
A 1522 B. %. M AXF I EL D AN D W. L. M cLEAN

ACKNOWLEDGMENTS

%e are grateful to A. C. Rose-Innes for supplying the
niobium used in this investigation and to K. R. Dobbs
and J. M. Perz for sending a preprint of their work.
Ke thank H. Fenichel for assistance with the program-

ming and A. Hoornbeck and A. Siemons for help in
constructing the apparatus. It is a pleasure to thank.
B. Serin for his continual interest in this project. Ke
are indebted to the National Science Foundation and
to the Rutgers University Research Council for financial
support.

P H YSI CAL REVI EW VOLUME 139, NUMBER 5A 30 AUGUST 1965

Correlation Functions for a Heisenberg Ferro1nagnet*

S. H. Lzv
Institute for Atomic Researctt, DePartment of Physics, Iowa State University, Ames, Iowa

(Received 7 April 1965)

It is shown that the ac longitudinal susceptibility of a Heisenberg ferromagnet is proportional to the
Fourier transform of a dynamical s's correlation function of the spins, s being the direction of the spontaneous
magnetization. The susceptibility can also be calculated by the Tyablikov decoupling approximation.
Hence, the dynamical ss correlation function is obtained by taking the inverse Fourier transform of the
latter result. This expression for the correlation function is an interpolation formula which agrees with the
noninteracting spin-wave theory at very low temperatures and with the statistical theory at very high
temperatures. The applications of these correlation functions to speci6c heat, susceptibility, and electrical
conductivity are also discussed.

I. INTRODUCTION

'T has been very fruitful to study the properties of
i ~ ferromagnetic materials in terms of the Heisenberg
model. The model consists of a regular array of localized
spins that are coupled together by the so-called ex-
change interaction. In practice, the exchange coupling
parameters are regarded as phenomenological constants
whose values are determined by htting the theory with
a set of experimental results. Then one can use the
model to explain other experimental results and thereby
correlate a large number of related phenomena. It is
clear that we must understand the statistical dynamics
of the Heisenberg model in order to complete this
program. This has not been entirely successful because
of the mathematical difhculties in solving the model.

Considerable progress has been made toward
approximate solutions of the model at high- and low-

temperature regions. At temperatures very low com-

pared with the Curie point, the normal modes of the
spin system are of wave character. The dynamics of the
model may be studied in terms of the spin-wave
approximation. ' ' At temperatures high above the
Curie point, there is no long-range order and each spin
interacts comparatively strongly only with its nearest

*Contribution No. 1691. Work was performed in the Ames
Laboratory of the U. S. Atomic Energy Commission,

t T. Holstein and H. PrimakoG, Phys. Rev. 58, 1098 (1940);
see also C. Kittel, Quun4um Theory of Solids (John Wiley R Sons,
Inc. , New York, 1964), Chap. 4.

2 F. J. Dyson, Phys. Rev. 102, 1217 (1956).
' F. K.eQer and R. Loudon, J. Appl. Phys. 32, 2S (1961).

neighbors. Its interaction with other spins is progres-
sively weaker when the latter are farther away. In this
case, one can expand the partition function or the free
energy into a power series of the inverse temperature. 4 '
One can then analyze the properties of the model in the
paramagnetic temperature region. The Curie point
corresponds to the temperature at which the power
series for the susceptibility diverges. In recent years,
numerical techniques have been developed to extrapo-
late the power series to the region near its circle of
convergence. ' ' This makes it possible to understand a
number of critical phenomena that occur just above the
Curie point.

At temperatures lower than but not negligibly small
compared with the Curie point, both the above-
mentioned methods of analysis fail. In this case, the
Weiss molecular-Geld approximation' or the more
refined Bethe-Peierl-Weiss" (BPW) approximation is
useful. These methods ignore partly or wholly the corre-
lation between the transverse components of the spins,
and consequently, disagree with the spin-wave approxi-
mation at low temperatures. Above the Curie point,
the Weiss approximation gives no short-range order.

' W. Opechowski, Physica 4, 181 (1937).' G. S. Rushbrooke and P. J. Wood, Proc. Phys. Soc. (London)
A70, 765 (1957); Mod. Phys. 1, 257 (1958).' C. Dornb and M. F. Sykes, J. Math. Phys. 2, 63 (1961);
Phys, Rev. 128, 168 (1962).

