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The de Haas —van Alphen periods in lead have been studied in 200 kG impulsive fields, employing tech-
niques with sensitivity and selectivity which are far improved over those used in an earlier study of this
metal, and several new sets of oscillations have been discovered. The results confirm in detail the correct-
ness of a nearly-free-electron Fermi surface based on four conduction electrons per atom, and the experi-
mentally determined Fermi surface has been described in terms of an interpolation scheme using four
orthogonalized plane waves for each wave vector k. As would be expected for a heavy metal such as lead, it
is necessary to allow for the large spin-orbit interaction in order to achieve an accurate description of all
portions of the Fermi surface. The four adjustable parameters required in the description have been deter-
mined by a least-squares fit to eight observed extremal areas of cross section, and are found to be (in Ry):
Fermi energy Ef ——0.718+0.001; Fourier coefficients of the pseudopotential V»&= —0.084&0.002 and
@200=—0.039~0.002; and spin-orbit interaction X=0.096+0.002. These values of the parameters refer to
a specific interpolation scheme and assume that the mass in the kinetic-energy matrix elements is the free-
electron mass (i.e., no attempt has been made to consider explicitly many-body sects or the electron-
phonon interaction). When the above parameters are used, the total occupied volume is calculated to corre-
spond to 4.02%0.02 electrons per atom, and the model confirms the experimental finding that the fourth
zone is empty. The calculated dispersion curves E(k) reflect the 'inert-pair' behavior which is so well known
in the chemistry of lead salts, in that there is a large energy gap between a filled 6s-like band and the lowest
branch of the 6p-like bands which is never less than 0.13 Ry. The predictions of the model as regards the
detailed orientation dependence of the de Haas —van Alphen periods are found to be in excellent agreement
with experiment; comparison is also made with the Fermi-surface dimensions, cyclotron masses, magneto-
resistance, etc., as determined by other experiments.

INTRODUCTION

~ N the basis of an earlier study of the de Haas-
van Alphen effect in lead using 80 kG impulsive

fields, ' a simple, nearly-free-electron model was ad-
vanced as a plausible approximation to the actual Fermi
surface. At that time the limitations of the experimental
technique were such that only a few oscillatory terms
were observed in the susceptibility; however, if the
simple model for the Fermi surface were to have any
real validity, further oscilla, tory terms would be ex-
pected. In this research we have succeeded in finding
several of the predicted oscillations by extending the
range of fields to 200 kG, by improving otherwise the
sensitivity of the impulsive-field technique, and by
using single crystals of much greater perfection than
those used earlier.

In the meantime, several authors have reported
measurements of various properties of lead which are
also directly related to the Fermi surface. These results
are from the magnetoresistance effect, ' ' ultrasonic
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attenuation, ' ' cyclotron resonance'" and the Kohn
effect, " and they have all been interpreted, with
varying degrees of accuracy and reliability, in terms of
features which are predicted by the nearly-free-electron
model. The new de Haas —van Alphen mea, surements
presented in this paper also confirm the basic correct-
ness of the simple model; moreover, the present results
are of sufficient detail and accuracy to permit a really
quantitative description of the Fermi surface to be
attempted.

The use of pseudopotential theory in accounting for
the band structures and the Fermi surfaces of non-
transition metals is now well established" " and we
have used an interpolation scheme with four orthogonal-
ized plane waves (OPW's) for each wave vector k to
describe the lead Fermi surface. In this model, the
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FIG. 2.Typical plot of the values
oi 1/H at cycle maxima versus in-
tegers, made in the region where
two resonances merge into one
another. The periods are given by
the slopes of the linear portions.
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placed by a bevel-gear device, which had the great
advantage of being quite positive and reproducible.
Changes in the inclination of the specimens to the
applied Geld could be determined to about —„",but be-
cause of small misalignments of the sample in the
pickup system (usually less than 2'), the absolute
inclinations were found to an accuracy of about 1'
from the symmetries of the angular variations of the
de Haas —van Alphen periods. It is believed that the
sample could be set to rotate with the field direction
always within 3' of any chosen crystallographic plane.

A typical proGle of the Geld pulse is shown at the top
of Fig. 1; the highest peak Geld which could be achieved
was 200 kG, and the duration of the pulse was about
16 msec. Because of the many sets of oscillations which
are found in lead at high Gelds, it was essential to use
the resonance method"' in order to achieve a satis-
factory degree of period separation. The observed
resonances were enhanced over and above the natural
ones due to the pickup system alone by the use of two
electronic band-pass filters, each attenuating at a rate
greater than 12 dB per octave above or below the narrow
passing band. " Figure 1 also shows typical resonance
envelopes of the de Haas —van Alphen osci]lations when
the magnetic field is along a $001) direction. The tem-
perature of the specimen could be varied between 1.0
and 4.24'K, and it can be seen from the figure that the
complexity of the oscillograms increases greatly as the
temperature is reduced.

In order to achieve maximum accuracy of period
measurement, each resonance was expanded until the
individual cycles could be resolved, and values of the
reciprocal of the Geld strength at each maximum or
minimum were plotted versus integers; for genuine

s' Krohn-Hite Corporation, Model 315—A (R). The low-pass and
high-pass sections were usually set at the same cutoff frequency,
thereby resulting in the narrowest possible bandwidth.

oscillations one should obtain a straight line, and the
period is given by its slope. Figure 2 is such an integer
plot, made in a region where one resonance gives way
to another, and shows two linear regions corresponding
to the two periods. As usual, period values from the
corresponding expanded resonances on rising and falling
fields were averaged in order to minimize various sys-
tematic errors, " and bucking techniques were used to
provide optimum accuracy in the Geld measurement. '
The large amount of measuring and data reduction was
greatly facilitated by projecting each photograph of the
oscitlations and the associated Geld variation onto the
screen of a device which would provide analog voltages
corresponding to the positions of the field trace and
calibration lines; these voltages were automatically
transferred to punched cards for computer analysis.

CLASSIFICATION OF THE PERIOD RESULTS

As we shall see later, all of the periods which would
be expected on the basis of a nearly-free-electron model
should be observable for ield directions lying in a {110)
plane (which contains the three symmetry directions).
For this reason we have concentrated on measuring the
period variations in this plane; some results for Geld
directions in other planes are given in Refs. 1 and 1/.
The angular dependences of all the observed periods in
the (110) plane have been collected and presented on a
logarithmic scale in Fig. 3. Each point in the Ggure is
the average of at least two independent measurements
for both rising and falling Gelds; if, for any group of
oscillations, more than one point is given for any ori-
entation, then these points refer to results from entirely
separate runs and frequently involve diferent specimens.

