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Theory of the Interband Ferromagnetic Kerr Effect in Nickel*
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A detailed discussion is given of the way in which the experimentally observed structure in the ferro-
magnetic Kerr etfect (FKE) for nickel can be attributed to optical transitions involving the d and s bands
near the Fermi surface. Absolute calculations are presented for e &'&, the absorptive part of the off-diagonal
element of the dielectric-constant tensor measured by the FKE, for models based on those recently pro-
posed by Ehrenreich, Philipp, and Olechna and by Phillips and Mattheiss for the band structure of ferro-
magnetic nickel. For both models, the peak in s & & is associated with transitions involving 1 (minority-
electron} spin bands. The results for the two models are compared with experiment, and this comparison is
used to discuss their relative merit. Besides serving as a check on the validity of models for the band structure
of ferromagnetic nickel developed from other experimental information, the FKE itself can be used as a
tool for developing such models. A brief discussion of Models 3A and 38 previously developed on this basis
is given. We call attention to the "step" expected at the onset of the contribution of the t (majority-
electron) bands to the FKE structure. Experimental observation of such structure in addition to the peak
already associated with l-band transitions would serve to determine the d-band exchange splitting.

1. INTRODUCTION to the "step" expected at the onset of the contribution
of the t (majority-electron) bands to the FKE struc-
ture. ' Experimental observation of such structure in
addition to the peak already associated with $-band
transitions would serve to determine the exchange
splitting.

The FEE is described by o8-diagonal components
(e = e "'+is„"') of the dielectric constant tensor. It
results from the effect of the spin-orbit interaction on
the electronic wave functions and the unequal occupa-
tion of corresponding energy levels for t- and $-spin
electrons. ""In the present paper, we will give a de-
tailed discussion as to how low-frequency structure in
e ('i, the absorptive part of e, can arise for Models 1
and 2 of I; and we see how the result of absolute
calculations compares to the experimental structure"
shown in Fig. 1.A brief discussion of models 3A and 38
of II based on the detailed treatments of Models 1 and
2 is given. In the course of this discussion, a numerical
error in II is corrected.

The picture we adopt for the physical basis of the
FKE is that of Kittel" and Argyres. "Ke consider the
situation where the electronic structure of Ni is de-
scribed by spin-$ and spin-1 bands split by some sort
of exchange or correlation energy. Then the Hamiltonian
describing the situation for the FKE consists of three
terms.

HE use of the experimentally observed structure
in the ferromagnetic Kerr effect (FKE) in under-

standing the electronic structure of ferromagnetic nickel
has been discussed previously in two brief communica-
tions. ' s (Hereinafter, Refs. 1 and 2 are referred to as I
and II, respectively. ) In I and II, the observed low-

frequency struc'ture~' was attributed to optical transi-
tions involving the d and s bands near the Fermi
surface. In I, the use of the FKE was discussed as a
check on the validity of models for the band structure
of ferromagnetic nickel' ' developed from other experi-
mental information, while in II the use of the FKE
itself as a tool for developing such models was discussed.
The purpose of the present paper is to give a more
complete account of the theory and calculations on
which the discussion of I and II were based. This
should help to emphasize the important information
about the electronic structure of ferromagnetic metals
to be gained from study of the FKEs Ke call attention
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where
Xp——(1/2m) p'+ V(r), (2a)

K,., = (1/2m'c')LVVXpj S, (2b) 8.0-

3',pg
——(e/mc) A. p. (2c)

Here Ko is the usual one-electron Hamiltonian in the
band approximation, whose eigenfunctions are the
Bloch functions (orbital part),

tp„s——u„ke'~'—=
I e,k),

4.0-

EXPERIMENT

KRINCHIK~ MARTIN, 00NIACH, AND NEAL

times spinor, n or P, for $- or j,-spin electrons, respec-
tively. X, , is the spin-orbit interaction, while K,p&

gives the interaction between the electronic system and
an electromagnetic field. The FEE is one experimental
manifestation of the oR-diagonal elements of the di-
electric constant tensor that arise because the Bloch
functions between which the optical interaction (2c)
causes transitions are modified by the spin-orbit cou-
pling (2b). Argyres derived the expression for the
oR-diagonal elements of the dielectric constant for
cubic crystals with nondegenerate bands using time-
dependent perturbation theory. It is perhaps more
illuminating to formulate the problem starting from the
random-phase-approximation expression for the di-
electric constant, ""neglecting broadening and tem-
perature eRects,

e= el+ 't e2 )

where

( 4s.e'1V „he'
e,=l 1— 1— P P P dk

mV&p' m's'+' ~ z&&zr, z &zz

-$0-

-8.0-

-I2.0-

04 0.8
%(d (eV)

I.2

the notation 8 for the change in the dielectric constant
due to the spin-orbit effects. ) Thus the real part of the
oR-diagonal elements of the dielectric constant is the
absorptive part. It is a straightforward procedure to
show that

FIG. 1. Experimental spectral dependence of e (') for nickel. The
data of Krinchik shown is that of Ref. 5.

and

cog„(ekl pl tk). (tklplek).
(&)

tt'((u' —~( ')

dk(ekl pl tk).
2Vrm'OP3Ig ~ Et»s, E &Es

x (tkl PINk). b(cv —co,„). (5)

e~'& (erst order in s.o.) =i(e~t""&+e~t't& l), (6)

ihe'
&tl&) —(~)

8PZ~u~ Et&E~,I:n&Ez

(g
I' dk, (7)

tn~

where the plus sign is for 1 spin and the minus sign for
J, spin, and

Here P denotes principal part of the integral, 0- denotes
the spin, and we use the notation N„s=

I N, k) .
When llk) are given by the eigenfunctions of Kp,

then e& and e2 are the real and imaginary parts of the
ordinary dielectric constant which gives the ordinary
optical absorption and has only equal diagonal ele-
ments for a cubic material. The oR-diagonal elements
of the dielectric constant tensor arise from the first-
order perturbation on the

I e,k) caused by K, ., of (2b).
(Within the approximation of complete orbital quench-
ing, there is no change in the band energies to first
order in 3C, , ) Since R, , is an imaginary operator, the
modification in 8& leads to the imaginary part of the
oR-diagonal elements of the dielectric constant, while
the modification in e2 leads to the real part. (We use

' H. Khrenreich and M. H. Cohen, Phys. Rev. 115, 786 (1959}.
'4 S. L. Adler, Phys. Rev. 126, 413 (1962l.

