levels in the ti
binding limit has been given by I. M. I.ifshitz, Zh. Kksperi
Teor. Fiz. 44, 1129 (1963) LEnglish transl. : Soviet Phys —JE
1?, 1159 (1963)g; Advan. Phys. 13, 483 (1964).

II. MOTION OF AN ELECTRON IN A RANDOM
POTENTIAL: FAILURE OF THE APPROXI-

MATIONS FOR LOW DENSITIES

In order to describe the motion of an electron in a
random potential and to calculate the spectrum of the
system, it is convenient to use one-electron Green's
functions. For reasons of simplicity, we study here one-
dimensional problems only, but the generalization of
our method to the three-dimensional case is trivial.
Our Harniltonian will be written

EE= r)'/r)x'+Q—; V(x—x;).

Here, xj indicates the position of an impurity center;
these centers are randomly distributed and their density
is denoted by Ã.

Special attention will be paid to the simple case

V(x) = —25(x)

which will be called the 8 model and will be used as a
test for all the theories which we describe in the follow-
ing. In fact, for this model, the density of states by

03-

02—

0.'t—

t I t t 1 t 1 I

-4 -3 -2 -1 0 1 2 3 4 E

ght Fro. 1. The density of states n(E), obtained for P=-~s by
m. i calculating K(E)=J' n (E)dE, as indicated in Sec. II, with a
TP chain of 9000 impurity centers. Note that the impurity band

remains fairly narrow.
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FIG. 2. Typical diagrams for the
Green's function. (a) Z-irreducible
diagrams. The interactions of the
electron with the impurity centers
MI, M2, and M3 are entangled.
(b) Z-reducible diagram. The dia-
gram can be split into two parts
containing, respectively, 3fj and
F2, M'3.

result of the averaging process, the momentum k Inust
appear several times on the electron line of a diagram, if
all the interactions do not overlap with each other; in
this case, we say that the diagram is Z reducible (for
instance, in Fig. 2, diagram (a) is Z irreducible, but
diagram (b) can be split into two irreducible parts).
Now, the Green's function can be expressed in terms of
the irreducible Z parts:

unit length n(E) can be obtained directly by using a
computer. A simple method' consists in calculating for
a long chain of length I. containing EI. centers, the
number X(E) of zeros of a wave function of energy E.
In the limit, of large 1., we have

K(E)=L n(E)dE. (3)

This method has been used for E= 3 and a chain of
randomly distributed impurity centers. The result is
shown in Fig. 1. More sophisticated methods' are also
available, but these techniques apply only to the one-
dimensional case. Therefore, in order to deal with
physical situations, we must examine more general
perturbation methods.

The Green's function is de6ned by

G(k,co) = (k [ (oo—H)-'i k)

and the density of states is given by

G(k,&v) =Go(k, co)+Go(k &)Z(k,or)Go(k, op)+ ' ' '
~ (g)

More explicitly, we have

G(k,po) = (s)—k' —Z(k, &o)) '. (9)

n{E)
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Z(k, &o) itself can be expanded in terms of the density
iV and the diagrammatic representation of the Grst-
order term Zp(k, ~), proportional to the diagonal part
of the t matrix, corresponding to one impurity, is given
in Fig. 3.

Now we may wonder whether Zp(k, po) is a good

n(E) =— Im G(k, E+i0)dk.
2''

In the absence of interaction, we have, of course,

Go(k, ro) = (co—k')—', (6)
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FIG. 3. First-order self-energy Zo(kp&).

' H. M. James and A. S. Ginzbarg, J. Phys. Chem. 57, 840
(&9SS).