Before proceeding with an interpretation of the vari-
ous terms, it should be realized that not all of the
periods in Fig. 3 are fundamental ones. In particular,
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crystals at 1.0'K. Heavy solid curves: fundamental terms; light solid curves: harmonic terms predicted from fundamental curves;
light broken curves: combination terms predicted from fundamental curves.

the exceptionally strong p oscillations are very rich in
harmonic content, and from Fig. 1 it can be seen that
the fundamental and its retinue of harmonics p&", p&'&,

~ . , etc. completely dominate the low-temperature os-
cillograrns at L001], swamping other fundamental terms
of lesser amplitude. The branches a, P, y, and 5 in Fig. 3
are undoubtedly fundamental ones, "and heavy curves

2'The ~, P, and y oscillations are those which were originally
reported in Ref. 1. In that paper, the period variations for the p
oscillations are given for two further planes of rotation; at that
time, the o. oscillations could be detected with certainty only
within about 25' around the $110$ direction.

have been drawn through the points in these branches
to satisfy the requirements of crystal symmetry. When
drawing the heavy curves through the points for the y
oscillations, it has been assumed that the separate
branches cross rather than touch one another at both
the $001] and L111]orientations in this plane. It is, in
fact, extremely dificult to distinguish experimentally
between these two possibilities, since a detailed analysis
would require a careful study of the beat patterns near
the symmetry directions; however, the resonance tech-
nique is required for the very detection of the 7 oscilla-
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TABLE I. Extremal areas of cross section.

Oscillation
orientation

10'P(G ')
experimental

Interpretation:
zone, orbit

Experimental,
from I'

Wp'((2m/u)')

4-parameter~
Fermi surface

Empty-lattice
model

n [
n [
n [
vL
v[
vL

s [
e t

4 [
"L

001]
111]
110]
001]
111]
110]
001]
001]
111]
001]
111]
110]
110]
110]

4.51~0.05
6.17+0.05
5.94m 0.05

39.4 %0.6
42.6 ~0.4
53.2 ~0.5b

27.1 ~0.4
18.6 ~0.2
8.76~0.1g
4.1 ~0.2
2.6 ~0.1

2
2
2
3 $0

3
3
3
3 v

3 0
3
3 0'

3 co

3 K

3 7.d

1.29 ~0.01'
0.940a0.008e
0.976~0.008e
0.147~0.002
0.136&0.001ge

0.109&0.001'
0.214~0.003'
0 311~0004e
0.66 ~0.01'
1.41 ~0.07
2.2 ~0.1

1.2869
0.9346
0.9851
0.1502
0.1364
0.1078
0.1917
0.3089
0.6346
1.4429
2.3035
0.2380
0.68

~1.86

(1.2763)
(0.9413)
(0.9820)

(0.1356)
(0.1073)
(0.1911)
(0.3115)
(0.6293)
(1.4511)
(2.3021)
(0.2378)

1.792
1.097
1.141

~ ~ ~

0.183
0.155
0.128
0.322
0.661
1.696
2.491
0.355

a The results in brackets are those obtained by setting the normalization parameter N7 equal to 0.5 rather than to zero (Appendix I).
At L110j the y oscillations exhibit long beats with 42.5 &0,5 cycles per beat, indicating two distinct periods which differ by 2.2%; the two terms have

comparable amplitudes since the beat pattern has narrow minima. The value quoted for P is the mean of the two periods.
o Nonextremal with respect to ~ in the empty-lattice model; the value for ~0 from the 4-parameter model refers to the extremal section which is found

to be about 0.04(27r/a) distant from points X or U.
d Nonextremal with respect to ~ in both empty-lattice and 4-parameter models.
e Areas used in the least-squares fitting procedure.

tions near L001], and this method is not suitable for
an accurate determination of beat periods. (Two
branches of the y oscillations were once assumed to
touch one another at L001],' but we shall see later that
our interpretation in terms of a nearly-free-electron
model requires that the curves should cross. ) Close to
$001], the n period can be measured reliably only
above about 2.0'K, since at lower temperatures these
oscillations are completely masked by the harmonic / &4&

(see Fig. 1).
In order to demonstrate which of the remaining

terms in Fig. 3 are harmonics, thin solid curves have
been drawn to represent exact integral submultiples of
the periods of the fundamental terms, and it can be
seen that many of the period values lie on such har-
monic curves. The identification of the harmonics has
been further confirmed at symmetry orientations by
making rough estimates of the associated effective-
rnass parameters (from the temperature dependence of
the amplitudes), and checking that these are approxi-
mately integral multiples of the effective masses for the
relevant fundamental terms. In addition to the har-
monics, yet further nonfundamental terms are expected
on account of the basic nonlinearity of the magnetic
properties of the crystal, ""of which the simplest are
obtained from sum or difference combinations of the
fundamental frequencies. The expected period varia-
tions for such terms are shown as the broken curves in
Fig. 3, and several of the remaining points are seen to
follow some of these dashed curves quite closely; in
particular the combination term n+P is found to be
very strong at 1.0'K and near L001].A curious feature
is that only certain sum terms have been found, and in

"A.B.Pippard, Proc. Roy, Soc. (London) A272, 192 (1963).

no instance do points appear to follow the broken curves
predicted for the difference terms; this apparent absence
is not yet understood.

We conclude this review of the basic data with a
discussion of three groups of low-amplitude oscillations
7r, @, and e, which are very difFicult to measure reliably.
The m oscillations have been detected only in the im-
mediate vicinity of (001], and we believe these oscilla-
tions to be fundamental ones since they do not appear
to fall anywhere into the scheme of either harmonics
or of combination tones; the same conclusion would
seem to apply to the short-period P oscillations which
are found around the [111]direction. The classification
of the weak e oscillations near L001j is not, however, so

&x p
FIG. 4. Primitive Brillouin zone for the fcc structure, showing

a tetrahedral cell similar to the one used for the orbit calculations.
A smaller cell could have been chosen, but would have been less
convenient when tracking large orbits.
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;lz:.

FxG. 5. The empty-lattice hole sur-
face in the second zone (to scale). Pq,
central L111]extremal orbit; fs, non-
central $111$extremal orbit.

FIG. 6. A portion oi the empty-lattice electron surface in the third zone (sche-
matic). The orbits (( and r are nonextremal with respect to area, and the broken
curves depict the open orbits p and p, .

straightforward. As can be seen from Fig. 3, the e

period values appear to lie on the dashed curve pre-
dicted for the o.+y combination term; however, if this
interpretation were correct, it would be dificult to
understand why there should be a lack of experimental
points corresponding to the portion of the dashed curve
between about 15' and 40'. We shall see later that the
model Fermi surface actually leads one to expect a
fundamental term with a predicted period close to the
e results.