(tlo. l t).*(~lp;I t).(tl p;I~).—
(g)

rvvith

0=—
I 1/(2m'c') j(vvx p), (9)

where the matrix elements in (8) are for the zero-order
wave functions, so that Q~„,'&' is real. Since the spin-
orbit interaction has the lattice periodicity, all the ma-
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MODEL I to lowest order affects only the off-diagonal elements
of the dielectric constant.

For a cubic crystal, the requirement that 8 be in-
variant under the 48 operators of the group 0~ simplifies
the form" of ~ . Taking the s axis as the direc'tion of
magnetization, only the xy components of 8 are non-
vanishing, so that"

Lp
~Jllg gg Q ~ ~ ~ ~ ~ ~ ~ ~ ~

~ "'~ LM

/
EF

Lp

e1+Zes

(em +&em )
0

(e u)+is (2))

el+ les
0

0
0 , (13)

el+ Zes-

where e„,"& is given by (11) suppressing the super-
scripts ij, with

Lql

--L
ll

L = W L = W

FIG. 2. Band structure near L for Model 1.
I o„l1).(& I p., I t).(f I p„l &).—

(14)

trix elements in Eq. (8) are for a given k; and Q,„,'&'

is a function of k. It should be noted. that (7) differs
from the expression obtained from Eq. (18) of Ref. 11
by a factor o&& ./oi. This occurs because the procedure
used in Ref. 11 is equivalent to improperly linearizing
the Liouville equation used in obtaining the dielectric
constant tensor.

Similarly, the absorptive part of the off-diagonal
elements of the dielectric constant tensor is given by

ice'& (first order in s.o.) = —(e~t""'+e~g""') (10)

with

ij(ll (~)
2+m oP «,&&J,«~«~

XQ~.."~(~—~~..), (11)

where the plus sign is for t' spin and the minus sign
for 1 spin. This agrees with the result obtained from
Eq. (18) of Ref. 11. Because of the opposite signs of
e t and e g, there is zero net off-diagonal contribution
to the dielectric constant for a nonmagnetic material.
There is a net contribution for a ferromagnetic material
because of the shift in energy of J,-spin bands relative
to 1-spin bands as well as any difference in correspond-
ing wave functions for f- and 1-spin bands.

It is clear from the preceding discussion that the
Kramers-Kronig relationship for e &" and t. &'& is the
same as that for e~ and e~, with e& ~ c " a,nd e& ~ ~ "',
i.e., the real and imaginary parts interchanged.

By use of the fact that (ll0, ltr) is imaginary and
(l

I p, I m) is real (which follows from time reversal and
space-inversion symmetry) and Herrnitian, it is easy
to show that

tntr tno ~

Thus, Q&„, and, consequently, e,""& and e ""& are
antisymmetric tensors, so that the spin-orbit coupling

x&, x2, x3 denote the cubic axes of the crystal.
In the present work, we will discuss to what extent

the experimental structure in e "& at about 0.3 eV
(Fig. 1) can be associated with optical transitions in-
volving the 1-spin" d and s electrons near the Fermi
surface for Models 1 and 2 of I. We will also discuss
what additional structure may occur because of transi-
tions involving t'-spin electrons.

As discussed recently by Cooper, Ehrenreich, and
Philipp, " for metals there are two ways in which
sharp structure can occur in the ordinary optical ab-
sorption. Sharp optical structure may be associated with
localized regions of k space surrounding critical points""
in the joint density of states, or in metals with regions
(not. necessa, rily associa, ted with critical points) where
the location of the Fermi level is such that vertical
interband transitions extending over a finite range of k
space between a filled and an unfilled band suddenly
become possible. The same two possibilities occur for
the FKE. All the possibilities for the occurrence of
sharp structure discussed in this paper are of the
second type, that is, transitions become possible over
a substantial part of the Brillouin zone for increases in
photon energy of a few tenths of an electron volt. In
the limited region of the Brillouin zone considered, it is
permissible to assume Q~„(k) between a pair of bands
to be constant when the transition is everywhere al-

"The notation e~t'&('), ~~g'&('& follows that of Cooper and
Ehrenreich. (Reference 1.) Unfortunately, the notation for the off-
diagonal elements of the dielectric constant tensor varies. The
relationship between the definitions for the pertinent references is
indicated below: e~(') =a~" (Ref. 6, Martin, Doniach, and Neal)
=~2' (Refs. 4, 5 Krinchik), c (') =&2' (Ref. 6, Martin, Doniach,
and Neal) = &1' (Refs. 4, 5 Krinchik)."We take the majority electrons leading to a net magnetization
to have 1' spin.