G. A. Baker, Phys. Rev. 124, 768 (1961);129, 99 (1963).' J. Gammel, W. Marshall, and L. Morgan, Proc. Roy. Soc.
(London) A275, 257 (1963).

9 P. Weiss, J. Phys. 6, 667 (1907)."P.R. Weiss, Phys. Rev. 74, 1493 (1948).
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In 1959, Tyablikov" gave an interpolation theory
derived from a study of two-time Green's functions for
the transverse components of pairs of spins. The equa-
tion of motion of these Green's functions involve the
Green's functions of three spins. If one makes a de-
coupling approximation to these higher order functions,
one obtains a closed system of equations from which
the two-spin Green's functions may be solved. A number
of interesting results can be extracted from these
approximate Green's functions, for instance, the
magnetization and susceptibility as functions of the
temperature, the transverse correlation functions of the
spins, and the Curie temperature in terms of the
coupling constants. An important feature of this theory
is that it agrees with the noninteracting spin-wave
theory at very low temperatures and with the statistical
theory at very high temperatures. The predicted Curie
point ls veiy clpse tp the other thepries. 6' ' '3 Althpugh
the original version of the theory was for spin 2 only, it
has been extended to general integral or half-odd
integral spins. "—"Other decoupling schemes have also
been derived so that the results agree with the Dyson
theory of spin waves at low temperatures. ""

Since this theory agrees with the limiting theories at
both temperature limits, there is hope that the results
may not be far from the true solution of the Hamiltonian
over the entire temperature range. This is clearly an
improvement over the molecular Geld or BPW theories
because the transverse correlation between the spins is
taken into account. Nevertheless, it has not been
possible to make a complete study of the Heisenberg
model in this way because an essential quantity, the
longitudinal or ss correlation function of the spins, does
not follow directly from the theory, s being the direction
of the magnetization. Kawasaki and Mori' "succeeded
in relating the ss correlation function above the Curie
point with the static, wavelength-dependent suscepti-
bility of the system. Tahir-Kheli and Callen" proposed
a different form for the function in the entire tempera-
ture range. Both theories are incomplete because the
former is not applicable below the Curie point, and the

'
¹ N. Bogolyubov and S. V. Tyablikov, Dokl. Akad. Nauk

SSSR, 126, 53 (1959) LEnglish transl. : Soviet Phys. —Doklady 4,
604 (1959)j; see also V. L. Bonch-Bruevich and S. V. Tyablikov,
The Green Fssnction Method in Statistical 3Iechanics (North-
Holland Publishing Company, Amsterdam, 1962), Chap. 7;
D. N. Zubarev, Usp. Fiz. Nauk SSSR, 71, 71 (1960) LEnglish
transl. :Soviet Phys. —Usp. 3 320 (1960)g.

's H. A. Brown and J.M. Luttinger, Phys. Rev. 100, 685 (1955).
"For a comparison of these results, see H. B. Callen, Phys.

Rev. 130, 890 (1963).' Yu. A. Izyumov and E. N. Vakovlev, Fiz. Met. i Metalloved
9, 667 (1960)."K. Kawasaki and H. Mori, Progr. Theoret. Phys. (Kyoto)
25, 1045 (196i).' R.A. Tahir-Kheli and D. ter Haar, Phys. Rev. 127, 88 (1962).

«~ H. Mori and K. Kawasaki, Progr. Theoret. Phys. (Kyoto)
28i 690 (1962).

'e K. Kawasaki and H. Mori, Progr. Theoret. Phys. (Kyoto)
25, 1043 (1961)."R.A. Tahir-Kheli and H. B. Callen, J. Appl. Phys. 35, 956
(1964).

latter is incorrect above the Curie point in predicting
that the ss correlation is different from the xx or yy
correlation for an isotropic model.