As far as the interpretation of the results in terms of
the shape of the Fermi surface is concerned, we shall
henceforth consider only the terms cr, P, p, and o, which
are de6nitely fundamental ones, as well as the three
weak terms z-, p, and e discussed above; the harmonics
and combination tones will not concern us any further.
The period values for these seven basic terms at sym-
metry directions are given in the second column of
Table I. The results for the m- and n-oscillations at
L001] are from the more reliable measurements at
higher temperatures (Fig. 3), and in estimating the
reliability of all the results, we have considered not
only the scatter of the individual measurements before
averaging, but we have also taken into account e6ects
of small misalignments of the specimens by considering
the rapidity of the period variations in the neighborhood
of the symmetry axes. In the fourth column of Table I
we give the associated areas of cross section of the
Fermi surface, calculated from the Onsager-Lifshitz-
Kosevich relation

Ms = 2rre/chP (1)
The values of Mo have been expressed in the convenient
unit of (2z-/u)s, where a=4.90 A is the lattice constant
of lead at O'K; the difference between the lattice con-
stant at room temperature 4.94 4 and the value of

O'K has been estimated from thermal-expansion data. "
Equation (1) then becomes numerically

Ms=5.80X10 'P '(2z/u)'. (1a)

We now turn to a comparison of the periods of the
basic oscillations with the periods calculated from the
various areas of cross section of the Fermi surface sug-
gested by the free-electron model; this identification
can now be carried out in more detail than was originally
done in Ref. 1. Figure 4 shows the primitive Brillouin
zone for the fcc structure, with symmetry points and
lines labeled according to the notation of Bouckaert
et a/."If we assume that lead may be regarded as having
four free electrons per atom, then the empty-lattice
model (in which the sole eRect of the lattice is to permit
Bragg rejections of the electrons, but otherwise leave
them completely free) predicts"' a completely Riled
first zone, a large surface containing unoccupied states
in the second zone (Fig. 5), and a multiply connected
surface containing occupied states in the third zone
(Fig. 6); the model also predicts small electron pockets
in the fourth zone, centered on the zone corners g
(these pockets are not illustrated). While the empty-
lattice hole surface in Fig. 5 has been drawn to scale, '4

the multiply connected electron surface in Fig. 6 has
been presented in a simplified schematic fashion, solej.y
for convenience in, visualization; the (110}"arms" in
the 6gure have been drawn considerably thinner than
in the idealized model. '4

Most of the orbits shown in Figs. 5 and 6 are typical
extremal areas of cross section which would be expected
to give rise to de Haas —van Alphen oscillations. %e

'4 G. K. White, Phil. Mag. 7, 271 (1962)."L.Bouckaert, R. Smoluchowski, and E. Wigner, Phys. Rev.
50, 58 (1936).
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pro. 7. A comparison of the empty-lattice period variations (arrowed curves) with the fundamental period values from Fig. 3 The

broken curves refer to orbits which contain a symmetry point (e.g., W, E, or U) but which need not be extremal with respect to ares.
The imld directions are in the (1&p) plane and the periods are plotted on a logarithmic scale; see Fig. 3 for an explanation of the symbols
for the experimental points.

have used Harrison's method" to Gnd their areas by
graphical construction and Eq. (1a) to find the corre-
sponding periods, and the empty-lattice period varia-
tions for the (110) plane are shown in Fig. 7 (arrowed)
for comparison with the experimental results. The
branches for orbit f have been constructed assuming
that the plane of the extremal orbit always contains the

s' W. A. Harrison, Phys. Rev. 116, 555 (1959).

symmetry point E (or U) for arbitrary orientation of
its normal. There is, however, no symmetry require-
ment that this need be so for two of the branches, and
these are distinguished by the dashed curves; in fact
according to the literal empty-lattice model there is no
extremal area of cross section for type-f orbits near
$001$,'r but the variation of the area along the direction
of the normal does develop a minimum as the lattice
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potential is introduced. Similarly, it has been assumed
that all extremal sections through the tetrahedral
fourth-zone electron pockets contain the zone corner W,
but again this is not required by symmetry for one of
the branches.

The most striking features of Fig. 7 are the remark-
ably close agreements of the empty-lattice periods for
orbits p and e with the observed P and 8 branches,
respectively. Also the form of the period varia, tions for
orbits |and l[r agrees roughly with what is observed
for the p and 0. oscillations, respectively. Moreover, if
we suppose that a weak lattice potential is introduced,
this would be expected to have the effect of increa, sing
the number of electrons in the second zone at the ex-
pense of electrons in the third zone, and from Eq. (1)
we would expect the period curves for both of the orbits
f and ]pt to rise, giving better agreement with experi-
ment. We therefore associate the cx oscillations with
orbit lt& and the y oscillations with orbits of type f'.

By similar arguments, the lattice potential would be
expected to shrink the fourth-zone electron pockets,
thereby raising the associated branches above the
empty-lattice ones. However, a careful experimental
search has revealed no evidence of periods which are
longer than those for the y oscillations, and this lack
of data Jeads us to conclude that the fourth zone is
completely empty. The size of the hole-type orbit $ on
the third-zone surface would be expected to be larger in
reality, i.e., of shorter period, and we associate the 7r

oscillations with this orbit even though their range of
observation is so limited. Finally, it is possible that the
c and g oscillations might be ascribed to orbits r] and o.,
respectively, although the combination terms a,nd har-
monics which occur in these regions make any inter-
pretation difficult, and no evidence has been found for
oscillations corresponding to orbit cv. The above in-
terpreta, tion of the experimental results in terms of
orbits suggested by the empty-lattice model is sum-
marized in Table I, and the empty-lattice area, s of
cross section for symmetry directions are given in the
last column of the table.

Our interpretation of the strong P oscillations in
terms of orbit v calls for some comment, since these
oscillations were originally attributed to the $ orbit';
while the empty-lattice periods for orbits v and
differ in magnitude, the angular variations are actually
very similar (Fig. 3). The present assignment is be-
lieved to be correct for the following two reasons:

(i) As we have already pointed out, the period values
of the P oscillations agree closely with the empty-lattice
curve for orbit v. Introduction of small band gaps im-
proves the over-all agreement with experiment as far
as the other orbits are concerned, whereas this good
agreement is lost if the P oscillations are associa, ted
with orbit $ instead. "

(ii) The effective mass for the P oscillations is found
from the temperature dependence of the amplitude to
be close to 1.20ms at $001], and a mass parameter

having essentially the same value has been found in
cyclotron resonance experiments. ~' ' When that par-
ticular cyclotron resonance is studied at L001) for
different microwave polarizations, the results show that
the relevant orbit is one for which only the average
electron velocity in the direction of the magnetic field,
v„is zero, while e, itself is not zero at all points on the
orbit. The vanishing of only the average velocity is a
property of orbit ],whereas v, =0 at all points on orbit $.