'~ B.R. Cooper, H. Khrenreich, and H. R. Philipp, Phys. Rev.
138, A494 (i965).

rs L. Van Hove, Phys. Rev. 89, 1189 (1953).
r9 J. C. Phillips, J. Phys. Chem. Solids 12, 208 (1960).
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lowed. In the next two sections we will discuss how,
with this approximation, structure occurs for Models 1
and 2 of I. In Sec. 4, we brieQy discuss Models 3A and
38 of II. In the final section of the paper, we will dis-
cuss the result of the calculated values of e '" for
Models 1 and 2, their comparison to each other and
to experiment.

2. CALCULATION OF e &'i FOR MODEL 1

FIG. 3. Approximation to
band structure near L used to
calculate ~ (') for Model 1.

PI IIg+0 ~ ~ ~ 0 ~ ~ ~ ~ ~ ~ ~ ~ 0 ~

m -'«EF
UII ~ I

In this section, we consider the lowest frequency
interband structure in e &') for the model of the band
structure and Fermi surface of nickel suggested by
Ehrenreich, Philipp, and Olechna, which, following the
notation of I, we refer to as Model 1. In this model, as
in that of Phillips and Mattheiss' ' discussed below, the
lowest frequency interband transitions are thought to
occur near the point L where the Fermi level crosses
several closely lying J, bands.

A. Calculation of e "~ in Terms of Band Parameters

The band structure near I. for Model 1 is shown in
Fig. 2. The optical transitions of interest for the
bands occur between the filled portion of the lower
band l (dashed curve) and the unfilled upper band n
(dotted curve). In the absence of damping effects, the
contribution to e "l from the pair of bands is given by
(11), for the case of a single pair of l bands.

e'IE

dk5(ot„t —ot)Q„,(k) . (15)
27l 'Pl CO &l(It, F Eu&EF

The contribution to e (') arising from transitions be-
tween the dashed and dotted l, curves in Fig. 2 can be
found from (15) taking Q as the value at L. To simplify
these calculations further, in calculating the shapes of
the frequency dependence of ~ (" we neglect the energy
diGerence between L~2g and L2. q and assume the dashed
J, band to be parabolic with mt„——m„i (Ls) and"
mt, ——m, i (Lost. .). (We use II and J throughout to
denote quantities which are appropriate, respectively,
parallel and perpendicular to the L-I' direction. ) Also we
take the dotted band as parabolic with m„tt ——mtti(Los)
and m„,=m» (L»t, ), which we take equal to ~ (well
representing the results of the band calculations of
Hanus"). Thus, we actually calculate the shape of the
frequency dependence of e~") for the model shown in
Fig. 3. However, the angular dependence of Q is ad-
justed in a manner described subsequently to allow for
the fact that optical transitions are forbidden between the
dashed and dotted & bands of Fig. 2 in the J direction
as one approaches L. As we shall now show, these
considerations then completely determine the shape of

We use the abbreviation L» l. . and L3» . to denote quan-
tities pertaining to the light and heavy mass L32 levels,
respectively."J.H. Hanus, MIT Solid State and Molecular Theory Group
Quarterly Progress Report No. 44, 1962 (unpublished).

the frequency dependence curves for the low'-frequency
J,-band contribution to e It&.

To find the frequency dependence of e &" from (15),
we wish to evaluate the integral

dkii(to„t —oo)Q t(k), (16)
EI,(&F',Eu&EF

where Q on, the left-hand side is the magnitude of Q t (k)
connecting the two bands of interest evaluated at one
of the points L in the Brillouin zone. For the model of
Fig. 3, taking the zeros of k and energy at L and Es,
respectively,

Deaning

then

to„=oto+ (kk s/2m„„),

ott=oto+ (Ak /t t2 m)t+ (Skis/2mt, ) .

c„„=—(k/2m„„),

cttt (k/2mttt) cttt&c tt&0,

&I l
= &ll l &tt II +0 )

c„=—(k/2mt, ),

ot t= «tktts+ctrkis;

(17a)

(17b)

(18a)

(18b)

(18c)

(18d)

(19)

and we can evaluate the integral of (16) using the
transformation

k,= (otmt/ct, )'" sing cosy, (20a)

k„= (to~t/ct, )"sin8 siny, (20b)

kt, ——(ot„t/ct t) coso t (20c)

Then
Q„t(k) =Q cositt. (21)

5( ) = ( / .) ( / )'"I:( ose...-)'—( o 0. ")'j (22)

Here cosei, „and cos8 pp are determined, respectively,
from the conditions that co~(0, co &0. The condition

where here the x and y axes are any two axes at right
angles orthogonal to the II direction, so that k,'=k, '
+k„'. We allow for the fact that optical transitions are
forbidden between the dashed and dotted l, bands of
Fig. 2 in the J direction as one approaches L by taking
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Lt'

P

as follows:
mni=mii~(Ls ),
m„„=m„~ (L»),
mu=m. ~(Los t.-.).

(26)

(27)

(28)

I'xo. 4. Interactions giving rise to Q at I..

Lg)

~)&0 gives

&ir

&0& cos&lower = 1, (23a)

(c—~o &cu &cop, cosgiower =
I I I, (23b)

&tfr kc„„i ~ i
+)&op coso]ower 0 (23c)

The frequency (c„/c[„)(op is the value of &u ~ when the
lower band erst cuts the Fermi energy and transitions
become allowed. This occurs in the II direction. As the
frequency increases, transitions are possible for a part
of the region of the Brillouin zone surrounding I.which
increases in angle toward the J direction until, at ~0,
transitions are possible for the entire region of the
Brillouin zone surrounding I..

The condition co )0 gives

to+ (cil~o)/curly cose&pper: 1 (24a)

B. Band Parameters Used in Calculations

Ke now indicate how we obtain the various band
masses and the value of Ikoo for the model described in
Sec. 2.A above.

