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Published data on the density, thermal-expansion coefficient, and compressibility of the alkali metals are
reviewed, and best values for the density as a function of temperature and for the Gruneisen constant y(0) are
selected. From published specific-heat data the entropy and its corresponding Debye temperature (O~s)
are computed as a function of temperature for the body-centered-cubic phase. The values of the erst few
even moments and some negative moments of the lattice-vibration spectrum are calculated for each alkali
metal (bcc phase) on the basis of two different approximations as to the form of the anharmonic specific-
heat contribution. The anharmonic contribution is found to be positive for all the alkali metals. There ap-
pears to be a systematic change in the shape of the vibration spectrum on going from sodium to cesium.
The spectrum moments found for sodium are in good agreement with those obtained from neutron-scattering
experiments on this metal.

INTRODUCTION

'r AIRI.Y accurate specific-heat data over a wide
temperature range are now available for all the

alkali metals, and the time seems ripe for a review of
their thermal properties. Recent work by Tosi and
Fumi' has shown that detailed analysis at higher tem-
peratures is best made by use of the entropy rather than
the specific heat. This is because the analysis is usually
made from the equivalent Debye temperature and at
high temperatures the Debye temperature obtained
from the entropy (O~s) is much less sensitive to small
errors than is the corresponding Debye temperature
(O~c) obtained from the specific heat at constant volume
(C„).Also, the sometimes uncertain correction from the
measured specific heat at constant pressure (C„) to C„
is avoided by use of the entropy.

In order to use Tosi and Fumi's method it is still
necessary to convert 88 values from the volume at the
temperature of measurement to the equivalent values
at the absolute-zero volume. To do this a knowledge of
the variation of density with temperature and of the
Gruneisen constant y(0) is required. The paper com-
mences with a discussion of the data required to
compute these quantities.

The analysis of the specific-heat data yields values
for the first few even moments and some negative
moments of the lattice-vibration-frequency spectrum
and for the anharmonic contribution to the speci6c
heat. The paper concludes with a comparison of the
results obtained for the various alkali metals. The
moments obtained for sodium are also compared with
moments deduced from neutron-scattering experiments
on this metal.

The analysis given in this paper is similar to that
made some years ago for the alkali halides by Barron,
Berg, and Morrison. ' However, more uncertainty
attaches to the present work due to the complications
of the martensitic transformation in lithium and sodium,
and because the low Debye temperatures of the re-

' M. P. Tosi and F. G. Fumi, Phys. Rev. 131, 1458 (1963).
2T. H. K. Barron, W. T. Berg, and J. A. Morrison, Proc. Roy.

Soc. (London) A242, 478 (1957).

maining metals make necessary accurate data down to
rather low temperatures where the specific-heat meas-
urements are less accurate than at higher temperatures.

DENSITIES OF THE ALKALI METALS AS A
FUNCTION OF TEMPERATURE

Early in the century macroscopic determinations
were made in the room-temperature region, especially
by Hackspilp who has listed the results of earlier work.
More recent work has been mainly confined to x-ray
determinations, the exceptions being work on lithium
by Simon and Bergmann4 and on sodium by Siegel and
Quimbys and Sullivan and Weymouth. ' Pearsonr has
summarized most of the results and it is clear that they
are not very concordant. This may be due to the fact
that the samples are often cast in glass tubes and
strained on cooling because of adhesion to the walls.
Impurities may also be responsible for significant
discrepancies.

In order to smooth out the results and interpolate
and extrapolate as necessary, the variation of density
with temperature for each metal will be represented by
the appropriate choice of constants in the following
equation:

pr/ps= (& &TDw(O /T) C—T' De I"'), — — —

where p& is the density at the temperature T; po the
density at the absolute zero; 8, C, D, O~~, and E con-
stants to be determined for each metal; R the gas con-
stant; and Ds (O~w/T) is the Debye function for (ther-
mal energy/temperature), which has been tabulated by
Simon. 8

The term with coeKcient 8 represents the lattice

'L. Hackspill, Compt. Rend. 152, 259 (1911).
4 F. E. Simon and R. Bergmann, Z. Physik. Chem. (Leipzig)

$8, 255 (1930).' S. Siegel and S. L. Quimby, Phys. Rev. 54, 76 (1938).
6 G. A. Sullivan and J. W. Weymouth, Phys. Rev. 136, A1141

(1964).
7 W. B. Pearson, handbook of Lattice SPacings and Structures

of 3IIetals and Alloys (Pergamon Press Ltd. , London, 1958).
8 F. F.. Simon, Landolt-Bornstein Physi kalisch-Chemische

Tabellen (Julius Springer, Berlin, 1927), 5 AuQage, Erster Ergan-
zungsband, p. 702.
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TABLE I. Density of alkali metals.

Metal
Z cal/
moleOss W po Po po popo

pr/pp = (1 J3TD—s (Q~~/T) —CTs De—@~++)

Values of coeKcients in density equation Ratios computed from equation
P80 P100 P200 P273.15 P293.15

P273.15 Po

Ll
Na
K
Rb
Cs

2.662X10 5

3.437X10 5

3 803X10 '
3 824X10 '
3 925X10 '

3.727X 10-9
3.200X10 '
5.030X 10~
5.734X10 '
9.297X 10~

0.0
7.3X 10'
1.0X 10'
1.2X 102

2X 101

500.0 0.0
270 0 10.5X10'
90.0 9.6X10'
56.0 7.2X 103
38.5 6.5X10'

0.99908 0.99809
0.99605 0.99333
0.98836 0.98403
0.98608 0.98159
0.98439 0.97972

0.98862 0.97915 0.97638
0.97599 0.96185 0.95790
0.96167 0.94503 0.94042
0.95881 0.94178 0.93686
0.95614 0.93831 0.93296

0 5348a
0.9725b
0.859b
1.5248b
1.9029b

0.5462
1.011
0.909
1.619
2.028

a Mean of several x-ray determinations.
b Hackspill (Ref. 3).

thermal expansion and is of the form used by Tosi and
Fumi. ' The term with coefficient C represents the
electronic thermal expansion and has been discussed
recently by White. ' For a single-band free-electron
model C= s (yX~T/M) where y is the electronic specific-
heat coefficient, "X& the isothermal compressibility, and
M the atomic weight. This term is quite small for the
alkali metals and it has been assumed in the present
work that the electronic thermal expansion may be
represented adequately in this way. Electronic specific-
hea, t coefficients have been taken from Martin"" and
Filby and Ma, rtin" and compressibilities from Mott
and Jones. '4

The last term represents the contribution of the
thermally generated lattice vacancies to the thermal
expansion. The constants used are based on those
determined by Martin" from an analysis of specific-
heat results. The constant D has been adjusted to allow
for relaxation round the vacancy which has arbitrarily
been taken as 50%.