Before leaving the subject of the orbit assignments,
we wish to point out that the empty-lattice hole surface
in the second zone will also support noncentral extremal
orbits ]Ps in addition to the central ones of type lt&

(Fig. 5), and it might well be asked whether the periods
labeled n+y in Fig. 3 might not be ascribed to oscilla-
tions arising from such noncentral orbits. However, in
the final four-parameter model for the actual Fermi
surface, which will be shown to account remarkably well
for all the other oscillations, the empty-lattice Fermi
surface is "sandpapered" to such an extent that no
noncentral orbits are possible in reality; this rounding-
off is illustrated for areas normal to the (111jdirection
in Fig. 8. We therefore conclude that the points n+y
do indeed represent a combination tone. Also included
in Fig. 6 a,re two further closed orbits K and v- which are
not extremal, and indeed no oscillations have been
found which could reasonably be ascribed to them.

To sum up, we have seen that the empty-la, ttice
model with four free electrons per atom appears to be a
reasonable approximation to the actual Fermi surface.
However, this is perhaps surprising when one considers
that there is a sizea, ble energy gap of about 0.7 Ry be-
tween the 6s and 6p states in the free lead atom. 'r In
the lead salts, the 6s' electrons frequently appear to
behave as an "inert pair" of core electrons, and one
might ask whether or not a model based on the assump-
tion of only two (6p') electrons would be equally satis-
factory. However, a nearly-free-electron model with
only two electrons per atom does not predict, in par-
ticular, a single large hole surface in the second zone, '4

and it would not be possible to account for the observed
branch of short-period e oscillations. The ultimate
success of the four-electron model will become apparent
in detail after our final four-parameter calculation, in
which the parameters are found to have values which
are physically reasonable. However, we might point
out at this stage that further confidence in the model
can be obtained from a consideration of the sections in
the extended- and reduced-zone schemes which are
formed by the intersection of the Fermi surface with
the central t110j plane through I' (Figs. 9 and 10).
Irrespective of the detailed shape of the Fermi surface,
the total occupied area in the extended-zone scheme of
Fig. 10 is given by

~[110] 2~[110] +2~(f[110]) ~(]pl, [110])y

2' F. Herman and S. Skillman, Atomic Structure Calculations
(Prentice-Hall, Inc. , Englewood Cliffs, New Jersey, 1963).
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FIG. 8. Variation of
the L111j area of cross-
section of the second-
zone hole surface as a
function of the normal
distance from the zone
center F. Upper curve:
empty-lattice model;
lower curve; model
Fermi surface, with the
parameter values given
in Eq. (30). [[q and its
refer to the orbits shown
in Fig. 5.

A'(p[[
~ ~])

(2~x)'
).0—

0.8
-Q, l O, I 0.2

distance along 1L (2~/0)
0,3 0.4

where M~~~o~~'is the central cross-sectional area of the
Brillouin zone normal to $1107; a similar expression
holds for the central slice normal to $1117.For a four-
electron sphere, the area of the diametral cross section
is Mp" ——4.832 (2a-/a)s, and from the areas deduced from
the periods of the y and n oscillations (Table I) we find

and
M[iip] " = (1.01&0.01)Mp

eA[iii] "= (0.99&0.01)e&p

Thus, within experimental error, these total areas are
indistinguishable from the diametral area of the Fermi
surface for four completely free electrons per atom. Vile

might also mention that positron annihilation experi-
ments also support our model. "Later on we shall calcu-
late the band structure E(L) using the experimentally
determined parameters, and it will be shown that the
energy bands do indeed reQect something of an inert-
pair behavior in the metal; however the 6s-like band is
by no means narrow, and thus it would appear to be
wrong to regard the 6s' electrons as localized.

CALCULATION OF THE FERMI SURFACE

Having established that the empty-lattice model
can account qualitatively for the experimental results,
we now proceed with a quantitative calculation of the
shape of the actual Fermi surface. To do this, we make
use of an interpolation scheme which is similar to that

"A.T. Stewart, Can. J. Phys. 35, 168 (1957).

where x is a reciprocal-lattice vector. YVhen the simpli-
fied pseudopotential V&(r) is expressed as a Fourier
series

Vy(r) —g V sic r (3)

and the smooth functions p are taken to be plane
waves (i.e., the crystal wave functions are expressed as
linear combinations of OPW s), the Schrodinger equa-

suggested by Harrison" and which is based on the
pseudopotential concept. ""In this approach the ordi-
nary lattice potential V(r) is replaced by a weak
pseudopotential, which is actually a complicated inte-
gral operator containing terms which result from the
orthogonalization of the crystal wave function to the
occupied core states is, 2s, - ., Sd, as well as exchange
terms. In the interpolation scheme used here, the non-
local pseudopotential is replaced by an ordinary func-
tion of coordinates, and to introduce the notation, as
well as for the sake of clarity, we give first a brief outline
of the method when the spin-orbit coupling can be
ignored.

We follow closely the Phillips-Kleinman approach"
and introduce functions @ to represent the "smooth"
parts of the crystal wave functions x; new functions ][
are then constructed from the p's by orthogonalization
to the core states, and each y is expanded in terms of
the new basis set ][,

(2)
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Vloo
l

Vill
-Vill

Vsoo

T(k—xp)

V111

V111

Vill
V111
T(k—xp)

V2oo

(6)
V2oo

T(k—x4)

where a typical set of reciprocal-lattice vectors for the
fcc structure is, in units of (2~/a),

xg =—0, xp= (0,0,2), xp ——(1,1,1), x4= (1, —1, 1) . (7)

Of course, more than four OP%'s could be used, but
then the essential simplicity of the model would be lost.
This four-OPW model with a local pseudopotential is
the same as that used by Harrison" and by Ashcroft. '

The secular equation resulting from the use of the
Hamiltonian (6) may be formally written as

P{E(k),Vng, Vppp, k) =0, (8)

and the zeros of the polynomial F were found as a
function of k for axed values of E(k), Vn&, and Vppp by a,

computer calculation. In this Inanner, surfaces of con-
stant energy could be traced out in k space; the inter-
sections of these surfaces with symmetry planes
determined the cross-sectional areas corresponding to
the various closed orbits in different bands. In Gtting
to the observed areas (Table I), we have regarded the
Fermi energy Ef as a third 6tting parameter, and have
set E(k)=Ex. One of the zone corners, W, say, was

taken to be the center of a calculation region, a tetra-
hedral cell bounded by the (110) planes which bisect
the lines joining 8', to its four nearest equivalent
neighbors, 8'& say; such a cell is shown in Fig. 4. Only
those reciprocal-lattice vectors x, (i= 2, 3, 4) corre-

sponding to Bragg planes intersecting at 8", are
included in the Hamiltonian matrix (6), and the vectors