The value of hoop is taken as Eg(L») —Es for the
band structure of EPO.~ This gives

L)0=0.24 eV. (25)

As indicated above, we identify the various effective
masses for the model of Fig. 3 with the band masses

&) (cittoo)/c~trq coseppper=((c~~/c„~~)(a)p/(u)). (24b)

For the case at hand, c~,/c„„)1, so that (24) simply
expresses the fact that, as the frequency increases from

at tv= (c~&a)p)/c ~~ the upper band cuts the Fermi
surface in the II direction, and thus transitions become
forbidden in that direction. As co increases, the part of
the Brillouin zone for which transitions are forbidden
spreads toward the J direction.

By combining (22), (23), and (24), we obtain the
frequency dependence of Q$(&o) and hence, from (15),
that of e &').

The value used for m„g(Ls) is estimated using k p
perturbation theory, as well as the experimental trans-
verse and longitudinal effective mass values from
de Haas —von Alphen measurements» Lm, t(Ls ) =0.26mp

and m&tt(Ls)= —0.65mpj and band gaps given by
EPO.~

From k p perturbation theory,

l(L, IP.IL')tl=1+—E, (29)
m, t(Ls) m~'-~oEt(Ls) Et(L;—)

l(L, lpiilL )tl'
(30)

(L') '="E (L')-E (L;)

It is assumed (i) that all p matrix elements between s
and d bands at L have the same magnitude and (ii) that
corresponding p matrix elements are the same for 1'-

and &-spin bands. Then using the experimental value
of m»(Ls. ) and t'-band separations at L given by
EPOr in Eq. (29) with assumption (i) yields

where
E„=1.5 eV, (31)

m „=m„g(L»)=—2.5mp,

mn=mig(L» i. .) =—0.73mo.

(35a)

(35b)

C. Evaluation of Q„q at L

The constant value of Q used in our calculations is
evaluated from the wave functions at L. This pro-

"A. S. Joseph and A. C. Thorsen, Phys. Rev. Letters ll, 554
(1965).

E,= (2/m) I
(Ls. I P,—I L» g ) I

'
= (2/m) I (L' I P. IL» t.-.) I'

= (2/m) I
(Ls'I pLILo&) I'= (2/m) I (Ls IPiilLtt) I'.

From (30), using this value for Ep, the experimental
value of m»t(Ls ), and. $-band separations at L from
EPO, ~ we then 6nd

(2/m) I (L»IP« ILs') Is=17.5 eV. (33)

Then, following assumption (ii), the values of matrix
elements given in (31) and (33) can be used in (30)
together with the EPO" J,-band separations to give

m~„= m» q (Ls ) = —0.83mp.

The value of Ep given in (32) will also be used in the
following section in estimating the magnitude of Q„~(L).

The values of m„q(L») and m~q(L» ~. .) cannot be
obtained from k p perturbation theory and are there-
fore obtained by Qtting the corresponding band curva-
tures for Hanus"' calculations. This gives
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cedure is based on considering the situation for the J,

bands of Fig. 2 in the ll direction in the region where
transitions between the dashed and dotted bands are
allowed. Then the dashed band corresponds to the L2
band and the dotted band to the lower of the two sheets
going through Lss. Thus we evaluate Q on the basis of
transitions between the L2 wave function and the
lower of the two L32 wave functions when the L» de-
generacy is removed by spin-orbit interaction. The
nonzero value of Q so obtained depends on the mixing
of the L» wave function with the nearest lying wave
functions with which such mixing is allowed, the two
degenerate Lsr levels. The interactions giving Q at L
are indicated in Fig. 4. We consider the spin-orbit
mixing in the tight-binding approximation. "

If we take the atomic functions corresponding to the
fivefold degenerate 3d level of the isolated atom,

q r
——(15/47r)"'xrxs f(r)/r',

~,= (15/4~)"x,x,f(r)/r',

ps= (15/4rr)'"$1*8f(r)/r',
p4= (15/16s-)'~'(x '—xs')f(r)/r',

(i)
&m

-2.0— l

/

-60-
I

0.2
I

0.4
a~(eve

EXPERIMENT - MARTIN,
DONIACH AND NEAL

THEORY
MODEL I

—--
MODEl 2 ........ TOTAL

i BAND

I l I

0.6 0.8

Lss level)

v~„.=(1/~~)(v~„,. is~„, —),
E=0.40 (3/2), (40a)

Pro. 5. Spectral dependence of e ('): Theoretical curves for
Models 1 and 2 described in the text are shown as well as the
experimental values of Martin, Doniach, and Weal.

and define the linear combinations

f„s /exp(iR—;—k)q„(r—R,) I=1, , 5, (37)

2=633.3 cm ' (39)
for nickel.

We are interested in evaluating Q corresponding to
optical transitions from the lower of the two spin-orbit
split L3~ levels to the L2 level. The pertinent spin-orbit
mixing is between the correct zero-order L32 wave func-
tion and the L3~ wave functions. The zero-order L32
functions are (with energy relative to the unperturbed

~ G. C. Fletcher, Proc. Phys. Soc. (London) 65, 192 (1952).
24K more detailed discussion of this point can be found in

General Electric Research Laboratory Report No. 65-R.L.—3918E
(unpublished) by Bernard R. Cooper. This is available upon
request.