~ M. Lax and J. C. Phillips, Phys. Rev. 110, 41 (1958); H.
Frisch and S. Lloyd, i'. 120, 117S (1960).

n (E)= (2z.(E)'")-', (E)0) . (7)

The function G(k,~) can be expanded as usual in
terms of the interaction and typical diagrams are shown
in Fig, 2. The contributions of each diagram are aver-
aged with respect to the positions of the impurity
centers. For this reason, the Green's function is diagonal
in the momentum space. A factor X~ appears in the
contribution of a diagram if p different impurity centers
appear on this diagram (for instance p=3 for the dia-
grams of Fig. 2). Therefore G(k,co) can be expanded
with respect to E but the terms of this expansion have
strong singularities which must be eliminated by sum-
ming up infinite series of these terms. Actually, as a

Fro. 4. First-order calculation of the density of states n(F)

approximation to Z(k, po) in the limit of small densities.
For our 8 model, we have

Zp(k, po) = o.(ro) = 2$(po) —"/(po'~' i) . —(10)

The pole of this expression for ~= —1 corresponds to the
bound state of an electron in the Geld of one impurity.
By replacing Z (k,po) by o (~) in Eq. (9), we get a value
of G(k,oo) which, for E(0, leads to the following level
density:

1—)E]rls
n(E)=-

2pr [Ef'I'([E/- [E/"'—2X)
—1)E)—(-', +2K+-,' (1+8)V)'") (11)

In principle, this function should give an approximate
expression for the level density in the impurity band
but the result is obviously wrong (see Fig. 4). The level
density n(E) must be strongly peaked on the value
E=—1 and the broadening of the impurity level must
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be symmetric, in the strong coupling limit. This fact
can be demonstrated in many ways. For instance, a
can be easily verihed when the impurities form it
periodic lattice. In the random case, the same conclu-
sion can be reached by assuming that each center
interacts only with its nearest neighbor. This crude,
but realistic, approximation gives for small values
of [Ey1[

n(E)
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FIG. S. Brueckner approximation: (a) A typical diagram, (b)
general representation of a diagram contributing to Z(u&). The
black line corresponds to the self-consistent Green's function.

an expression which bears no resemblance to Eq. (11).
Finally, this approximate symmetry of the impurity
band for low values of Ã appears clearly on the spectra
calculated by exact methods (see Fig. 1).

Thus, simple perturbation methods seem to give
very bad results for negative values of the energy, and
it is not dificult to show that the situation is hardly
improved by calculating Z(k, &o) up to second order.
Therefore, it seems quite necessary to use a self-con-
sistent approximation.

The so called Brueckner or Matsubara-Toyazawa
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I'zo. 6. The density of states in the Brueckner approximation for
E=$ and E= —,', . For E=—,'„ the gap between the impurity band-
band and the conduction-band is already very small; for E=~,
the impurity band is completely smeared out.

Therefore, in this case, by using Cardan's formula,
e(E) can be calculated immediately. Qualitatively, the
results are reasonable; for small values of E a narrow
syrmnetrical impurity band is obtained and this band is
separated from the conduction band by a gap; this
gap disappears as expected when E increases. How-
ever, quantitatively, the method is very bad, as can
be seen by comparing the results obtained for cV= s by
using this approximation (see Fig. 6) and the nearly
exact results calculated for the same density of impurity
centers (see Fig. 1).

Thus, for small values of E, this approximation fails
to give a physical picture of the formation of impurity
bands; the broadening predicted by this theory is
much too large. For large values of Ã, this method may
be useful, but for small values of X, the problem must
be carefully re-examined.

approximation' seems very appealing and has been
described in the literature as "a scheme quite adequate
for most practical problems. " In this approximation,
when a center interacts with an impurity, the inhuence
of all other impurities is taken into account by using a
self-consistent Green's function (see diagrams of Fig. 5).
In the 8 model, this propagator can be simply written

III. METHOD OF THE SELF-PROPAGATOR

In order to build a new chain of approximations, we
start from the basic idea that each electron is wandering

Sy setting
G(k,ot) = Lto —k' —Z(to)g-'.

~( )=L '—&( )j'"
we obtain the self-consistent equation

~'( )= +2&v( )/9( )—'j (1~)

which determines Z (co). The corresponding level density
ss(E) is given in terms of y(ar):

ts(E) = (1/2z ) Re Ly (E+i0))-'. (16)
' J.R. Klauder, Ann. Phys. (N. Y.) 14, 43 (1961);F.Vonezawa,

Progr. Theoret. Phys. (Kyoto) M, 357 (1964).