The data used in determining the remaining constants
in the density equation will now be considered in detail
for each metal.

Lithium. Several sets of data, in rather good agree-
ment with one another, exist between about 80'K and
room temperature. (Macroscopic expansion data are by
Simon and Bergmann, x-ray data by I.onsdale and
Hume-Rothery '6 Pwen and Williams '~ and Pearson. 8

All these values disagree with the unreferenced value of
the expansion coefficient tabulated by Mott and Jones'4
which is clearly incorrect. ) In order to represent this

' G. K. White, Phil. Mag. 6, 815 (1961).
"Not to be confused with the Gruneisen y appearing later in

this paper."D.L. Martin, Proc. Roy. Soc. (London) A263, 378 (1961)."D.L. Martin, Phys. Rev. 124, 438 (1961)."J.D. Filby and D. L. Martin, Proc. Roy. Soc. (London}
A284, 83 (1965).

'4 N. F. Mott and H. Jones, The Theory of the ProPerties of
Metals and Alloys (Dover Publications, Inc. , New York, 1958)."D.L. Martin, Proceedings of the International Conference on
Lattice Dynamics, Copenhagen, 1963 (Pergamon Press Ltd. ,
London, 1964), p. 255."K. Lonsdale and W. Hume-Rothery, Phil. Mag. 36, 799
(1945)."E.A. Owen and G. I. Williams, Proc. Phys. Soc. (London)
A67, 895 (1954).

"W. B. Pearson, Can. J. Phys. 32, 708 (1954).

data a O&~ of 500'K is necessary, as was pointed out by
Simon and Bergmann. This value is considerably higher
than the Debye temperature at the absolute zero ob-
tained from specific-heat data" (Oso ——344'). The
lattice-vacancy term is negligible up to 300'K and has
been taken as zero.

The values of the coefficients obtained for lithium are
shown in Table I. Barrett' gives a value for the lattice
parameter at 78'K which leads to a density about 0.7%
lower than the value obtained from the equation (which
was based on the experimental data quoted above),
suggesting that Barrett's lattice parameters might not
be too reliable or that the discrepancy is due to the
impurity ( 0.5%) in Barrett's samples.

Sodium. A macroscopic determination of expansion
coefficient between 80 and 290'K was made by
Siegel and Quimbys and their results have been con-
firmed by the more recent, but less precise, work of
Beecroft and Swenson. "These results overlap those of
Hackspill' and Sullivan and Weymouth' in the room-
temperature region, and agreement is quite good. It is
again found that the O~~ of 270'K required to represent
these results is considerably higher than the 0's value"
of 152.5'K.

Values of the coefficients for sodium, based on this
data, are given in Table I. Densities obtained from this
equation are 0.3% higher than a value obtained from
Barrett's data' at 78'K and 0.15% lower than Barrett' s
value at 5'K. The disagreements are of the same order
as Barrett's estimated uncertainties. Within these un-
certainties Barrett found that varying the purity from
"stock" to 99.998% had no effect on the lattice
parameter.

Potassium. Comparatively few expansion-coefficient
data are available on potassium, and the coefIicients
in the density equation have been obtained from
Hackspill's data' at room temperature with the assump-
tion that O~~~o~so. These values are given in Table I.
The densities obtained from the equation agree with
Barrett's values at 5 and 78 Kp respectively. This

's J. D. Fiiby and D. L. Martin, Proc. Roy. Soc. (London)
A276, 187 (1963).' C. S. Barrett, Acta Cryst. 9, 671 (1956).

21 R. I. Beecroft and C. A. Swenson, J. Phys. Chem. Solids 18,
329 (1961).



A 152 DOUCiLAS L. MARTIN

TABLE II. Griineisen constant for the alkali metals.

Metal

Ll
Na
K
Rb
Cs

Ll
Xa
K
Rb
Cs

0.000140
0.000205
0.000250
0.000270
0.000290

0.0000496
0.0001367
0.0002195
0.0002282
0.0002378

6.94
22.997
39.096
85.48

132.91

6.94
22.997
39.096
85.48

132.91

xr cm~/dyn

Data at 293'K
0.089X10 "
0.158X10 "
0.33 X10 'o

0.40 X10 "
0.61 X10 'o

Data at 90'K
0.088X10 'o

o.156X10 'o

0.293X10 '
0.389X10 "
0 493X10 'o

pr g/cm'

0.5333
0.9684
0.8548
1.517
1.892

0.5454
1.006
0.8965
1.593
1.992

C. cal/'K g-atom

5.70
6.21
6.31
6.60
6.90

2.73
5.10
5.67
5.88
5.99

0.86
1.19
1.31
1.38
1.16

0.63
0.94
1.38
1.28
1.28

might be fortuitous since Barrett's sample contained
about 0.5% impurity. There seems to be no reason why
0'~ and Qs~ should be equal for potassium but not for
lithium or sodium.

Rubidium. Macroscopic measurements by HackspilP
in the room-temperature region were in agreement with
earlier work. X-ray measurements in the range 77 to
297'K are rather discordant and have been summarized

by Pearson. ~ The coeKcients in the density equation
(Table I) have been based on the macroscopic measure-
ments and the assumption that 0~~~0's~. The density
calculated from the equation is 0.7% lower than the
value obtained from Barrett's x-ray results" at 5'K
and 1.0% lower than his value at 78'K. (Barrett' s
sample contained 0.5% impurity. ) Burne-Rothery
and Lonsdale's density" at 90'K is 0.4% lower than
the value given by the equation, and Kelly and
Pearson's value" at this temperature is about 0.6%
higher than the equation value.