"H. Brooks, Phys. Rev. SS, 909 (1940)."S.Goudsmit, Phys. Rev. 31, 946 (1928).

then the d wave functions at L for the tight binding
calculation are linear combinations of the f„s whose
coefficients are readily obtained from Fletcher's work. "'4

Brooks" demonstrated that for P„s of the form (37),

o„s. lj)=-,a(ilo..lj)=a(il4, s. l j)
,~('li., l&), (38)

where I, and s„are the orbital and spin angular
momenta in units of 0, and (il l„lj) is the matrix ele-
ment of I, between the atomic wave functions y; and
q;. 2 is the ordinary spin-orbit parameter for free
atoms" and has the value

vz...=(1/~2)(~~„, +4~„. ),
E= —0.40(A/2), (40b)

where we note, incidentally, that this indicates a spin-
orbit splitting of the L32 band =0.402 =0.03 eV.

The question arises as to whether there is a contribu-
tion to the off-diagonal elements of the dielectric con-
stant tensor to zero order in the spin-orbit coupling for
degenerate bands split by spin-orbit coupling as in
(40). If there is, the spin-orbit mixing with the Lsr
levels need not be considered. This question can be
answered by substituting the wave functions of either
(40a) or (40b) for e in the general expression for es,

Eq. (5). It is a straightforward matter to show that for
cubic symmetry this gives zero contribution to the off-
diagonal elements of the dielectric constant tensor.
Thus, as already indicated, we have to look to the
spin-orbit mixing of the L32p wave function with the
L» wave functions to obtain a nonvanishing value for Q.

The present situation differs slightly from that dis-
cussed in Sec. 2.A in connection with Eqs. (8) and (11)
in that the wave function le) is no longer real but of
the form given by (40b). This introduces a small
modification in the form of Q as given by (14) so that'4

Q(L) =- ImDLsr. l 0„l Lsss)
hl E(Lss)—E(Lsr)g

x(L,
l p., lL».)(L», l p..lL, )

+same with Lsr —& Lsrpj, (41)

where the quantities involved are for the l. bands.
Then using the approximation of (38) together with
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FIG. 6. Band structure near I. for Model 2.

(40) and the correct linear combinations of the $„1, for
the d wave functions at L gives

Q(L) = {~/2&'I:E(L»)—E(L»)3)
XI 1 34(L~

I p* IL»-) (L» l.-.I p* IL2)
+o 29(L~ I p IL3v)(L» ~.-. l p*.lL~)j (42)

Exactly the same expression would be obtained by con-
sidering transitions involving L3~ rather than L~~p.

With the approximation that the momentum matrix
elements at L between all s and d wave functions are
equal in magnitude, we have

2—(L lp*lL )(L lp"IL )
m

2
&—I(L'I p. lL-) I

=E. (43)
m

So that replacing each of the products of momentum
matrix elements of this form in (42) by E~ gives an
upper limit on Q(L) within the framework of the
tight-binding treatment for the d-band spin-orbit mix-
ing. Although an upper limit, this value is expected to
represent a reasonable estimate. This procedure then

gives the value of Q used in the numerical calculations.

Q(L) =(1.63/4h'I E(L»)—E(L3i)j)HIE . (44)

This same expression applies for Model 2 discussed
below for both 1 and i' bands. Since one usually assumes
that the splitting within the d-band complex remains
constant, the only change in Q(L) for different models
within the present context comes from changes in E„.

For Model 1, (44) gives

Q (L)=2.9(10")cm '. (45)

Q as determined in (45) is guaranteed to be real; how-
ever, its sign is not determined by the procedure used
here.

D. Numerical Results and Comyarison
with Exyeriment

The spectral varia, tion of e ('& is evaluated for the
$-band contribution for Model 1 using Eqs. (15), (16),
and (22), where the pertinent numerical values of pa-
rameters are given in Sec. 2.8 and Eq. (45). An addi-
tional factor of 4 is included in the evaluation of e ("
to account for the fact that there are 4 L's in the
Brillouin zone whose neighborhoods contribute. The
calculated values of e (" for Model 1 are compared to
the experimental values of Martin, Doniach, and weal'
in Fig. 5. Since the sign of e "& is not determined by the
present calculation, it is chosen to agree with experi-
ment. The theoretical values of ~ &'& differ from those
of I because of improvements in the method of esti-
mating Q and certain of the band curvatures. The
theoretical curve gives generally good agreement with
the experimentally observed structure, particularly con-
sidering the neglect of broadening effects.

3o CALCULATION OF 6g@ FOR MODEL 2

Model 2 is meant to yield, insofar as is practical, the
same results for the FEE as would be obtained for the
model of Phillips and Mattheiss. '' Insofar as is pos-
sible, band parameters have been given the same
values as in that model; however, we have made addi-
tional approximations and assumptions. In the following
discussion, the quantities taken directly from Refs. 8
and 9 are indicated.

A. Band Parameters for Model 2

The band structure near L for Model 2 is shown in
Fig. 6. The band separations at L and the sources for
the values are as follows:

l bands

E(L»)—E(L~ ) =6.93 eV (Ref. 21)
E(Lu) —E(L»)=0.3 eV LEq. (18) of Ref. 8j

E(L»)—E&——0.05 eV LEq. (16) of Ref. 8j
Ep—E(Lg.) =

E(Lag) —E(L») =2.16 eV (Ref. 21)
E(L»)—E(L») =2.39 eV (Ref. 21)

t' ba, nds

6.93 eV (Ref. 21)
0.5 eV I Eq. (14) of Ref. 8]

0.13 eV LEq. (15) of Ref. 8]
2.16 eV (Ref. 21)
2.39 eV (Ref. 21).