"A. Sommerfeld and H. Bethe, Bandbuch der Physik, edited
by H. Geiger and Karl Scheel (Julius Springer, Berlin, 1933),
Vol. 24(2), p. 333.

tion yields the set of coupled equations

T(k—x)C„~++„.C„~V„.„=E(k)C„~, (4)

in which the matrix elements of the kinetic energy are
given by

T(k—x) = (h'/2nz) (k—x)'. (5)

With these approximations the Eqs. (4) reduce formally
to those for the classic plane-wave expansion (Sommer-
feld and Bethe"). We now assume that higher Fourier
components of the pseudopotential are negligibly small
and that only a few components with small i+i are
required to Gt the experimental results, with the V„
regarded as adjustable parameters. Although fewer than
four OPW's are sufhcient to resolve the empty-lattice
degeneracies at most points in the Srillouin zone, at
least four are required at the zone corners O'. Awkward

graphical interpolations" can be avoided if four OPW's
are used for each wave vector k and with this choice the
resultant Hamiltonian matrix from Eqs. (4) becomes
truncated to

given in Eqs. (7) are those appropriate to the cell
centered on the zone corner (—',,0,1)(27r/a). However,
for a point k lying in one of the adjacent elementary
tetrahedra corresponding to one of the corners 8"~, the
function F had to be changed by replacing the x; used
for 8', by those appropriate to that particular S'&, and
so forth. The calculation was programmed so that such

changes were effected automatically, and in this manner
orbits on a constant-energy surface could be followed
continuously. The details of the procedures used in
these computations are given elsewhere. "

When preliminary calculations were carried out with

juSt three Gtting parameterS Ef, V111, and V2oo, reaSOn-

ably accurate Gts to the second-band hole surface and
to the third-band electron surface could not be achieved
simultaneously; in fact, when a good 6t was made to
orbits on one surface, a mismatch of typically 5 or 6%
was found between the calculated and experimental
areas for the other surface. It seems unlikely that the
inclusion of higher order V„would improve the agree-
ment for the following reason. We note that, in the
empty-lattice model with four electrons per atom, the
region of occupied states does not extend very far
beyond the fundamental Brillouin zone. Even if the
higher order V„were to have magnitudes similar to
V111 and V2oo, they would be expected to contribute
little to the energy on account of the large energy de-
nominators in second-order perturbation theory. (Actu-
ally, interactions with higher states are included to
second order in the experimentally determined pa-
rameters V»& and Vppp. ") On the other hand, it is well

known that relativistic effects become important in
heavy elements, and to seek a better description of the
Fermi surface it seemed desirable to take into account
the simplest of the relativistic terms, the spin-orbit
interaction.

The spin-orbit coupling term in the Hamiltonian has
the form"

O=(a/4m'2)(vVXP) ~, (9)

R„P(r)((r)r'dr,

where E.„Iis the radial part of the wave function; for
lead the atomic parameter $p~ is quite large, namely

"J.R. Anderson and M. K. Rhyne, U. S. Atomic Energy Com-
mission Report IS—1106 (unpublished).

3' M. H. L. Pryce, Proc. Phys. Soc. (London) 463, 25 (1950).
"Cf:H. Jones, Theory of Brillouin Zones and Electronic States

in Crystals (North-Holland Publishing Company, Amsterdam,
1960), Chap. 7.

where U(x) is the actual potential seen by the electron,
P is the momentum operator, and the components of
0 are the Pauli spin matrices. For free atoms, Eq. (9)
reduces to

0~= (1/2m'p')((1/r) (d V/dr))1 s= &(r)1 s (10)

and it is customary to characterize the strength of the
interaction by the one-electron atomic parameter
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0.066 Ry."When the spin-orbit interaction is included
in the pseudopotential formalism, the Eqs. (4) must be
modihed to read

At any point 5' these combinations result in pure s and
pure p functions, and for the particular zone corner
(-'„0,1) we demonstrate the symmetries explicitly by
writingT(k—x)C„"+P,C. 2V„.+Q. C. ~Q. .."

=E(k)C„k. (12)
As in Eqs. (4), the kinetic-energy and pseudopotential
matrix elements refer to the plane waves p, whereas
the spin-orbit matrix elements are evaluated using the
OPW's P; since we have been using four OPW's for
each point k in the absence of the spin-orbit interaction,
a total of eight will be required when the spin is taken
into account. Because 0 depends on the potential
gradient LEq. (9)],we should expect that the main con-
tributions to the spin-orbit terms will come from re-
gions near the ion cores. In such regions we assume
that the OPW's will resemble quite closely the wave
functions 6s, 6p, , for the free atom, and the poten-
tial V(r) will be approximately spherically symmetrical
about each nucleus. In order to determine the form of
the spin-orbit interaction for metallic lead, it should
thus be a reasonable approximation to treat the actual
wave functions as linear combinations of 6s and 6p
atomic functions, and we shall neglect all states of
higher angular momentum (6d, ); however, the rela-
tive strengths of the s and p contributions are not
known a priori. We therefore introduce a phenomeno-
logical spin-orbit constant X which contains all the
radial dependence in the spin-orbit matrix element;
while X takes the same form as $3„,it will be regarded
here as a fourth 6tting parameter.

In order to explain our anal choice of a basis set of
wave functions, we consider 6rst the regime at a zone
corner 8', the center of our calculation cell. The points
5' are of particular interest since the empty-lattice
Fermi surface in any band is always close to one of
these symmetry points. Furthermore, it can be shown
that, for the nearly-free-electron model, the energy in
the fourth band always has a local minimum at W (at
least for X=O), and we wish to impose upon our final
model the experimental requirement that the fourth
band be empty; in the three-parameter model, the
Fermi level was found to be only barely below the
Ininimum. It is thus important that the wave functions
at 8' be chosen properly. Moreover, the formalism at
8" is particularly simple since symmetry requires that
the s-p wave functions at this point be either s-like or
p-like, but not mixed. '4 In the absence of spin-orbit
coupling, consider the following combinations of the
four OPW's iP;

A'-4.
A'-4'~. 44'-lt'~, .

These symmetries can be easily veri6ed by supposing
that the lt; may be replaced by simple plane waves
exp(i(k —2r;) r); we set k=ks ——(21,0,1)(2rr/r3) and the
appropriate 2r; are given in Eq (7.). The functions $3'
and P4' are degenerate; they may be transformed into
one another by particular operations of the group of k
at W.33 For this reason, any linear combinations of $3'
and P4' would be equally satisfactory.