Cesium. Few data are available. The equation co-
eScients have been based on Hackspill's macroscopic
data' and the assumption that 0~~~0'so. The density
obtained from the equation is 1.5% higher than
Barrett's value" at 5'K and 1% higher than his value
at 78'K. Barrett's sample contained 1.3% impurity.

It will be clear that the temperature variations of
the densities of the alkali metals are not established
with any great certainty. For lithium and sodium the
values given by the equations may be accurate to
&0.2% but for rubidium and cesium the possible errors
may be as high as &1%.The only complete set of data
at low temperatures is that of Barrett" but it appears
not to be reliable due either to experimental errors or
sample impurities. (The prime purpose of Barrett' s
work was an investigation of the possible martensitic
transforrnations of the alkali metals and not the deter-
mination of lattice parameters. ) Values derived from
the equations for the various metals show a random
scatter when compared with Barrett's work. It should
be noted that the equations show that the expansion

"W. Hume-Rothery and K. Lonsdale, Phil. Mag. 36, 842
(1945).

ra F. M. Kelly and W. B. Pearson, Can. J. Phys. 55, 17 (1955).

coefficient increases steadily on going from lithium to
cesium, whereas Barrett's figures show that the ex-
pansion coefIicient of rubidium exceeds that of cesium.
The need for further accurate experimental work on the
alkali-metal therma, l expansions is evident.

GRUNEISEN CONSTANTS FOR THE
ALKALI METALS

The Gruneisen constant required for the correction
of the 0" ~ values to the volume at the absolute zero is
the y(0) of Barron's notation. '4" y(0) equals the high-
temperature limit of y (y„) given by the following
equation:

y=PM/XrprC, ,

where P is the volume coefficient of therma, l expansion,
M the atomic weight, Xp the isothermal compressi-
bility, p& the density at temperature T, and C, the
specific heat at constant volume. In Table II are
collected the data required for the calculation of p and
the resulting values of p. The density and thermal
expansion a.re obtained from the ta,bulation in the
previous section, room-temperature compressibility
values are from Mott and Jones'4 and values at 90'K
by a slight extrapolation of Swenson's data at 4 and
77'K. The C„values are from Martin, ""Krier, Craig,
and Wallace, "and Filby and Martin. "Mott and Jones'
compressibility data is probably that of Richards. '0

This da, ta differs significantly from Bridgman"" only
for rubidium a,nd cesium. Kleppa" has measured the
compressibility of the liquid alkali metals by an ultra, -

sonic technique and suggests that Bridgman's values
for the compressibility of rubidium and of cesium may
not be correct due to error in extrapolation to zero

'4 T. H. K. Barron, Phil. Mag. 46, 720 (1955)."T. H. K. Barron, A. J. Leadbetter, and J. A. Morrison, Proc.
Roy. Soc. (London) A279, 62 (1964)."C. A. Swenson, Phys. Rev. 99, 423 (1955).' D. L. Martin, Proc. Roy. Soc. (London) A254, 433 {1960).

"D.L. Martin, Proc. Roy. Soc. (London) A254, 444 (1960).
' C. A. Krier, R. S. Craig, and W. E. Wallace, J. Phys. Chem.

61, 522 (1957).' T. W. Richards, J. Am. Chem. Soc. 37, 1643 (1915).
@ P. W. Bridgman, Proc. Am. Acad. Arts Sci. 58, 166 (1923).' P. W. Bridgman, Proc. Am. Acad. Arts Sci. 60, 385 (1925).' O. J. Kleppa, J. Chem. Phys. 18, 1331 (1950).
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TABLE III. Isothermal compressibility deduced from recent elastic-constant data. Resulting values for the Gruneisen constant.

Metal

Ll

Na
K

Temperature 'K

78
155
195
298
300
195
293

xz cm'/dyn

0.0758X10 "
0.0806X10 '
0.0851X10 '0

0.0854X10 '0

0.164 X10 '
0.344 X10-Io
0.332 X10 '

Author

Nash and Smith'

I'rivissono and Smith
Daniels'
Marquardt, Trivissono, and Klucher
Smith and Smith'

0.73

0.89
1~ 14

~ ~ ~

1.30

a H. C. Nash and C. S. Smith, J. Phys. Chem. Solids 9, 113 (1959).
b J. Trivissono and C. S. Smith, Acta Met. 9, 1064 (196$).
e W. B. Daniels, Phys. Rev. 119, 1246 (1960).
d W. Marquardt, J. Trivissono, and T. Klucher, Bull. Am. Phys. Soc. 7', 546 (1962).
e P. A. Smith and C. S. Smith, Bull. Am. Phys. Soc. 9, 238 (1964).

pressure. The data from Mott and Jones" are in

reasonable agreement with values for the solid deduced
from Kleppa's results. For sodium the recent com-
pressibility work of Beecroft and Swenson" gives
compressibilities of 1.57 and 1.40&&10 " cm'/dyn at
293 and 7 7 'K, respectively. The room-temperature
value confirms Mott and Jones' figure but the 77'K
value supports the impression that the data of Swenson"
might be systematically high.

Recently, elastic-constants measurements have been
made on li thiurn, sodium, and potassium, and iso-
thermal-compressibility data derived from these results
are collected in Table III. y values in the 90'K and
room-temperature regions have been calculated and
are shown in the table.

Some of the variation of y for a given metal in Tables
II and III is undoubtedly due to inaccurate data but
there might be a real variation with tempera, ture. The
value of y at room temperature is probably known to
within a few percent for lithium, sodium, and potassium
but the uncertainty for rubidium and cesium might be
as high as 20%. Remeasurement of the compressi-
bilities of rubidium and cesium would be needed to
reduce this uncertainty. Note the value of C, used in
the calculation of y includes the electronic term. If the
electronic term were subtracted the y values would be
increased by 2 to 3%%u..

The following y(0) values are used later in the paper
for the correction of 0'~ values and are representative
of the values in Tables II and III—Li, 0.86; Na, '1.10;
K, 1.30; Rb, 1.37; Cs, 1.20.

ANALYSIS OF SPECIFIC-HEAT DATA

The following data have been selected for a.nalysis.
Other published data are reviewed in these papers.