(46)
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This gives the values for the energy differences It'cof

indicated in Fig. 6.
Then

pie 1 oJ0+ clh J cl Jh J I (60)
i bands

holo=—E(L2 )—E(L ss) =0.3 eV
holt= E(L—22) Ef —=0.05 eV

t' bands

0.5 eV (47)
—0.63 eV.

with
CJ CJJs+CJJ l

Cl 1
=C~fl Cll f )

(61a)

(61b)

E„and Q are determined by exactly the same pro-
cedure as described in Sec. 2 for Model 1. This gives

E„=0.6 eV,

s that cg+cfl +0.
We obtain 0 "& from (15) taking Q„J(k) equal to

the constant value given by (49) since the transitions
are allowed in all directions around 1.:

Q=1.2(10») cm—2. (49)
0 &'& = L(eshQ)/(2trmsoos) jsl (oJ), (62)

mst (Ls )=0.26mp,

milt (Ls )= 0.65mp.

(50a)

By the same procedure as that described in Sec. 2 for
Model 1 using k p perturbation theory, we obtain

(L )=0.18

mlls (Ls.) =—0.65mo.

From Eq. (6.12) of Ref. 9,

(51a)

(51b)

These values apply for both f and t' bands. We should
note that Phillips and Mattheiss' determine values for
E„by a method different than the one used here. Their
method is based on considering the variation of E„
with hero for several different band calculations. Their
value for E„, and hence Q, would be substantially
larger than that quoted here, probably by a factor of
201 3.

Just as for Model 1, m«t (Ls.) and m&2 (Ls ) are taken
as equal to the experimental de Haas —van Alphen
values)

where

de(~„1—oJ) .
g(&z.&~&&z

(63)

For %&&hero, it is a straightforward procedure to
evaluate Jl(ol), using a transformation similar to tha, t
of Eq. (20) but of a form to take a,ccount of the fact
that the energy difference surfaces are hyperboloids of
two sheets. "This gives

~( )=(2 /. )2( —)/
X (coshv„»„—coshv1, „). (64)

Here cosh' pp is determined by the condition co )0.

~0+~t—(c"/C.) (~0—~)
coshv&ppel- = (65)

Cuir Cil Cex Q +0

The absolute lower bound on cosh' is 1. This gives the
absolute lower bound, Igloo~, on the value of &co for which
transitions are allowed,

mJJS(Lss) =m„t(Lss) = —3mo. (52) =o—( /-)(o+ ) (66)

By fitting the bands of Hanus, "
mJ&(Lss 1. .) =mJt(L221. .) = 0.73mp. (53)

where

and

where

oJJJ=olo+oot+CJJJhJ CJJ»hll,

c J=h/2m„J) 0, c» = —h/2m 1 1)0

mJJJ=mSS (Ls~))sl mJJJ 1
—ml 1 1 (Ls') l

l +f CLL~L Clll~ll )

cJJ= —h/2mlJ) 0, clll =—h/2ml») 0

mls= mls (L22 1.m. ), m»J =m«s (Lss) ~

(54)

(55)

(56)

(57)

(59)

B. Structure in 0 11& for Model 2 l Bands

The optical transitions of interest for the 1 bands of
Model 2 occur between the dashed and dotted bands
of Fig. 6 when the dashed band is below and the dotted
band above the Fermi energy. Just as for Model 1,
for the purpose of calculating the magneto-optical
structure, we approximate the band shapes as being
parabolic. With the zero of k and energy at L and E&,
respectively,

which is simply the value of ol« in the
~~

direction when
the upper band cuts Ep and in the present case has the
value 0.026 eV.

Cosh'&, „is determined by the condition co&(0,

coshP] pwql- = olt+ (cl,/c, ) (olo —oJ)

cu. cx clii c» o

1/2

(67)

The absolute lower limit on coshvi, „is 1.This occurs
for

OJ2 OJO (Cl1/Cll l)OJf l (68)

which is the value of frequency for which the lower
band cuts EJ& in the

~~
direction. For hoJ greater than

this value, 0.12 eV in the present case, transitions are
not allowed in a region about L that starts in the

~~

direction and increases in angle toward the J direction
as u increases.

Thus for ol (pip, we have tl(oJ) evaluated from (64).
For oo(o» given by (66), Jl(oo) is 0. For ol&(oJ(ols, we
have coshv„»„given by (65) and coshv1, „by (67).
For ols(oJ(pip, we have coshv„»„given by (65) and
cosh~]p~er —1.

For GJ 1)GJp we again evaluate ti(oJ) by use of a
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transformation similar to Eq. (20), but of a form taking
account of the fact that the energy difference surfaces
are hyperboloids of one sheet. '4 This gives (for cu) ~0)

n(~) = (2ir/c )L(~ ~o)/c 7"
X (sinhu„»„—sinhei, „), (69)

with sinhg„»„determined by the condition cv &0.

MO+G&f+ (chJ/CJ) (GO G00)

Slnhm11pper = (70)
Cul l Cl l Cup Cl & 0

While sinhN~, „is determined by the condition ~&(0,

SlIlllSlower = cur —(ci,/c, ) (cu —coo)

&t'ai &li &u &X &0

1/2

(71)

where sinhg~, „is 0 for ~&~3,

~3=~0+ (ci/cu)~f. . (72)

For co&co3, 0.55 eV in the present case, the lower band
is below Ep in the J direction, and optical transitions
can occur in the J direction.

Thus, to summarize the behavior as a function of
frequency of the region about L in which optical transi-
tions are allowed: For co(co~, there are no transitions
allowed anywhere. For ~&or&, transitions are allowed
in an angular region about L that starts in the

~~
direc-

tion and spreads toward the J direction as co increases.
However, at cv2, the transitions are no longer allowed
in the

~~
direction. Thus, for co2&a&&a&3, the allowed

region extends between two angular limits, both of
which are intermediate between the J and

~~
directions

and both of which are moving toward the J direction.
At era, transitions become allowed in the J direction,
and thereafter the region of allowed transitions shrinks
in angle steadily toward the J direction.