When spin is taken into account we consider the eight
functions

C =fn; (i=1, 4; j=1,2;ns=i+2L (—1)'+1]),
(15)

where n; is a spinor. There are evidently several natural
directions along which the spin could be quantized, and
we choose the direction parallel to k, for the sake of
definiteness. At 8' there are two irreducible representa-
tions of the double group, 8 6 and 8~, and a correct
basis set must contain each of these irreducible repre-
sentations twice. We now use the zero-spin set (13) as a
guide, and construct the set C' given by

C1 2 (41+42+43+('4)rrl
~. =-:L(~ -~.)-.+'(~.-~)-],
C'3 = 2 Br+A—A—44)cr»

:L (O a.) -.+-'8 -e) ], -
(16)

C'3 =
2 (lt'1+it'2+$3+it'4) rr2 ~

C'3 = 2L—(4'1—lt'2)&1—2(A—4'4)&2] ~

C r'=
2 (41+6 43 4—4)~2—

4'3 2L(lt'1 lt'2)rr1 2(lt'3 lt4)rr2] j

at 8' the functions C j', C2', C5', and C6' belong to 8'6
and the others belong to 8 ~. The set C' is formally re-
lated to the initial set C by the similarity transformation

O'= SC, (17)
where the 8)(8 matrix S is given in Appendix I; the
similarity transformation used for the wave functions
will, of course, also change the matrix elements in Eq.
(12). It should be pointed out that the basis set (16)
is by no means unique. The above choice turns out to
be convenient since it leads to the correct form for the
spin-orbit terms not only at 8' but also over the entire
plane k, =22r/a (square face of the Brillouin zone);
moreover, the use of the set (16) also results in a par-
ticularly simple spin-orbit Hamiltonian Lblock-diagonal
matrix in Eq. (20)].

We have already assumed for our simpli6ed pseudo-
potential that the matrix elements V„areindependent
"Cf: G. F. Koster, Solid State Physics, edited by F. Seitz and

D. Turnbull (Academic Press Inc. , New York, 1957), Yoj. 5,
p. 173.

1
li 1'= 2 91+6+6+6) lt'3'= —(lt'1—A)

v2
(13)

1
~. =!(~.+~. ~. ~), ~ '= (~—. ~—)——

v2
"E. U. Condon and G. H. Shortley, The Theory of Atomic

Spectra (The Macmillan Company, New York, 1935)."Cf. Chap. 3 of Ref. 32.
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of k, and we now make a similar assumption for the
spin-orbit terms, namely, that the results calculated at
W using a proper basis set (16) for this point will be
valid for all other points in the Brillouin zone; this
simplification is discussed in Appendix I. To find the
form of the spin-orbit matrix elements at lV we now
use Eqs. (13) and (14) to express the functions (16) in
a manner which will reQect the atomic-like character
of the OP%'s in the core region. We then have, again
explicitly for the zone corner (-,',0,1),

Ci'~Nig, ni,
C's ~ iN04's, ni,
Cs' —+ Nip, ns,

C i' —+ iNsp„,ns,

Cs' —+ Ns(f~„ni+if~,ns),
C 4' +No(—f„„niqf „,n—s),
C 0' —+ Ns (—f„„ns—iP„,ni),
C'0 ~Ns ( fs,no+st's, ni)

where the E, are unknown normalization coeKcients.
The matrix elements for spherically symmetrical V(r)
may be written in the form

(C-'l~llC-'&=&4'-'If(~)& slC-'&=~(0-'Il sir-'&, (»)
in which the radial integration has been absorbed into
the phenornenological constant X Lcompare Eq. (19)
with Eqs. (10) and (11) for the free atomj, and the
functions q

' are the angular and spin parts of the func-
tions O'. When the elements (19) are evaluated in the
representation (18), the spin-orbit matrix is found to

be of block-diagonal form

)A,.
X..'= i

&0
where

0

0 q

A..*i (20)

0

2 o

.0

2Ãg2 0 0
20a

0 0 2N—s/Ns

0 —Ns/Ns —2Nss

3Ci 0
X,l'= S (21)

0 3Cl

and the total Hamiltonian matrix is then finally given by

3„is real when evaluated at 8', but would be complex
in general (Appendix I), and in order that A„be
Hermitian, it is necessary to set 2Ns/Ns Ns/Ns. ——We
now take the p functions to be normalized over some
appropriate volume and set S2'= —', for the sake of
definiteness, i.e., we assume Ns ——W2/2 and No= 1.

In order to determine the total Hamiltonian matrix
at any point k in the Brillouin zone, the lattice Hamil-
tonian Ki LEq. (6)] must be transformed into a form
appropriate to the set of eight basis functions (16) and
then combined with the spin-orbit matrix K„'LEq.
(20)].The required transformation for Ki is

(A,.+A i)
BCs'=X„'jBCi' ——

(A,.+Ai)~
(22)

where
i(U4 —Us)

Uo+ Vsoo+2Viii
Ui+ Us Us —U4 i —(U4 Us)—

—i(U4 —Us)
Uo —Vsoo+ li/2

i(U4 —Us) —Ui —Us+ Us+ U4

A,.+A i=
Ui+ Us —Us —Us —i (U4—Us)

U0+ V200 2 Vill
—i (U4—Us) —&2'/2

(23)

—i(U4 —Us) —Ui —Us+ Us+ U4 i (U4—Us) —~2K/2 Uo —V soo
—X/2

0 1 0 —1

(Us —Ui) —1 0 —1 0
~l

0 1 0
(24)

1 0 0.

In the above matrices

U'= (V/2~) I
k+

Uo ——(50/2m) Q U;/4,

(25)

(26)

and the ss; are given in Eq. (7). Since the spin-orbit
interaction cannot remove the Kramers degeneracy of
the energy levels in the independent-particle model, the
eigenvalues of the 8&&8 Hamiltonian matrix (22) must
always occur in four degenerate pairs. While we have
not been able to transform the total Hamiltonian into a
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simple block-diagonal matrix, the simple form of the
submatrix Bi enables the secular equation to be factored
by standard determinantal operations into two identical
terms, each containing the determinant of only a 4&(4
matrix. This factoring did not introduce any simplica-
tions as far as the formal statement of the problem was
concerned, but it did result in a substantial reduction
in the time required for computer calculations.