"Natural" Lithium: Martin " Filby and Martin "
and Martin. "

Sodium: Martin, ' Filby and Martin ' and Martin.
Potassium: Filby and Martin, " Krier, Craig, and

Wallace. "
Rubidium: Filby and Martin. "
Cesium: Filby and Martin. "

Data on the low-temperature-limiting D ebye tem-
perature for the specific heat (Ooc) and the electronic
specific-heat coeKcient (y) are collected in Table IV.

The entropy was obtained by Simpson's rule inte-
gration of the published data. An extrapolation to zero
temperature assumed that the specific heat could be
represented by the sum of terms linear and cubic in
temperature. Entropy values (cal/'K g-atom) obtained
at 298.15'K (25'C) are as follows:

Lithium

Sodium

Potassium

Rubidium

Cesium

6.948&0.012,
12.23 ~0.04,
15.45 ~0.05,
18.34 &0.08,
20.37 &0.09.

TABLE IV. Debye temperature and electronic
specihc-heat coefficient.

Metal

Ll
Na

Rb

Cs

Oo~ 'K

344 ~2.5~

152.5~2.0b

90.6+1'4—0.3
55.6m 0.5
38.4~0.6

y peal/'I g-atom

390a4'
330a5b
497%20

576+"
40

764~250

a These figures refer to a partially transformed sample probably con-
taining about 80% faulted hcp phase.

b Body-centered-cubic phase.

The martensitic transformation in lithium and sodium
is a complication. It was decided to restrict the analysis
to the body-centered-cubic phase. For sodium an ex-
perimental separation of the specific heats of the two
phases at low temperatures has been made (with some
assumptions), and there is no problem in the calcu-
lation of the entropy of the bcc pha, se. For lithium no
separation appears possible at the present time, and
values for the bcc phase are only available above 90'K.
In order to obtain a value for the entropy at 90'K it
was assumed that the entropy of the bcc phase at
200'K was the same as that calculated for a sa,mple of
lithium measured through the two-phase and reversion
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regions. (Reversion to the bcc phase is complete at
about 170'K.) A check on the validity of this assump-
tion can be made by calculating the entropy of sodium
at 90'K (where reversion is complete) from (i) the
measured values for the two-phase and reversion
regions, and (ii) the estimated values for the bcc phase.
The results agree to about 0.5% which is within the
accuracy of measurement.

The entropy of the crystal lattice is required for the
present analysis and this was obtained from the meas-
ured total entropy by subtraction of the electronic
contribution, using the values of y given in Table IV.
A shortened list of lattice entropy values so obtained
is given in Table V. Also shown are values of the Debye
temperature (0+s) obtained from the entropy values
using Giguere and Boisvert's tables. '4 The equivalent
values at the zero-temperature volume were obtained
by use of the relation"

0 iol /0 iT) = (po/pT)r

The y(0) and (p,/pT) values used are those given in the
previous sections.

According to harmonic lattice theory (following
Tosi and Fumi')

Os=0(0){1++a T '").
n=l

This equation converges satisfactorily for temperatures
down to (sOs). It will be apparent from the equation
that O~s is expected to reach a high-temperature limiting
value O~(0), otherwise written as 0~„8.Inspection of the
values of 0's as a function of temperature in Table V
(see also Fig. 1) shows that the experimental results for
0's begin to decrease at high temperatures. This de-
crease is a result of the anharmonicity of the lattice
vibrations. (At the highest temperatures effects due to
the thermal generation of lattice vacancies become
apparent. Data in this region are not used in the present
analysis. )

The harmonic-lattice theory expansion, given above,
was fitted to the appropriate data (see below) by a
least-squares method. For each set of data analyzed
the number of terms taken in the expansion was varied
between one and twelve so that the dependence of
results on number of terms taken could be studied.

l00- POTASSIUM

~ SH010000 ~ 00%1 Oot \ ~ \ ~ 0 ~ oooo ~ 0~ ~ 01I ~ ~ I

~ytO ~~ ~ ~ ~ 0~~yyol ~ ~ ~ ~ 040 ~ 10001

~ 0 ~ \ ~ ~
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~ 4

~0

so
I

85—

Og
I

50
I

l00
I

l 50
I

200 25t:

The results for the coe%cients a„were converted to
the characteristic temperatures 0~(n) using the relations
given by Tosi and Fumi. ' (Tosi and Fumi used the
notation 0'„ for these characteristic temperatures, but
it has been agreed that the notation used here, suggested
by Barron, is preferable since it is less likely to be con-
fused with other characteristic temperatures. ) For a
given metal and a given value of n the value of O~(n)

is found to vary as the number of terms taken in the
expansion is varied. The standard deviation of the
experimental data from the htted expansion is observed
to pass through one or more minima as the number of
terms in the expansion is varied from 1 to 12. The
tabulated results are from the region of the first mini-
mum. The value of 0'(0) shows little or no variation in
the region of this minimum and hence seems well
established. The results for the other characteristic
temperatures are less well known. The results for
lithium are relatively imprecise owing to the limited
temperature range in which the expansion could be
fitted to the results (no data below 90'K).

The alkali metal data will be analyzed in two
di6erent ways. In the first method it will be assumed
that anharmonic effects are negligible at temperatures

TEMPERATURE iK

Pro. 1. The Debye temperature O~ derived from the entropy as
a function of temperature for potassium. The solid line represents
the experimental results. The dashed line is derived on the
assumption that the results below a temperature of O~s/2 are not
affected by anharmonicity. The dotted line is derived on the
assumption that the anharmonic contribution to specific heat is
directly proportional to the temperature. This assumption ob-
viously breaks down at low temperatures.

TAsLE VI. Characteristic temperatures and anharmonic coeScients assuming that the specific heat
below (—',Osl'K is purely harmonic. '

Metal

Li
Xa
K
Rb
Cs

1042

2.0~0.02
1.5~0.1
2.2~0.15
1.8~0.1
2.3~0.1

180
50

120
90
70

o(0)
385.0~1.0
160.5~0.5
96.2+0.1
60.4~0.1
43.6~0.1

O(2)

~400.0
168.0~2.0
102.5&0.5
64.5~0.5
47.0~0.5

O~ (4)

~400.0
170.0&5.0
110.0~5.0
67.0~1.0
48.5+0.5

O(6)
~ ~ ~

165.0~10.0
114.0~ 5.0
69.0~ 2.0
~50.0

a Note: The error limits for A assume that the value of T' is correct. As explained th t t th ' 'd bla ne in e ex ere is consi erable latitude in the choice of T'.