There is the restriction, however, that the upper
limit on sinhl given by (70) can be used only so long
as it falls within the maximum volume in k space that
can be associated with the neighborhood of a given L
point. This maximum volume amounts to ~ of that for
the entire Brillouin zone. When the upper limit given

by (70) is such as to violate this restriction, it is neces-
sary to use an alternate cutoff on the angular integra-
tion in N. The method for doing this is discussed in
Ref. 17. It turns out that for the parameters at hand,
(70) gives the correct upper limit on sinhl throughout
the frequency range of interest here.

Then e o& for the 1 bands of Model 2 is obtained
from (62), including an additional factor of 4 to account
for the effect of the four L's in the Brillouin zone, com-
bined with (64), (65), and (67) for a&&~0 and combined
with (69), (70), and (71) for co)G&o using the values of
band parameters and Q given in Sec. 3.A. The resulting
spectral dependence of e (') is shown in Fig. 5. It can
be seen that the main peak. in e (') occurs at very low
frequencies (0.05 eV). The small subsidiary peak at

6~3=0.55 eV represents a sort of angular critical-point
effect as transitions become allowed in the J direction.

~U. ~J.t (L32 h.m. ) (73)

Thus c~i=0, and ci=c i for the $ bands. The other
ma, sses are defined analogously to the $-band case.

m.,=~,i(L,.), ~„„=m„t(L,.), (74)

~a i = ~ill (L32) . (75)

Then e„o& is given by (62) and (69), the same formulas
as hold for the j bands when &u) ~o. Here sinhei, ,„, de-
termined by the condition ~i& 0, is 0; while for ~)

~
&or ~,

we have sinhu„»„given by (70) with c i/ci=1. For
~ &

~
coi ~, the quantities sinhu„»„and e„t&" are 0.

Just as for the $ bands, there is the restriction that
the upper limit on sinhu given by (70) applies only so
long as it corresponds to values of k& falling within the
maximum volume in k space that can be associated
with the neighborhood of a given L. Just as for the 1
bands, however, for the frequencies of interest here this
imposes no additional restriction, so that Eq. (70)
applies.

We obtain c &'& for the $ bands of Model 2 from (62)
and (69) using the values of parameters given in Sec.
3.A. It is important to note that for corresponding
transitions, e o& for l' and J, bands are opposite in sign.
Thus within the framework of our approximation of
evaluating e o& by taking Q as the value at L, the net

&') is the difference of e &") and e po). Thus, according
to the theory, the onset of t'-band transitions appears
as a "step" in the total curve for e (').

4. MODELS 3A AND 33

In this section, we brieQy discuss the derivation of
Models 3A and 38 of II, at the same time correcting a
numerical error in II. The purpose of II was to illus-
trate the use of the FEE as a tool for developing models
of the band structure of ferromagnetic metals.

In II, the band structure for ferromagnetic nickel
was obtained by rigidly splitting the bands of Hanus"
for nonmagnetic nickel. The band curvatures for the
L2 bands ($ and $) were assumed given by the de Haas-
van Alphen masses, " while the L32 band curvatures
were found by fitting Hanus' bands as in Sec. 2. The l,

bands were placed relative to E& by choosing the value
of onset frequency for the e (" structure and adopting
the model of Sec. 2 for discussing this structure. Then
the value of onset frequency together with the band
curvatures and separations at L is sufficient to deter-
mine h&uo of Fig. 3 where hcoo=Eg(L32) —E~. Because
of uncertainty in the proper way to subtract off the

C. Model 2 f Bands

For the f bands, the expressions for a&„and cubi are
taken the same as (54) and (57) for the $ bands. How-
ever, for the f bands,



FERROMAGNETI C KERR EFFECT I N Ni

free carrier-like part of e &'& from the experimental
values to get the experimental interband contribution
to e "&, two values of onset frequency were chosen,
giving rise to Models 3A and 38, respectively.

Once Ei(l.ss) —Es was found, En was determined
from Eq. (44) of Sec. 2 above by requiring that Q have
the value necessary to give the peak value of ~„(') ob-
tained experimentally. This value of E„was used to
place the $ bands relative to Er, while at the same time,
fixing Q for the completely defined $-band structure
was sufhcient to determine e &" for the $ bands by the
methods of Sec. 2 above.

The t' bands for Models 3A and 3B were placed rela-
tive to Ez by the use of k y perturbation theory, in-
cluding nonparabolic effects and the experimental neck
radius. ""From k p theory, with DE= E& Et (&s ), —

0
(i)

t-'m

-20-

-40-

-6.0-

l/
l]

0.2 0.4
4(t) (e v ):

0.8

THEORY
) BAND

MPOEL 3A. ...-. TPTAL

MODEL 3B . . T0TAL

Eg 'y)S k neck Ee tt )i ~ neck En»=—+ +—ii+8, (76)
2 2m 2 k 2m, E'

where

Eg=E(Ls )—E(I.ss) =0.08 eV (77)

for Hanus' bands.

h'k'„„k/2ris =0.03 eV

from experiment, "and

Y I+(2En/LE (~s') E(~sr)j}.

(78)

(79)

Once AE is determined, thereby placing the I bands
relative to Er, e &'& for the I bands is calculated exactly
as in Sec. 3.C above.