(a) (b) (c) (.")

FIG. 7. Simpli6ed diagrams. The articulation points are indi-
cated on the atom circles by dots Here the drawi.ngs (a) and (b)
correspond, respectively, to the diagrams (a) and (b) of Fig. 1
(and also to other diagrams having the same structure). The con-
tribution associated with diagram (c) is the matrix t (~), and is the
sum of the contributions corresponding to an the diagrams of
Fig. 2. The diagram (d) corresponds to the diagram (a) of Fig. 4.
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Fro. 8. Expansion of G(/', ra). The articulation points are repre-
sented by squares and the operators S(k,co) by a wavy line.

from atom to atom, and therefore, that the Green's
function should be expressed in terms of diagrams
corresponding to this picture. Consequently, we intro-
duce a new set of diagrams by suppressing, in our
previous diagrams, all the interaction lines. Now, in
these simplified diagrams, the atoms are represented by
small circles (see Fig. 7); successive interactions of an
electron with an atom A are symbolized by a point on
the corresponding circle; and if an electron interacts
with an atom A and immediately after with an atom 8,
we draw a line directed from A to B. Thus, each new

diagram corresponds to a collection of the old diagrams.
The contribution of one of these new diagrams can be
calculated as follows: To each line joining two atoms,
we associate the propagator Gs(k, cv), and to each point
of contact of the electron line with an atom circle, we
associate the J-matrix f(&u) I

the diagonal part of which

is E 'Ze(k &v)).

%e can now define the S reducibility of these new

diagrams by introducing the notion of articulation
point. By de6nition, a point belonging to an atom circle
A is an articulation point if all centers M' (M'4A)
which are met by the electron before reaching A at this
point, are different from the centers M" (M"&A)
which are reached by the electron after leaving 3f. This
definition can be illustrated by the drawing of Fig. 7,
where the articulation points are indicated by dots.

Now, we can split a diagram into irreducible S parts
by cutting the lines which are connected to this point.
There are two kinds of irreducible parts. The irre-
ducible parts of the first kind have both ends rooted on
the same center M; the sum of their contributions (the
ends are excluded) can be represented by an operator
Xo(&o) independent of the wave number k. On the
contrary, an irreducible part of the second kind con-
nects two difterent centers M and M' and carries a
momentum k. The sum of the corresponding contribu-
tion can be represented by an operator $(k,o/). The
self-propagator is defined by

S(k,o/) = 8(o/)+$(k, ro). (17)

Now, it is easy to express G(k, ro) in terms of this
operator; we attribute to each articulation point the
factor /Vf (o/), where /'(re) is the one-impurity / operator
and we describe the motion of an electron between two
articulation points by S(k,&u). A graphic representation
of G(k, o/) is given in Fig. 8, and we can write accordingly

or, more simply,

G(k, (g) =Gp(k, (g)+Go(k, o/)(k I Nt((o) Ik)Gp(k, &e)

+Go(k, (o) (k I
cVt ((o)S(k,(o)St (re) I k)Gp(k, o/)

+Gp(k, a&)(k IM((v)S(k, (u)/A(o/)S(k, rd)/Vf(o/) Ik)Gp(k, /d)+ - . .

G(k~) =Gp(k ~)+Go'(k ~)(k I/A(ro)L1 —/VS(k /d)f(re)] 'Ik). (19)

Therefore, by setting

S(k,r0)=g (uIS(k,o))Ie), (21)

we can write
a (s))

G (k,o/) =Gs(k,ro}+Go'(k, to) (22)
1—0 (at) S(k,(o)

This relation is rather similar to Eq. (9) and both are
rigorous, but S(k,&o) and Z(k, &u) are not related in a
simple way; actually, Z reducibility and S reducibility
are very different notions. This new expression of

G(k,~) can be used as the starting point of a new

approximation, since S(k,&v) can be expanded in terms
of g. It will be shown now that, in the lowest order
approximation and for small values of E, this kind of

expansion leads to fairly good results.
For the 8 model, simplifications occur in the expres-

sion of G(k,co). In this case, the matrix elements of

f(~) are independent of the momentum transfer:

&(k I
/'(~) I ~)=~(~) (2O)

or more explicitly, by using Eqs. (6) and (1O),

G(k, /e) = 1 2'�(o/)"'
(23)

&e—ks ((g—ks)& re&/s i+2/V(~)1/2S(k to)

S(k,~) is the sum of two terms,

S(k,a&) =A (o/)+B(k, re) . (24)

2++1 /' i
ao(k, r0) = 2

~~ (2ts+ 1)~re—ks ((0&/s —ij (26)

&y replacing S(k,~) by the sura of these two terms in

The lower order terms are independent of E and corre-
spond to the full interaction of an electron with two
centers (see Fig. 9). A straightforward calculation gives

/ra'/' i)—
Ao(co) = iI —

II 2 In(co'/' —i)
20)

—ln(tet/s) ln(e'er/s 2i)j (25)
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Eq. (22), we obtain the 6rst-order approximation which
will be examined now.

As the interaction of an electron with two centers is
treated in an exact way, the present approximation
should give results in agreement with the crude nearest-
neighbor approximation. This remark can be checked
by calculating e(E) in the vicinity of the value E= —1.
In this case

Ap(E) —(fEf'~2—1) lnf fEf'~' —1
f

(27)

Bp(k,E) -'7r
f f

E
f

"—1
f
tanh (-,'prk)

)&sin(k lnf fE f'~' —1f)
—-', im ( f

E
f

"—1) cos(k ln
f f

E
f

"—1
f ) . (28)
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rl, (E)dE=X, (30)

a result which was expected a priori.
In this approximation, the function m(E) retains a

singularity for E=—1 and also, as can be easily shown,
for E=O. This unsatisfactory behavior shows that our
method can only be applied in the low-densi. ty region.
However, in its range of validity, it gives fairly good
results as it appears by comparison of our results,
calculated for X=—,

' and plotted in Fig. 10 with the
exact calculations of Fig. 1. Thus for low values of the
density of impurity centers X, this method seems to
lead to realistic approximations' and therefore can be
used to study more complicated problems.

Fzo. 9. Diagrams represent-
ing Sp(k cd) =Ap(co)+Bp(k co):
(a) Ap(~)', (b) a, (~).

(al (&)

However, for E&4, the approximation breaks down completely
and in this domain our approximate Green's function has a real
role which is spurious.

The function Bp(k,E) is a function which oscillates
strongly and it is easy to show that its contribution to
the calculation of e(E) for small values of fE+1

f
is

negligible. In this approximation, we get

e(E)=iV' (2f fE f'~' —1 f[1—2$1n
f
fEf'~' —1f]') '.

(29)

This expression has a form which is not very different
from Eq. (12) since both expressions are nearly
proportional to 1P/f f

E
f

—1
f

except at the singularity
point. Moreover, we verify easily that

FIG. 10. The density of states obtained for S=—', by using the
"self-propagator" method to the lowest order approximation.

IV. CONCLUSION

The motion of an electron in a potential produced by
random atoms can be studied by perturbation theory
but in diferent ways. YVhen the density of atoms is
large, the "Brueckner method" seems adequate. On
the contrary, if the atoms are dilute, good results can
be obtained by using the "self-propagator" method
which has been described in the preceding section.

Now in order to deal with practical questions, two
main problems remain to be solved. First, we need
new approximations which could be valid both for low
and high densities. For this purpose, it is necessary to
take into account, in an accurate way, the interaction
of an electron with the nearest atoms as well as the
interaction with distant atoms. On the other hand, the
correlation effects which have been neglected here
are rather important in the low-density limit and must
be properly treated. In principle, these problems can
be easily solved by perturbation theory, but difficulties
arise from our requirements of convergence and
simplicity: An approximation must be both realistic
and easy to compute. Of course, the new mathematical
models would find a wide range of applications in the
study of random processes such as the conductivity of
electrons in impurity bands, or the electrical properties
or liquids.
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