3' P. A. Giguere and M. Boisvert, Table des Fonctions Thermodynamiqge de Debye (Les Presses de l'Universite Laval Quebec 1962)
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TABLE VII. Characteristic temperatures and anharmonic co-
efhcients assuming that an anharmonic contribution to specific
heat, linear in temperature, persists down to a temperature of
(-'0 )'K.

Metal A 0' (0) 0'(2) 0' (4) 0~ (6)

Ll
Na
K
Rb
Cs

0.60X10 4

1.69X10 4

1 21X10 4

1.28X10 4

1 73X10 4

390.5%0.5
165.4~0.2
98.3%0.1
61.5a0.1
44.6a0.1

~405 390 ~310
195.0~7.0 250~30 290~40
120.0~4.0 170~30 190~40
80.0~6.0 110~20 120~30
60.0~6.0 75~20 90~30

Values of the anharmonic coefficient A, found from this
last equation, are given in Table VI. A least-squares
analysis was used to select the best value of T'.

Recently, however, Tosi and Fumi' and Barron"
have argued that the anharmonic effects must be
present from the lowest temperatures. The good fit
below a temperature of about (—',0's) between the experi-
mental results and an expansion based on harmonic-
lattice theory is because, to a first approximation, the
anharmonic effects are equivalent to a displacement of
the frequencies of the normal modes of vibration. "

In the second method of analyzing the alkali-metal
data it will be usslnsed, following Tosi and Fumi, that
the leading anharmonic contribution to the specific heat
is proportional to the absolute temperature. Then it
follows that

C,—C, h,.„=5—Sh„=3AkAT

AT
0~&= (~)h

(0„„'/T)(d(Sh.„./3%k)/d(O~har /T) )
'~ T. H. K. Barron, Proceedings of the Internationat Conference

on Lattice Dynamics, Copenhagen, 1963 (Pergamon Press Ltd. ,
London, 1964), p. 247."T. H. K. Barron and M. L. Klein, Phys. Rev. 127, 1997
(1962).

below (20~s). (Similar assumptions have been made in
some previous analyses' " of specilic-heat data. ) The
harmonic-lattice theory expansion, given above, is
therefore fitted to the experimental results in the tem-
perature range (60s) to (-,'O~s). Values of O~(m) so ob-
tained are given in Table VI. The 'harmonic' results
may be extrapolated above (i20~s) using the harmonic
expansion, and the experimental results are observed
to diverge at some, rather indefinite, temperature T'
(see Fig. 1). Empirically, results above T' are found"
to fit the following relation rather well

C.—C. h.,= 3EkA (T T'), —

(where har denotes harmonic and A is a constant). In
terms of entropy this corresponds to

S—Sh„=31VkA {(T T') T'—ln(T/T')) . —

Then it follows that

A ( (T T') T' In(T/T—'—))Os=0 s 1+
(Oh., /T)(d(Sh. ,/3.Vk)/d(Oh. , /T))

At high temperatures the denominator of this expression
tends to the value minus one, also O~h„ tends to con-
stant value (0'„h„s). Thus the value of A can easily
be estimated from the experimental data and values of
O~h„can then be deduced from the measured 0~ values
at any temperature using the equation immediately
above. '"The harmonic-lattice-theory expansion for O~s,

given earlier, may then be fitted to these Oh„s values
and results are given in Table VII.'" (The anharmonic
coefficients in this table have not been given any error
limits since the method is essentially a force fit to these
values. )

The results obtained by both methods of analysis
were checked by showing that the derived values of g(g)
and A, when substituted in the appropriate equations,
gave back very nearly the original 0„(0)' values.

Tosi and Fumi's assumption may not be correct since
the proportionality of the 'anharmonic' entropy to the
temperature only holds in the classical limit and must
alter at low temperatures. " (This will also be obvious
from Fig. 1.) In order for the present analysis to be
correct the assumption must hold reasonably well down
to a temperature of (60's)'K. If this is not so then, in the
temperature region under discussion the 'anharmonic'
specific heat might be approximately proportional to
(T T"), wher—e T" is less than the T' discussed above.

On this naive picture it is probable, therefore, that
the correct values for the anharmonic coefIicient and
characteristic temperatures lie somewhere between the
two sets of results given in Tables VI and VII. However,
13arron (private communication) points out that the
lattice-vibration spectrum obtained by the first method
is an effective spectrum incorporating frequency shifts
due to the zero-point energy. On the other hand, in the
second method, Tosi and Fumi's approximation of a
linear-anharmonic contribution at high temperatures is
actually with respect to a vibration spectrum without
zero-point energy shifts. Hence some difference is to be
expected between the spectra involved in the two
methods.

The effect of uncertainty in the value of p(0) was
investigated by working through the results for
potassium, on the Tosi and Fumi approximation, using
y(0) values of 1.2 and 1.4 instead of the value 1.3 used
in the above calculation. There was no significant
change in the values of the characteristic temperature
0'(e) but the value of the anharmonic coeflicient A was
increased and decreased by about twenty percent,
respectively, in the two extremes considered. It is

" The method used in obtaining A and O~(0) is quite different
from that used by Tosi and Fumi (Ref. 1). In the present method
these quantities are determined directly from results at relatively
high temperatures (but not so high that vacancy generation
effects are significant) whereas Tosi and Fumi (Ref. 1) used a
successive approximation procedure at lower temperatures. An
objection to the present method is that higher order anharmonic
contributions might influence the results. However, the linearity
of the high-temperature specific heats (Ref. 15) suggests that
these terms are not significant."D. C. Wallace, Phys. Rev. 133, A153 (1964).
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TABLE +III. Geometric mean frequency and moments of the lattice-vibration spectrum assuming
that the speci6c heat below (-,'O~s) 'K is purely harmonic.