In this paper, we show that the wavelength and
frequency-dependent susceptibility of the system in
the direction of the spontaneous magnetization is
proportional to the Fourier transform of a two-time zs
correlation function of the spins. On the other hand, in
analogy with Kawasaki and Mori, the ac susceptibility
is solved by the Tyablikov decoupling approximation.
Hence, one obtains expressions for the longitudinal
dynamical correlation functions by taking the inverse
Fourier transform of the latter result. The final expres-
sions are shown to be interpolation formulas which
agree with the high- and low-temperature theories.
Thus, we have completed the task of calculating all the
correlation functions for a Heisenberg ferromagnet in
the Tyablikov approximation. The same technique
may be used for the longitudinal correlation function
in other decoupling schemes. In separate sections, we
discuss the application of these correlation functions in
the study of the thermodynamic and transport prop-
erties of Heisenberg ferromagnets.

II. LONGITUDINAL SUSCEPTIBILITY

The Hamiltonian for the Heisenberg ferromagnet
may be written as

H= h+ 5*—g J"—S"S

where i, j label the locations of the spins S;, S; on a
crystal lattice, J,; are the exchange coupling constants,
h is an external static Geld expressed in energy units.
The spontaneous magnetization of the system lies in
the positive s direction. We adopt the unit system such
that 6=1. The longitudinal susceptibility is defined as
the linear response to a small external field in the s
direction. With a 6eld of wave vector q and frequency
+ applied on the system, the total Hamiltonian becomes

where

f Q g.zeiq Rs f/' s

and f is a small parameter. The Fourier transform of
the spin operators is defined by

Sq= (1/Ã) P S;e-tq R',

and R, is the position vector of the ith lattice point. We
study the response of the system by calculating the
expectation value of the operator S,', with j an arbi-
trary lattice point. By definition,

(~')=T (ts'~')

where p' is the density operator whose equation of
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motion is

i(dp'/«) = [H',p'j. (6)

ism. We de6ne a Green's function"

G»" (~) =(2'S-»'(r)S»*(0)& P—&~&& (16)

We regard the Geld as being turned on adiabatically so
that the boundary condition is p'( —~)=p, and

p = e sir/Tre eH

It was shown by Kubo" that the above equation has
an iterative solution

where S»z(r) =e'~S»'e '~ and T is the r-ordering
operator; then we can extend the definition of G»&')(r)
outside the range (—P,P) as a periodic function of
period 2P. For )8)r) 0, we can easily show that

G (z) (7 tl) —G (z) (r)

with

p'= p+p, +O(f'),
This enables us to expand

G, & )(~)= (1/P) P g~*)(q,~„)e-'-» ,

p =icVf LS *(t' t) pje —'""dt' (9) where a&„=2nm/P. We can also represent b ~') (q,o&„) in
terms of the spectral representation

and S *(t)=e'~'S 'e '~' If we expand the expectation
value in Eq. (5) into a power series of f, we have

(S,z) —ey f~ .o ) (~)e z&z ty—0 (f2)

cJ'*) (q,~-) =
d0) 1—e

~.(q,~')
2&i Q) 1'

(18)

where o.=Tr(pS;*) is the spontaneous magnetization
per spin in absence of the ac field, and

"'( )= —'~' (P'-.'(t) S *(0)3& '"'«(11)

where J,(q, ru') was given in Eq. (14). If we define

s."'(~-)=&8'*)(q,~-),
then, by comparison with Eq. (15), we find

a» o) ((u) =s, o) (ice—5) .

(19)

(20)

It will be convenient to define the Fourier components
of o;&') ((v):

ii) (~) (1/~) P e. ,(1) (~)e—i» R (12)

The quantity o»&')(cv) has the same expression as
0;")(~) except that S," is replaced by S»z.

The two-spin correlation function in Eq. (11) has a
spectral representation

Ao
(S- *(t)S '(0)&= — -J.(q, ') '"',

2~
where

J,(q, ')=2 P p (m[S *jn)(njS 'jm&

&&&(Z.—Z„+~), (14)

and the sum is taken over the complete set of eigenstates
~m), ~n) of H. It is then easy to show that

(fS- *(t),S *(o)j&=
dG)

J,(q,co') (1—e—e"')e
2x

o»") (a)) =1V
de' 1—e t'"

J.(q,s&')

27K CO +0&+15
8=0+, {15)

"R.Kubo, J. Phys. Soc. Japan 12, 570 (1957).

after a simple integration. In later calculations, it is
more convenient to work in the imaginary time formal-

Putting this result in Eq. {13),we obtain the dynamical
ss correlation function of the spins.