Unfortunately, a factor of 2 was omitted from Eq.
(44) for Q when this was used to evaluate En in II.
Therefore, the correct value of E„ for Models 3A and
38 is half that used in II. This does not affect the
J,-band structure or e "& for the J, bands. However, this
does decrease AE. This serves to reduce the exchange
splitting from 1.15 to 0.89 eV for Model 3A and from
0.77 to 0.61 eV for Model 38; while the onset frequency
for the t'-band "step" is reduced from 0.83 to 0.57 eV
for Model 3A and from 0.57 to 0.41 eU for Model 38.
The correct spectral variation of e o) for the two models
is shown in Fig. 7.

As indicated. above, the reason for treating two
models in II was the uncertainty in the proper way to
treat the free-carrier-like contribution to e &'& at low
frequencies. Doniach has discussed this problem. ' ' He
has considered the contribution to the frequency de-
pendent conductivity of the mechanisms treated by
Karplus and t.uttinger' and by Smit" for the dc extra-
ordinary Hall effect. Doniach has then shown that the
effects to be expected from these mechanisms can be

"E. Fawcett and W. A. Reed, Phys. Rev. Letters 9, 336 (1962)."S. Doniach (unpublished}.
eg R. Karplus and J. M. Luttinger, Phys. Rev. 95, 1154 (1954)."J.Smit, Physica 24, 39 (1958).

Fn. 7. Spectral dependence of e ('& for Models 3A and 38.

represented by including a phenomenological tensor
force proportional to M.XE in the classical Drude
equation of motion for the free electrons. Unfortun-
ately, there is uncertainty in the appropriate relaxation
time' to be used in Doniach's theory, and the theory
also does not seem to give sufficiently rapid fall-off with
increasing frequency of the free-carrier-like contribution
to e &'&. Thus, at present, the appropriate way to
subtract off the free-carrier-like effects from the experi-
mental e &'& to get the experimental interband contri-
bution to e 0) is still not clear.

S. DISCUSSION

In Secs. 2 and 3, we have presented calculations for
the interband structure to be expected in the ferro-
magnetic Kerr effect at low frequencies for each of two
models recently proposed for the band structure and
Fermi surface of ferromagnetic nickel. As we have
indicated above, the calculations discussed here, al-
though containing a number of fairly crude approxi-
mations, are absolute, i.e., they contain no adjustable
parameters. Much of the uncertainty in the calculation
of e &') stems from the fact that the calculation must
relay on a detailed knowledge of the wave functions.
While the sign of either the $- or the 1-band contribu-
tion to e &" is not determined, the fact that the two
contributions are opposite in sign is a requirement
of the present theory, independent of any numerical
approximations.

It is worthwhile to make a few remarks comparing
the results of the two models to each other and to
experiment. Model 1 yields structure in &

&') which, on
the whole, agrees reasonably well with the experimental
results. However, the model of EPO, ' to which Model 1
corresponds, has a value of d splitting that seems to be
unreasonably large in the light of present theories. "
Despite the fact that the KPO model overestimates the

n C. Herring (to be published).
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d-band splitting, the Fermi level is determined correctly.
This is so, because a,s long as the lower d 1 band is
completely filled, the position of the Fermi level is
independent of the splitting. Thus the &-band contribu-
tion of e &') for Model 1 is independent of the d-band
splitting. On the other hand, Model 2, which corre-
sponds to the model of Phillips and Mattheiss, ' ' while
it has what is probably a more reasonable value for the
exchange splitting, shifts the structure in e &'& to very
low frequencies. Actually, as can be seen from Figs. 2
and 6, there is not much difference between the J-band
structures for the models of KPO and Phillips and
Mattheiss. The difference in the structure in e &" for
the two cases comes from the fact that the d bands are
so Oat that a small shift in energy of the d bands relative
to E& may make a significant change in the amount of
k space in which transitions between two bands is
allowed. Thus it is not unreasonable to expect that the
best model for the band structure of ferromagnetic
nickel may be one that maintains a J,-band structure
with geometry relative to the Fermi energy like that
of KPO while having an exchange splitting similar to
that of Phillips and Mattheiss. Actually, the estimate
of the magneton number given in II for the model of
Phillips and Mattheiss is lower than the experimental
value, and, as indicated there, this value would also be
improved by raising Z&(L&2) relative to EI by 0.1 or
0.2 eV.

Finally, we can make a few remarks regarding the
structure to be expected coming from $-band transi-
tions. As indicated above, e„&'& from f-band transitions
is opposite in sign to that from $-band transitions, and
the onset of e &'& for $ bands should appear as a "step"
in the measured e &') curve. Moreover, this "step"
should appear at an energy approximately equal to
Zr Et(L32). Since th—e main structure from l-band
transitions for an EPO-like 1-band model occurs at an
energy approximately equal to E&(L»)—E&, the ex-

perimental observation of such a "step" in the e &'&

curve would directly give the value of the d-band
exchange splitting in nickel. While such a "step" might
be obscured by broadening e6ects, the importance of
investigating this point experimentally with the greatest
possible accuracy seems particularly worth emphasizing.
In recent experiments, '" Krinchik has reported that
the 0.3-eV peak in e (') for nickel actually is split into
two peaks with a splitting of about 0.05 eV. Krinchik, "
following the suggestion of Phillips, ' has attributed this
additional structure to spin-orbit splitting of the L~2
level. On the other hand, an examination of the data
of Martin, Doniach, and Weal' suggests that while
additional structure may be present near the main
peak in e ('&, it may consist of something more closely
resembling the sort of "step" we have described rather
than any splitting of the peak. In any case, there is
still considerable experimental discrepancy between the
data of Krinchik and that of Martin, Doniach, and
Zeal over the whole range of frequencies investigated,
as well as on this particular point. Considering the
importance of the information that could be obtained,
it would be most valuable for the experiments to be
repeated with the greatest possible accuracy in the hope
of removing the remaining ambiguity in the experi-
mental results.
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