Metal

Ll
Na
K
Rb
Cs

vv (sec ')

2.028~0-007 X 10'3
845 ~0.03 X10»
5 066~0 006X10»
3 181~0.005X10»
2 296~0 005X10»

(v '), (sec+')

5.08~0.05X10 "
2.96~0.03X10 "
8.68~0 09X10 "
2.18+0.02X10 '4

4.72~0.05X 1O-24

(v '),„ (sec+')

1.92~0.02X10 ~'

4.63a0.05X10-»
7.83~0-08X10 "
1.25+0.01X10 "
1.76~0.02X 1O-»

(v'), (sec ')

~4.2X10"
7.35 ~0.20X10'4
2.74 ~0.03X 10'4
1.084+0.02 X 10'4
5.75 ~01 X10'3

(v') (sec 4)

~2.1X10"
6.7~1.1X10"
1.2~0.2 X 104'
1.6&0.1X1048

4,5~0.2X 10"

(v'),„(sec ')

~ ~ ~

5.5~2,0X10'4
6.0~1.5X 10"
2.9~0.6X 10'2
~4.3X10"

TABLE IX. Geometric mean frequency and moments of the lattice-vibration spectrum assuming that an anharmonic
contribution to speciic heat, linear in temperature, persists down to a temperature of {-,'0 )'K.

Metal

Li
Na
K
Rb
Cs

v, (sec ')

2 057+0 003X10"
8.71 ~0.01 X1O»
5 18 ~0.005X10»
3.24 ~0.005X10»
2.35 ~0.005X10»

(v '), (sec+')

508+005X10 "
2.94~0.03X10 "
8.66~0.09X10 "
2.18~0.02X10 '4

4.71~0-05X10 '4

(v
—11 (sec+1)

1.92~0.02X10 "
4.58~0.05X10 "
7.79~0.08X10 "
1.24~0.01X1O-»
1.75~0.02X 1O-»

(v')„- (sec ')

~4.3X10»
9.9 ~0.7X10'4
3.8 ~0-2X1024
1.7 ~0.2X10'4
0.94~0-2 X10'4

(v')„- (sec ')

~1.8X 105I
3.2~1-6X10"
6.7~4.5X104'
1.2&0.9X104'
2.6~2.6X 1048

(v )av (sec )
~2.2 X1076

1.6X10"
~1.3X 10'~

8 1X10"
1.5X 1073

(k/h) 0 (0)=e"'v v.
(V2n) (g . Vrn)/3/1/,

For comparative purposes the results are also shown

are related to the characteristic temperatures as in Tables X and XI as the reduced values' [vD(22)/
follows': vD (—3)j, where

therefore concluded that uncertainties in the value of phase below 90'K.) The geometric mean frequency v,
p(0) are not likely to affect the results very significantly. [= (g; v;)'/'~j is obtained from On(0) using the relation

The even moments of the lattice-vibration spectrum

On (222) —((222+ 3)/3)1/2n(h/P) ((V2n) )1/2n

The moments are given in Tables VIII and IX for the
two extreme cases used in interpreting the data. Some
negative moments are also given in the tables and have
been obtained from integrals of (Ct,„/ T") using
Eq. (5.5) of Barron e/ al. 2 (The results for lithium
are ra, ther uncertain due to the approximations neces-
sary to circumvent the absence of data for the bcc

v/2 (22) = {12 (22+3)(vn),. ) '/"
e/0

and the limiting values

vD(0) = (k/h)0(0),
vi) (—3)= (k/h) eel .

[For lithium the O~sc value given in Table IV has not
been used for vD( —3). Instead the value of 336'K,

TABLE X. vD( )Iv/g&( 3) assuming that the speciac heat below (-,'0 )'K is purely harmonic.

Metal

Ll
Na
K
Rb
Cs

1.00
1.00
1.00
1.00
1.00

1.10 &0.02
1.00 ~0.02
0.984~0.015
1.01 ~0.015
0.996~0.015

1.12~0.02
1.02~0.02
1.02~0.02
1.03~0.02
1.07~0.02

1.15+0.01
1.05~0.02
1.06+0.01
1.08~0.01
1.14~0.014

1.19
1.10~0.03
1.13+0.015
1.16~0.02
1.22~0.02

~1.19
1.11~0.05
1.21~0.05
1.20&0.03
1.26~0.02

~ ~ ~

1.08~0.08
1.26~0.05
1.24~0.06

~1.3

TABLE XL vn(a)/vD (—3) assuming that an anharmonic contribution to speciiic heat, linear in temperature,
persists down to a temperature of (-,'0 )'K.

Metal

Li
Na
K
Rb
Cs

1.00
1.00
1.00
1.00
1.00

1.10~0.02
1.00&0.02
0.99~0.015
1.01+0.015
1.00~0.02

1.12~0.02
1.03&0.02
1.02~0.02
1.04+0.02
1.07~0.02

0

1.16~0.01
1.08~0.02
1.08~0.01
1.10~0.01
1.16~0.01

1.28~0.05
1.32~0.04
1.44~0.06
1.6 ~0.1

~1.2
1.6~0.1
1.9~0.2
2.0~0.2
2.0a0.3

0.9
1.9~0.15
2.1~0.2
2.2~0.2
2.3~0.3
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TABLE XII. Comparison of calorimetric and other values
for 0+„~.A =1.943&(10 3; 8 =-125.2.

Metal

Ll
Na
K
Rb
Cs

o(2) '
400

168.0~2.0
102.5&0.5
64.5~0.5
46.5w0.5

O~x

380
173
102.5
65.2
43.9

431
177
102.5
62.5
45.7

8(2) values are taken from Table VI.

computed from extrapolated elastic-constant data, "
has been taken as more appropriate to the bcc phase. f

DISCUSSION

The positive anharmonic contribution to specific
heat seems well established for all the alkali metals.
The coeKcient A is of the order 10 4, irrespective of the
exact form assumed for the anharmonic term. This value
is of the same order as values obtained previously from
an analysis of specific heat rather than entropy. "
Agreement is also good with the theoretical estimates
of Stern" and Liebfried and Ludwig" for sodium. The
theoretical estimate of Keller and Wallace" for lithium
is of the wrong sign due to the use of a Lennard-Jones
potential which is more characteristic of a rare gas than
a metal. 4' The analysis of the experimental results shows
that the leading anharmonic term is sufhcient to account
for the anharmonic effects.

The previous specific-heat analysis, " mentioned
above, also gave values for O~„c )or 0~(2) in the present
notation]. These values are in very good agreement
with the present results except for rubidium where the
disagreement is about S%%u~. Most of this disagreement
may be due to uncertainties in the graphical extrap-
olation used in the previous work.