III. TYABLIKOV APPROXIMATION

We calculate in this section the longitudinal suscepti-
bility by the Tyablikov approximation. For simplicity,
we exhibit the procedure for spin--,' case only. The
general spin problem is briefly sketched and the results
displayed at the end of this section.

We consider a Green's function

G' (t) = (2'S'"(t)S (0)), (22)

where T is the time ordering operator of Dyson. The
Hamiltonian of the system is H' in Eq. (2). Since H' is
time dependent, we must be more careful in defining the
thermal average. Consider the time dependent part of
H' as being turned on adiabatically, then at t= —~ the
system has the Hamiltonian B'. The subsequent motion
is described by the time development operator U(t, t')

~' See A. A. Abrikosov, L. P. Gorkov, and I. E. Dzyaloshinski,
3Iethods of Quantum Field Theory in Statistics/ Physics (Prentice-
Hall, Inc., Englewood Cli6s, New Jersey, 1963), Chap. 3.

Hence 0»o) (cv) and s»o) (cu„) are related by analytical
continuation. In the next section, we shall calculate
s»o)(cv ) by the Tyablikov approximation. Then, by
Eqs. (18) and (19), one can show that

1 s "&( iu)+t—&) s, "&(—ice f—&)—
~.(q,~)=— (21)

AT 1—e-P"
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which satisfied the equation of motion

i(a/at) U(t, t') =Il'(t) U(t, t')

and the boundary condition

U(t, t') = 1 .

independent of f, we find

(23) d—g;, (0) (r) =2S;;oS(r)—t g;, (0) (r)
dr —2 Q J,),oL(t, ) (r)—g&,;(')(r)]. (32)

(24)

In terms of U the Green's function is defined as This is just the Tyablikov equation of motion in the
imaginary time representation. Equation (32) may be
solved by making space and time Fourier expansions,
~.e.,

G,;(t)=i Tr[p(—~)U(—~, t)

)&S,+U(t,0)S;—U(0, —00)j, t&0
=i »Lp( )—U(—",0)

&&S;-U(o,t)S+U(t, —~)j, «0, (25) 9' "'(r)= (1/&)Z(1/P)Z 8")(q,~-)e""" '""', (33)

where p(—qo) is the density operator at t= —00 and is
identical to the p in Eq. (7). It is straight forward to
derive the equation of motion of G;;(t) by use of the
properties of U as given in Eqs. (23) and (24). The
equation is

where

g(0) (q,&o„)= 2o/(&oq —i&0„), (34)

3l is the total number of spins. The solution for
() (') (q,&0 ) is found to be

i(d/dt)G, ;(t)= 28;;o, (t) 8 (t)
-'(TLS;(t),~ (t)~S;-(0)), (26)

where

,(t)=T [p(— )U(—,t)S, U(t, — )3

and

&oq=h+2o J(0,q),

J(p q) p J, Le
—tp ~ Rtq e tq Rt—g)

k

(35)

(36)

This quantity appeared before in Eq. (5) because it can
be readily verified that p'= U(t, —~)p(—00) U(—~, t)
The second term in Eq. (26) may be explicitly evalu-
ated; the result is

(It+feiq R; i~t)G (t)—
+2 2 J' ('(TS''(t)S" (t)S' (o))

—(TS"(t)S"(t)S (o))} (27)

After the decoupling approximation, Eq. (26) reduces to

i(d/dt)G„(t) =2&);;o;(t)I)(t)+(tt+ fe" ' '"')G (t)"
+2 Q J; ( (t)G,, (t)—;(t)G;(t)}.(28)

(S'-S") =.= (1/&~) 2 2 S ' ( ).-'--'

= (2o/Ã) P iV(&oq), (37)

where &=0+, X(&oq)=Lee"q—1$ '. Hence, the equation
fol (T 1S

1 1 PMq—=—P coth
20' E 0 2

As shown in standard treatments, 0. is found by the
following self-consistency conditions:

(S;—S,+)

We solve this equation by perturbation. If we expand
all the quantities in power series of f, we may write

O;, ( ) =O';"'( )+fr "'( )+0(f') (30)

For s, (r), we analytically continue Eq. (10) to obtain

'()= +f *"'( ) '""'+0(f')
Putting these results into Eq. (29) and collecting terms