The surfaces of constant energy were calculated from
the secular equation

G(E(k),viii, vspp, 'A, k) =0 (27)

in the same manner as for the three-parameter model
(see Appendix II), and the following physical considera-
tions were taken into account in order to limit the many
possibilities in initial trial-and-error fitting calculations.
It would seem reasonable to suppose that & (p„and
also that E~ Ef"', the free-electron Fermi energy. As
far as the pseudopotential coefficients are concerned, a
discussion of the ordering of the energy levels is helpful.
At W all combinations of the U; (i=1, 2, 3, 4) vanish
in Eqs. (23) and (24), and the eigenvalues relative to
the empty-lattice energy (5/4) (0'/2m) (2s /a)' are readily
found to be

Ei(W) = 2V111+Vspp,

+2(W) V111 ~/4 ( (Vspp Uttt+X/4) +PP/2)'",
Es(W) = —Vspp+X/2,

&4(W) =—U111—l /4+ {(Vspp —Vill+&/4)'+&'/2)'".
(28)

The level Et(W) is the s-like level Wp(W, ) and is inde-
pendent of 'A. It is reasonable to expect this level to be
the lowest of the four because of the large s-p splitting
in the free atom; for X=O it is easy to see that this
condition requires V»~ to be negative, a conclusion
which remains valid even for X&0 if we make reason-
able choices for the values of the parameters. More-
over, a negative choice for V»& causes the energy of the
uppermost level E4(W) to increase when spin-orbit
coupling is introduced, i.e., the minimum energy in the
fourth zone is raised, thereby ensuring that this band
remains unoccupied. Little can be predicted in advance
about the sign of V2pp but preliminary estimates gave
decidedly better fits to the experimental data when
both V~» and V2pp were taken to be negative.

The four parameters were determined by a least-
squares fit to the areas of eight of the major symmetry
orbits. The particular orbits used are denoted by
asterisks in Table I; they were chosen not only to give
a good representation of the Fermi surface in both the
second and third zones but also because the associated
period values were the most reliable. Values of Ef A,

V»~, and V2pp were chosen to minimize the sum of the
squares of the weighted deviations

where the 8M' are the uncertainties in the experi-
mentally-determined areas (Table I). In a preliminary
calculation, Q was evaluated at points on a coarse grid
in the four-dimensional (E~,lt, V111,V~op) space, and the
position of minimum Q was found approximately by
rough graphical interpolation. The point thus found
was then used as a starting point for a linear least-
squares iteration calculation which is described in
Appendix II, and the iterations were carried out until
the minimum in Q was located with a precision", .which
was compatible with the accuracy of the experimental
informa, tion. The point Q;„wasdemonstrated to be an
absolute minimum in the four-dimensional space; second
derivatives of Q were evaluated at this point and they
confirmed a positive-definite quadratic form. "The final
values of the parameters at Q; are, in rydbergs,

V»g =—0.084+0.002, Eg =0.718&0.001
(E1'P' =0.7079),

V2pp = —0.039&0.002~ A =0.096&0.002

($p ——0.066),

(3o)

Tanr. z II. Energy eigenvalues at symmetry points (Ry).

Point

r
8'
X

E, U
I.

EI
—0.0138

0.3693
0.3623
0.3541
0.2397

VI11= —0.0841
Ef = 0.7180

E2 E,
1.3169 1.4297
0.5392 0.6630
0.4943 0.9149
0.5249 0.6410
0.4282 1.1938

Ry, V2oo = —o.0387 Ry,
Ry, X= 0.0961 Ry.

1.8771
0.7335
0.9945
1..0155
1.3652

and these parameters completely specify the shape of the
Fermi surface within the framework of our model; a
discussion of the uncertainties quoted above will be
deferred until later (Appendix II).

In Fig. 9 we compare the shapes of the various sym-
metry orbits calculated from the model Fermi surface
(heavy curves) with the corresponding empty-lattice
sections (circular arcs). The combined effects of the
lattice potential and spin-orbit coupling are seen to
result in a rounding-off of the sharp corners, but other-
wise the calculated and empty-lattice shapes are very
similar. The principal differences are also apparent in
Fig. 10, in which we show the central (110$ section
through the Fermi surface in the extended-zone scheme;
the model Fermi surface lies remarkably close to the
free-electron sphere except near the intersections with
the Bragg planes.

Although the values of the parameters X, V»~, and
Vspp given by Eqs. (30) may have little significance for
energies other than E~, we have nevertheless used them
to compute the eigenvalues E(k) of the Hamiltonian
(22) along principal directions in k space. The ensuing
energy bands are shown in Fig. 11, and the energy levels

Q =p pM«&. '(Ef,X, U111,Vspp) —M.~,']'/ (8M')', (29) Cf. T. Apostol, 3fathematical Analysis (Addison-% esley Pub-
lishing Company, Reading, Massachusetts, 1957).
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at the principal symmetry points are listed in Table II.
The most striking feature of Fig. 11 is the distinct gap
between the 6lled lowest band, in which the wave
functions have predominantly s-like symmetry, and the
lowest branch of the p-like bands. For any k, the gap

is never less than 0.13 Ry and, as we have pointed out
earlier, it is a reflection in the metal of the large s-p
splitting in the free atom ("inert-pair" behavior). One
major eGect of the spin-orbit coupling is to split the
otherwise degenerate level 8"3 into the two levels
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FIG. 9. The shapes of the symmetry orbits as calculated from the four-parameter model Fermi surface. The empty-lattice sections
(arcs of circles) are also shown. The principal dimensions (between corresponding points labeled with small letters) are summarized
in Table III.

Ws(Ws) and Wr(Ws), which are found to be separated
by about 0.124 Ry. Also shown in Fig. 11 is the calcu-
lated Fermi level Eg, and there is a gap of about
0.015 Ry between this energy and the minimum in the
fourth band t Wr(Ws')]; it is gratifying to find that the
model can account for the apparent lack of experimental
results which could be attributed to the presence of any
electrons in the fourth zone.

are the predicted limiting angles for the existence of
extremal orbits; the calculated orbits cease to exist for
angles which exceed by more than 0.25' the ranges
shown in the figure. We have not attempted to establish
precisely the limiting angles for the branch for which
orbit g is noncentral (broken curve), since considerable

TAnr. z III. Principal dimensions of the Fermi surface (2s./a).