The values obtained for 0'(2) may also be compared
with theta values obtained from the relations of
Madelung and Lindemann (see Blackman63). These are

Qg x gx—1/2/lrl —1/3p—1/6

Qg
T—g (T' //ilI p'2/3)1/2

where A and 8 are constants (which for the present
purpose have been fixed by reference to the 0~ (2) value
for potassium), x is the compressibility, M the atomic
weight, V the atomic volume, p the density, and T
the melting point. 0'» and 0~T are expected to correspond
to the limiting value of O~o at high temperatures. Values
of 0~(2), 0«, and O'T are collected in Table XII, and it
will be clear that the relations fit the alkali-metal data
quite well.

"G.A. Alers and J. R. Neighbours, Rev. Mod. Phys. 51, 675
(1959).

33 E. A. Stern, Phys. Rev. 111, 786 (1958).
46 G. Liebfried and W. Ludwig, Solid State Phys. 12, 2'/5 (1961).
4' J. M. Keller and D. C. Wallace, Phys. Rev. 126, 1275 (1962).
42 M. L. Klein (private communication).
4'M. Blackman, in Handbgch der Physik, edited by S. Flugge

(Springer-Verlag, Berlin, 1955), Vol. 7, p. 325.

Cesium 101.

Values obtained from Table VII would be about 10'%%ur/

higher.
The characteristic temperature O~ for the Debye-

Waller effect is given44 in the low-temperature limit by
(/2/k)vD( —1) and in the high-temperature limit by
(I3/k)vD( —2). It will be clear from Tables X and XI
that the variation of O~'~ with temperature at constant
volume is not likely to exceed a few percent. The effect
of thermal expansion may be estimated" and will result
in a lowering of 0~'~ by a, few percent at room
temperature.

The results obtained for the moments of the vibra-
tion-frequency spectrum are best considered by
reference to the reduced values of vr1(22) in Tables X
and XI. As explained above, the results for lithium are
rather more uncertain than those for the other metals.
Irrespective of the assumption made regarding the
form of the anharmonic effects, it will be clear that on
going from sodium to cesium the ratio of the higher to
lower moments increases steadily. The actual mag-
nitude of the higher moments is critically dependent on
the form assumed for the anharmonic contribution. ~'

The steady increase in the ratio of the higher to
lower moments on going from sodium to cesium pre-
sumably indicates either (i) a gradual increase in the
density of modes at the higher frequency end of the
spectrum (at the expense of the density at the low-
frequency end), or (ii) that the vibration spectrum
extends to higher reduced frequencies.

This type of change is immediately apparent from
an examination of the specific-heat results" since the
ratio (O~„c/0~sc) increases steadily on going from sodium
to cesium. As shown above the value of 0'„c is approxi-
mately proportional to the reciprocal square root of
the compressibility (x) which is rela, ted to the elastic
constants as follows:

44 T. H. K. Barron, M. L. Klein, A. J. Leadbetter, J. A.
Morrison, and L. Salter, Proceedings of the Eighth International
Conference on Low-Temperature Physics, London, 196Z (Butter-
worths Scientific Publications I td. , London, 1963), p. 415.

'4'Fumi and Tosi (private communication) suggest that the
rapid increase of O(n) with n found by the second method of
analysis might be caused simply by an overestimate of the an-
harmonic coefIIcient A.

The zero-point energy is given by

E,=-23N/2(p'), = (9/8)Nk/D(1).

Va,lues of 3&(1) were estimated by interpolation, and
values for E, cal/g-atom obtained from the data in
Table VI are as follows:

Lithium 876,

Sodium 367,
Potassium 222,

Rubidium 139,
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The value of Osc is given by a much more comp»cated
function of the elastic constants involving C44 also."
An approximate relation, applying to anisotropic
crystals such as the alkali metals, is as follows4'

D(err —Crs)'"(C»+Crs+2C44)'"(&44)'" "'
0~=

p3/2g

where D is a constant, p the density, and 6 the volume
of a unit cell of the crystal. The lack of reliable low-
temperature elastic-constant data on the alkali metals
(see, for example, Huntington") and the approximate
nature of the above formulas make a direct comparison
of the elastic and thermal data of little significance at
the present time.

Clark4' has calculated the vibration-frequency spectra
for bcc lattices assuming central force nearest and
next-nearest neighbor interactions. These calculations
were made for a number of diGerent values of the
parameter P defined as follows:

(Cll C12)/3C44 ~

Moments have been calculated from a few of these
spectra, and ratios of some of the characteristic fre-
quencies v~(22) are shown in Table XIII as a function
of P. It will be seen that as P increases the ratio of
higher to lower characteristic frequencies decreases.
Thus, if this simple model is to explain the alkali-metal
spectra, obtained from experiment, it is necessary that
P decreases on going from sodium to cesium. Clark"
gives elastic-constant values for lithium, sodium, and
potassium suggesting a variation in the opposite
direction but, as mentioned above (see also Hunting-
ton4'), the alkali-metal elastic constants at low tem-
peratures are not known accurately for these three
metals and have never been measured for rubidium
and cesium. Thus, lack of reliable elastic-constant data
prevents any definite conclusions being drawn from
Clark's work at the present time.

Comparison of the present results for sodium can
be made with experimental data of another type. A
lattice-vibration spectrum has been derived" from

TAsz, z XIII. Characteristic frequency ratios from Clark's
lattice-vibration spectra for bcc lattices.

0.05
0.2
0.4
0.7
1.0

vD (2)

»(0)

1.066
1.025
1.003
0.993
0.991

~D(4)

vD(0)

1.099
1.045
1.015
0.998
0.995

~D(6)

vo(0)

1.117
1.059
1.026
1.006
1.003

neutron-scattering results" obtained at 90'K, and the
characteristic frequencies vD (22) obtained from this

spectrum are compared in Table XIV with those ob-

tained from the specific-heat data. It will be clear that
agreement between the neutron data and specific-heat
data obtained. in the assumption of harmonicity up to
—
22 O~s (~80'K for sodium) is rather good. The neutron

measurements do not extend below frequencies of
about 10" cps, and the low-frequency end of the
'neutron spectrum' has been obtained" by fitting a
Born—von Karman model to the neutron data and to
the rather uncertain elastic-constants data (which are

given low weight). Thus the disagreement between the

vD( —3) values, obtained from the specific-heat and

neutron data, respectively, is probably not significant.