(31)

We now make analytical continuation to the imaginary
time domain by replacing t by ir, I by i&0—„,G t (t) by

i g,, (r), and o;(t) by—s, (r) The qua.ntity &0„=2qre/p,
and e is an integer. This gives the following equation of
motion for (),t(r):

(d/dr) g;;(r) =2l);;s;(r)I)(r) —(tt+ fe'q R' '""')g;;(r)'
—2 P Jit, (st, (r) g;t(r) —s;(r) g&„.;(r)}. (29)

If we collect terms proportional to f, we obtain

(d/dr) g ( ) (r) =
2&I&

. .S.( ) (r)&II(r) eiq Rte itr~rg .(0) (r)— .

2or ~ ~LB "'—(r)—B~ "'(r)j

+2K J'iLs'"'(r)gt "'(r)—si")(r)g;;' (r)]. (39)

&1) (r) = (1/X) P s &1)
(&0 )eiqt Rt iranr—(40)

In terms of these Fourier coeScients, the equation is
I

We make the following space and time Fourier
expansions:

1
g "(i)(r)= Q —P g(i)(q q& &0 )ei(qt Rt—qt Rt') —itrrtr

1V2 qtqt P ttt
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easily solvable; the result is

8")(qi q2,P) )=
COq& ZMm

2w5q1
X 2sqi qp (PPn)

2 ~

07q1 q ZMm& ZCOn

((pq1—qu &qu)Sq1 —q2 (p)n)

(dqp 2(Pm+ 2P)n

The self-consistency condition now reads

b:(.) I
=o-=(S' S'+).=o= l —s'(.) I.=o

Collecting the first-order terms in f, we find

S.(1) ((p )— Q g g(1) (q q (p )ei(ql —q2)'Ri+inm&

m q&qp

=—,Z 2sq —q.")(~-)N(~q )E q&q2

LN((p„) —N((p„q) j
ZG)n~ M q1 q (OqP

2((Pq1—q2 (Pq2)Sq1—q2 ((Pn)

2MnWq2 ~q&

where
(),,b (t) 0;(a,t),

0,(a t) =(LS;+,e s' S; ]). (48)

Again, we analytically continue into the imaginary
time domain and expand (),, (r), 0;(a,r), and s, (r) into
power series of f. Then we may solve for ()...(P) (r) and
()@,("(r) in terms of o, s, ("(r), On;(" (a, r)& and
On;("(a,r). The self-consistency condition now takes
the form

b' (r) I
=o-=(e"*S'-S'+).=

= LS(S+1)—(d/«) —(d'/«') j
X&;(a,r) I,=p,

where
n, (a,r) =(e s").

(49)

(50)

The quantities s, (r), 0,(a,r) are related to 0;(a,r) by

Thus, all the correlation functions may be calculated
by using this expression for the spectral density.

The general spin problem is solved in an analogous
way. Following Callen, "we define the Green's function

G,;.(t) = i(—TS,+(t)e.s *S,-(O))

After decoupling, the equation of motion of this Green's
function is exactly like Eq. (28), except that the first

(41) term on the right-hand side is replaced by

XL'N(~ )—N(~„)j e'"'—"'"' (43) s'(r) = (d/da)ft'(a, r)l .=p,

0;(a, ) ={S(S+1)(e'—1)+( '+1)(d/d )
—(e '—1)(d'/da'))Qg(a r) . (51)

Solving explicitly for the Fourier transform of s;("(r),
we obtain

(44) 20'rt N ((pk) N ((pk—q)
s," (pp„)=

N k Zppn+Mk q
—Mk

2n
1+—P

2p)n+ p)k q
—(pk

COq CO&

I:N (~k)—N (M.-q))

(52)J,(q,(p) =
N(1 e-s-)—

8 (q,(p)C(q, (p) —A (q,(p)D(q, (p)
X

C2 (q,(0)+ D2 (q,(p)

where

p) k ——f2+ 2o.J(O,k), (55)
, (45)

C,s+ (S+1)(1+C)s+i
0= ——(1+C),

(1+@)2S+I @2S+1
where (54)

1 N((pk) —N((pk q)
A (q,(p) =—g

N k pp+(pk q
—(0k C = (1/N) P N ((pq), (55)

After some straightforward manipulations, we obtain

4 ' N(~k) —N(ppk q)
s, (') ((p„)=

N k Mon+ ppk q
—(0q

40 ((pq —p)k q)LN(ppk) —N((pk q) j'
1+—P

n+(Pk —q

The spectral density function can be found from
Eq. (21) to be

80'

~(qr(p) = E I N((pk —q) N( M)k)~( p)+(pkq (pk) qE ~

(~q —~k q)IN(~k) —N(~, q)j
C(q )=1+—P

M+0&k q
—(Vk

1 (2S+1)l(s
'9= a+1+C— (56)

S(S+1) (1+@)2s+& @2s+1

1 t' d i 2s+i zs+1

(57)4xo- l(s =
D(q, )= 2 ( — -)LN( .-)—N( .)3 (2S+»'«*& 1+4'(1—~) =

S ~
XI)((p+ppk q

—(pk). (46) These last four quantities are functions of temperature
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se+~ ) 5+1
Zs=E

~

/@m
m=o (25—m+I]

(59)

where
~ ~

= [I'(m+1)g/[I'(r+1)l'(e —r+1)j are the
&I&

binomial coefficients of the order n.
We also write down the expressions for the transverse

correlation functions for later use. These are

20-e'scoq t

&s;(t)s,+(o)&=-
pr e

(60)

only. For integral spins, X8 has a simple form

@S(j+g&) 8+1 (»)
and for half-odd integral spins we may write P z alter-
natively as

we expand 0- in powers of h. In the limit of k~0, the
quantity

a/h —+ g, (68)

where p is the paramagnetic susceptibility of the
system. From Eq. (38) we can derive the following
equation for g.

1 2
~ (69)

2x ~P ~ 1+2'~(o,q)
'

At high temperatures where one can expand in powers
of P, the susceptibility is found to agree with the
statistical theory to the order P'. In the paramagnetic
temperature region, the transverse spin correlation
function is found by taking the proper limits of Eqs. (60)
and (61) for h-+ 0. The results are, for 5= s:

ae(e
&s,+(t)s,-(o)&=-

X e~"q—1
(61)

(s,+(t)s;(o)&= &s;(t)s,+(o))=~.p 1+2'~(o,q)

(70)

for general spin. They are derived by an analytical
continuation of g&0' (q,~„) into the real frequency
domain and taking inverse Fourier transform. In terms
of the spectral representation, we have

For the longitudinal correlation function, we note that

x
sq&" (ru„) = &0

1+2x~(o,q)
dc'

&5;(t)5,+(0)&= —J (q,(o)e-'"'
2~

(62) in the limit. When continued to the real frequency
domain the Kronecker 8 becomes p '6(co). Hence,

where

dM

&5- '(t)s. (o)&= —~+(, )2'
(63)

x
&s,*(t)s,*(o))=

iVP 112XJ(o,q)
(71)

J (q,&u) = [4vra/E (1 —ee")$6 (&o+(v—,), (64)

J+(q,(o) = [4vnr/E (1—e—e")78 (co—(u,) . (65)

IV. NATURE OF THE RESULT

Some properties of the ss correlation function as
found in the last section are discussed here. As before,
we use the spin--,' case as the example, although the
properties under discussion are common to all spins.

At very low temperatures where few spin waves are
excited, we may approximate a——,

' and ignore E(cos)
compared with unity. Equation (44) then gives

These results show that the xx, yy, and ss correlation
functions are all equal. This is to be expected, because,
when h=0 in the paramagnetic region, all directions in
space must be equivalent. These formulas also agree
with those of Kawasaki and Mori. The result of Tahir-
Kheli and Callen for the ss correlation function is
different from the transverse ones above the Curie
point, and, consequently, the rotational invariance
property is violated. For small q, the above correlation
functions are in accord with the van Hove theory of
critical Quctuation. 22

There is a sum rule for the static correlation functions
of the spins, namely,

1 E((og) —lV (cog,)
es"'(~.)=—E

iV & zaan+Mk s M Jr

(66)
Q (S, S,)=s(s+1). (72)

From Eqs. (21) and (13), we And

1
(5,*(t)s, (0)&=—.2 &( .—,)g2

X [1+%(o)g)je—'&"&—"&-s&'. (67)

This is in agreement with the result in the noninteract-
jrjg spin-wave approximation. Above th|; Curie point,

The derivation of this rule is trivial. Above the Curie
point, the left-hand side is

1VP a 1+2XJ(o,q)

which is equal to 3/4 by using Eq. (69). So the sum
rule is checked out all right. In the spin-wave region,

"L. van Hove, Phys. Rev. 95, 249 (1954).
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one can also verify that the sum rule is approximately
satisfied. However, there seems to be no easy way of
checking it at a general temperature below the Curie
point. Perhaps one should not even expect to do so,
because the expressions for the correlation functions
are only approximate.