The agreement between the two spectra is even better
than appears from Table XIV since the neutron results

refer to the 90'K volume and should be increased by the
factor (pe/pss)r&"' ( 2r% for sodium) to convert to the
O'K volume basis of the specific-heat data. '

The neutron scattering and specific heat are both
due to an effective spectrum, incorporating frequency
shifts due to zero-point energy and anharmonicity.
Barron has shown" that the effective harmonic fre-

quencies for the entropy are the same at all tempera-
tures as those derived from neutron-scattering data.

The agreement between the specific-heat and neutron

results substantiates the assumptions" regarding the
amount of sodium transforming to the low-temperature

phase which are implicit in the bcc sodium specific-heat
results. "

TABLE XIV. Characteristic frequencies of sodium from neutron-scattering and specific-heat data. '

»(—3) vn( —2) vD( —1) »(0) vD (2) vn(4) vg&(6)

Neutron scattering 3.41 3.16 3.21 3.31
Specific heat (Table VIII) 3.18~0.05 3.183~0.015 3.24~0.03 3.34 %0.01
Specific heat (Table IX) 3.18~0.05 3.194~0.015 3.28~0.03 3.446~0.004

3.48
3.50a0.04
4.06~0.14

3.58
3.5~0.1
5.2~0.6

3.63
3.4~0.2
6.0~0.8

a UnitS 10» seC I.

"M. Blackrnan, Phil. Mag. 42, 1441 (1951).
4' H. B. Huntington, Solid State Phys. 7, 288 (1958)."C. B. Clark, J. Grad. Res. Center (Southern Methodist University) 29, 10 (1961)."A. E. Dixon, A. D. B. Woods, and B. N. Brockhouse, Proc. Phys. Soc. (London) 81, 973 (1963).The characteristic frequencies

«OIn neutron-scattering data shown in Table XIV were kindly supplied by Dr. G. Dolling and were obtained using the method of
G. Gilat and G. Dolling, Phys. Letters 8, 304 (1964)."A. D. B. Woods, B. N Brockhouse, R. H. March, A. T. Stewart, and R. Bowers, Phys. Rev. 128, 1112 (1962).
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CONCLUSIONS

Analysis of specific-heat data on the alkali metals

shows (i) that all these metals have a positive an-

harmonic contribution to the specific heat and (ii) that
there is a systematic change in the shape of the vibra-

tion-frequency spectrum on going from sodium to
cesium. While this qualitative interpretation of the
results seems clear, some uncertainty arises in the

quantitative results due to lack of knowledge of the

form of the temperature variation of the anharmonic

specific-heat contribution. There is also a need of

accurate experimental data on the variation of density
and elastic constants with temperature.
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Study of the Cowley and the Christy-Hall Theories of Order Parameters*
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Relationships between autocorrelations of the Flinn function, certain joint probabilities, and the Warren-
Cowley order parameters are established for a specific configuration of a disordered alloy, for a canonical
ensemble (CE) of alloys with a given concentration, and for a grand canonical ensemble (GCE) of alloys
with a given average concentration. The average internal energy for the CE and that for the GCE are of the
same form as that previously reported by Christy and Hall (CH) for a specific configuration. We show
that a certain approximation on order parameters (or an equivalent approximation on probabilities) is
inherent in Cowley's energy expression. Although this approximation may seem a reasonable one by analogy
with the Chapman-Kolmogorov equations for a Markov process, it is definitely inexact in general. For
example, it is inexact for one-dimensional alloys with either first- and second-neighbor interactions or just
a single interaction at other than the first-neighbor distance, although the approximation is exact for a
one-dimensional alloy with first-neighbor interactions. We compute all the order parameters for these one-
dimensional cases using the usual procedure of the chemical potential to fix the average concentration.
For the case of a single interaction at an arbitrary distance, the CH equations give the order parameter for
that distance exactly and all others inexactly; the Cowley equations give none of the parameters exactly
and incorrectly give a finite transition temperature. The Cowley equations, which are probably the better
of the two for three-dimensional cases because they yield a finite transition temperature and contain cou-
pling, clearly do not contain the proper coupling between the order parameters for the one-dimensional case.
We propose that the Cowley and the CH theories, which are both inadequate, are somewhat complementary
and constitute steps in the right direction. We discuss preliminary results of an attempt to derive new
equilibrium equations more general than those of Cowley and CH.

1. INTRODUCTION

HE Ising' ' problem with arbitrary temperature
has been solved exactly only for a limited number

of cases: (1) one dimension, first-neighbor interactions,
a,nd arbitra, ry externa, l field; (2) one dimension, first- and
second-neighbor interactions, and zero external field;
and (3) two dimensions, first-neighbor interactions, and
zero external field. Since the alloy problem with arbi-
trary concentration and given interactions is equivalent

* Supported in part by the National Science Foundation and
the National Aeronautics and Space Administration.

t Most of the material in Sec. 4 is taken from a dissertation
presented by Joel Philhours in partial fulfillment of the require-
ments for the degree of Doctor of Philosophy in Physics at
Kansas State University.' G. F. Newell and E. Montroll, Rev. Mod. Phys. 25, 353 (1953).

2 C. Domb, Advan. Phys. 9, 149, 245 (1960).

to an Ising problem with nonzero Geld (zero field corre-
sponds to equal concen. trations) an.d the same inter-
actions, it is clear that the alloy problem with arbitrary
concentration and temperature has been solved exactly
only for the case of one dimension and first-neighbor
interactions. In order to study metallic alloys, we need,
of course, a theory for three dimensions and for inter-
actions over a fairly large number of neighbors. In this

paper, we report results of a study of the Cowley' ' and
the Christy and Hall (CH)' theories of binary substitu-
tional alloys, which have been developed for the three-
dimensional case. The principal purpose of the study is

' J. M. Cowley, Phys. Rev. 77, 669 (1950).
4 J. M. Cowley, Phys. Rev. 120, 1648 (1960).' J. M. Cowley, Phys. Rev. (to be published).
6 D. 0. Christy and G. L. Hall, Phys. Rev. 132, 1959 (1963}.