In conclusion, we have shown that the static and
dynamic ss correlation functions obtained in the last
section are indeed interpolation formulas. The sum rule
and the rotational invariance properties are verified
above the Curie temperature.

V. THERMODYNAMICS OF THE
HEISENBERG FERROMAGNET

The internal energy of the Heisenberg ferromagnet
is given by

z= (H) = ivh —Px,;—&S,'S,
&

which is the same as in the molecular field theory. For
T))T„it can be verified that

C—6iVx' Q Jg'. (79)

dC 3$ P4(dx ' &[1+2xJ(0q)7 ')

4 x' «P &L1+2x&(0,«)7-'&

&[1+2xj(0,«)7 ')
(80)

&[1+2»(0,«»-
&

Since

&[1+2x~(0,«)7 '&'—&[1+2x~(0,«)7 '&

&&[1+2x~(0«)7 ')&0 (81)

Since g~ T ' at these temperatures, this formula gives
the familiar T ' term for the specific heat. One can also
study the dependence of C on the temperature by tak. ing
its first derivative:

= —X[ho+p J(q)(S, S,)7, for all q, it follows that73

after a simple transformation. The quantity S, was
defined in Eq. (4) and

J(q) =P J;;e '&'R'4.

dC/dT&0. (82)

Near but above T„ the susceptibility x is large, and so
only small values of q are significant. It is well known
that

J (O, q)=nq' (83)
So the internal energy can be computed if the static
correlation functions of the spins are known. Differen-
tiating the internal energy with respect to the tem-
perature, we obtain the specific heat due to spin
disorder. From this we can calculate the entropy of the
system. In this manner, all the thermodynamical
functions may be computed.

Although we have expressions for all the correlation
functions, it is still dificult to carry out this study at a
general temperature because of the numerical work
involved. For the moment, we will discuss only the
properties in the paramagnetic temperature region
when h —& 0. In this case, it can be verified that

~= —3 2 (~(q)x/P[1+2x~(0, «)7}, (73)

for small q, so we can find

&[1+2xj(0,«)7-')-x ',
Vp1

([1+2xJ(O,q)7
—')=-

8m. (2ux)'"

1 Vp
([1+2x~(0,«)7 ') =

32m (2+x)'"

(85)

(86)

where Vp is the volume of the unit magnetic cell.
Similarly,

dx/e=-:&[1+2x~(0, «)7- &-

where x is given by Eq. (69). The specific heat is

([1+2x~(0,«)?')'-
C=

&[1+2x~(0,«)7-')—
(76)

Thus,

2'=—(2~x)'".
Vp

67r'Xp, 4n'/Vo'. —

(87)

(88)

where
1

&[1+2x~(0,«)7 ")=—r, (77)~ ~ [1+2x~(0 q)7"

For convenience we set the Boltzmann constant equal
to unity. At the Curie point T. we have p ~ ~, so

The specific-heat curve has a Gnite, negative slope at
the high-temperature side of T,. We will make a similar
study below T, by numerical analysis and will report
the result in the future.

The susceptibility just above T, depends only on the
lower part of the spin-wave spectrum:

C (T.)= —,'31', (78) x=[(vo'T.4)/(8''u') 7 (T—T,)—'. (89)
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The molecular field theory gives where q=k —k'. We write the dynamical correlation
functions in the spectral representation

while the method of Pade approximants gives~'

where

dc'
(S-o(t) So(0))= —I(», )e '",

2'
(95)

It is seen that the present theory over-corrects the
molecular Geld theory.

H"=g I(r;—R,)s,'S;, (90)

where r;, s; are the position and spin of the ith electron
and R;, S; the position and spin of the jth ion. The
interaction potential is often approximated by a 8

function in space, i.e.,

VI. TRANSPORT PROPERTIES OF
FERROMAGNETIC METALS

In a ferromagnetic metal, the spin disorder gives
rise to an additional mechanism for the random scat-
tering of the conduction electrons. As a result, character-
istic anomalies occur in all the transport properties of
the material. We analyze here the effect on the electrical
resistivity. Other transport properties may be studied
in a parallel way.

The interaction between the conduction electrons
and the core electrons is usually taken as the s-d or
s finteract-ion" '4:

afg) I
do~ Q b(« es. —ei)—

at),
XLfs(1—fa )—e s"fa (1—fk) j&(q,~). (97)

Following the method of Bloch,"we assume the follow-
ing form for the distribution function:

afo(«)
f~= fo(es) rr&, —

Bent(t,

(9S)

and a similar expression for fj, . The quantity rr depends
only on E. In this problem, the Geld is considered to be
an infinitesimal. Substituting Eq. (98) into Eq. (97),
we And the terms independent of n to be

fo(«)t:1—fo(«)7—e " ' '
fo(«)L1—fo(«)j=0.

J(q,&o) =-', I+.(q,e~)+-,'J (q,co)+J,(q,(o), (96)

and the quantities on the right-hand side are defined
in Eqs. (13), (64), and (65). Then the collision term
takes the form

I(r,—R;)= IVoh(r,—R,) 91
The terms proportional to a are collected:

(af /»)f+(af /at). =o

The first term is the field term whose expression is

(92)

where Vo is the volume of the unit cell. For simplicity,
we use the free-electron model for the conduction band.
In the transport theory, we study the one-particle Bt/, 4
distribution function fj, satisfying the Boltzmann
equation X{&,pe e"fo(es—~)t1—fo(es)j

4'&fo(«—)t1 fo(« ~—)j) (99)

(af,/at) t ez(afj,/ak, )—— (93)

for an electric Geld E in the y direction; e is the algebraic
charge of the electron, k„ is the y component of the
wave vector k. The collision term may be calculated
from the interaction Hamiltonian, Eq. (90) in the first
Born approximation. If we average over the spins of
the conduction electrons, we obtain"

s(e)'e—eIe ) td]

x{(s,(t).s, (0))f,(1-f„,)
—(S,(0) S,(t))f~ (1—f&)), (94)

o' T. Kasuya, Progr. Theoret. Phys. (Kyoto) 16, 58 (1956).
24 S. H. Liu, Phys. Rev. 121, 451 (19M}."S.H. Liu, Phys. Rev. 132, 589 (1963).

The higher order terms of n are neglected. We then
transform the k' sum into a sum over q and average
over the directions of q. In general, J(q, o&) depends on
the direction of q, so we expand into spherical
harmonics:

I(q,~)=Z Ii-(v,~) 1'i (aA), (100)

so F. Bloch, Z. Phys. 50, 208 (1930).

where 8, @ are the polar angles of q with respect to some
spatial coordinates. For the present discussion, we will

only work out the contribution of the isotropic com-
ponent of J(»,M). This is usually the most important
contribution, and it corresponds roughly to the resis-
tivity of a polycrystalline material. For simplicity, we
will write J(g,~) in place of Ji (q,ei) for 1=m=0. Then
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the scattering term becom

(gf„) I'~,
q ) d„qdqJ(q»

i ~( ) 16~'k

&
—s"fe(ep ~)t

(101)
tP14&

( )L-1 fo(eg ro-
2k'

der in E the field term i

8 g r ———elk, m)Pfp(ej, —
o I, . 102

from both si es, accling ~ r
obtain

eZ nm12V

m 16mb p
J(q,ro), (103)

2 eg(o

. A term of the orderector.where kp

Ththe Fermi
has been ign

i energy. e=k '/2m etng
the distri u ion

6@= p
density can be ca c

~ jt is fpun beThus, the resjstiv y

3~~1~V

32e2k p

pa&J(qk')

p~
(105)

g~m212 P' & &E

16Pe'k ps
(o)

4m 1+2XJ(0,q)

result o e andf deGennes and
l "''f th

gM
' '

del. ' We will report t e
comp elete resistivi y c
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