COMPARISON WITH EXPERIMENT

(a) Detailed Shape of the Fermi Surface

The areas calculated from the four-parameter Fermi
surface for the eleven possible orbits at symmetry
directions are compared in Table I with those found
experimentally, and in Fig. 12 we show the angular
dependence of the de Haas —van Alphen periods pre-
dicted by the model Fermi surface (arrowed curves) for
direct comparison with the observed period variations
in the (110) plane. For many of the curves, the calcu-
lated and experimental periods are indistinguishable
from one another within the accuracy of the experi-
mental results. The good quantitative agreement
brought about by the four-parameter model can also be
appreciated by referring back to the comparison made
with the empty-lattice period variations in Fig.
however, we note that the model Fermi surface cannot
quite reproduce the very good match of the 5 oscilla-
tions with the empty-lattice curve for orbit 8, but this
feature is of relatively minor importance compared to
the excellent over-all agreement. Also shown in Fig. 12

Dimension
in Fig. 9

4-parameter
Fermi surface Other experiments

1.44(R)

1.30 (R)
0.37 (R)
0.31(E.)?
1.6i (R)

CC 1.403 1.44(R)
bb 0.968
CC 1.183

1.033
ee 0.439 0.41(R)
8f 0.439
ff 1.317
gg 0.333
hh 0.583
kk 1.547
ngm 0.863
se 0.475
oo 0.872
pp 0.416
qq 0.683
rr 0.426
NN 1.556
VV 1.889 2.00(R)
VOTO 0.940 0.90(R)

I'b (Fig. 10) 1.248 1.25+0.01(B), 1.25(PW)
I'e (Fig. 10) 1.190 1.19&0.01(B), 1.18(PW)
(2z/a= 1.282X10' cm ')
R, magnetoacoustic eliect (Ref. 6); B, Kohn effect (neutrons)

(Ref. 10);
PW, Kohn eifect (x rays) (Ref. 11).
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Fro. 10. The central $110$ section
through I' in the extended-zone scheme.
The section through the four-parameter
Fermi surface (solid curves) is compared
with that through the free-electron sphere
(circle). The small letters correspond to
those in Fig. 9.

effort would be required to And these angles reliably;
a substantial effort would also have been involved in
extending the curve for orbit o- to larger angles from
[1117.

The chief weakness of the four-parameter model is
that the calculated curve for orbit ( is found to lie

significantly higher than the period values for the x
oscillations; however, it was just for these oscillations
that the discrepancy with the relevant empty-lattice
curve was grea, test (Fig. 3), and the present model
certainly represents a vast improvement. Moreover, the
weak m- oscillations have been detected only in the
immediate vicinity of [001], whereas the model pre-
dicts that the & orbit should exist up to a maximum of
28.5' from [001].A further diRiculty is that we have
found no evidence whatsoever for any oscillations which
could possibly be attributed to orbit co, our model
predicts that such period values should lie between the
curves for the harmonics y&" and y "& (compare Figs. 3
and 12), but a, careful search has revealed no further
oscillations in this region. On the basis of rough agree-
ment with experiment, it would seem that our tentative
assignments of the weak ~ and @ oscillations to orbits

g and o., respectively, are probably correct.
We have already shown in Fig. 8 that the second-zone

hole surface predicted by the model has been "sand-
papered" to such an extent that it will not support
noncentral orbits of type fs normal to [111](Fig. 5),

and this conclusion is valid for the [001] and [1107
directions as well. A similar search for noncentral orbits
has also been carried out for the third-zone electron
surface and the calculated variation of cross-sectional
area along an arm of this surface is presented on an
open scale in Fig. 13. In addition to a narrow minimum
at the center of an arm (plane containing points U or
IC), the variation of the area becomes extremely fiat at
a, distance of about 0.1 (2s./a) from the center before
the onset of the rapid increase as one approaches a
zone corner O'. While the Oat region is neither a maxi-
mum nor a minimum, but is rather like a region of
inflection, we believe that the variation of area is never-
theless gentle enough to give rise to a de Ha, as—van
Alphen effect. If this assumption is correct, the model
would predict for the central and noncentral type-l
orbits at [110]two periods which diRer by about 2.2%%uo.

This prediction is in exact agreement with the observa-
tion of long beats with 42.5~0.5 cycles per beat in the
y oscillations at [110].Examples of the beat patterns
in the y oscillations have been given in Ref. 1 [Figs.
1(a)—1(c)]; for an arbitrary orientation the beat en-
velopes are quite complex, but they reduce to a simple
two-period pattern at [110].The origin of these beats
has for long been a mystery, and it is encouraging that
the model Fermi surface can account for them in such
a natural way.

The principal diametral dimensions of the various
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symmetry sections through the model Fermi surface
are summarized in Table III; the letters refer to those
in Fig. 9.Where comparison can be made, the calculated
dimensions are found to be in rea, sonable agreement
with those determined directly by the magnetoacoustic
effect."Although the accuracy of the magnetoacoustic
results is not very high, partly on account of the limited
number of cycles which can be observed, these results
usefully complement the de Haas —van Alphen measure-
ments. In particular, it is for the large orbits g and cr

that the de Haas —van Alphen results are very meager,
whereas the effects of these orbits show up strongly in
the magnetoacoustic effect. Although there appears to
be some question of interpretation, " two dimensions
deduced from the Kohn anomalies in the phonon spec-
tra' "are also given in Table III; these dimensions are
seen to be in accord with those calculated from the
model.

The arms of the multiply connected electron surface
are suKciently thick to support open orbits for certain
directions of a magnetic field, and two such orbits, p

37 W. A. Harrison, Phys. Rev. 129, 2512 (1963).

and p, are shown in the schematic drawing of Fig. 6.
Magnetoresistance experiments' 4 yield valuable in-
formation concerning the boundaries of the allowed
field directions for the existence of these orbits, but it is
rather difficult to predict these boundaries from the
model Fermi surface without lengthy computer calcula-
tions. As Young has pointed out, ' the existence of the
large hole orbits of type 7 (Fig. 6) at a particular ori-
entation implies the presence of a "type-II" open orbit
at that orientation. We have used the model to calculate .

the angular range for the occurrence of the (nonex-
tremal) r orbits, and find that they cease to exist beyond
about 3.8' and 4.7' from $110$ for field directions in the
(001) and (110)planes, respectively. On the other hand,
the magnetoresistance results4 show that the corre-
sponding angles at the boundary of the type-II open-
orbit region are considerably greater, both being about
8.15'. It is thus clear that the existence of the hole
orbit 7 is a sufhcient but not a necessary condition for
the occurrence of type-II open orbits; large extended
hole orbits must play the role of orbit r in Young's
criterion in the intervening region where the r orbits
themselves no longer exist.
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Fro. 12. A comparison of the period variations calculated from the four-parameter model (arrowed curves) with the fundamental

period values from Fig. 3. The broken curves refer to orbits of type f which contain the symmetry points E or U but which need not be
extremal with respect to area. The field directions are in the (110) plane and the periods are plotted on a logarithmic scale; see Fig. 3
for an explanation of the symbols for the experimental points. Also shown are the limiting angles for the existence of orbits on the
four-parameter Fermi surface.

(h) Differential Properties and Total Volume

Detailed studies of the orientation dependence of
cyclotron resonance in lead have been carried out by
Khaikin and Mina's and by Young. ' The cyclotron
mass

ma= (As/27r) (BM/BE) EI (3l)

measured in such experiments is evidently a differential
property of the energy surfaces in the neighborhood of
the Fermi level, and only those sections for which no~

is extremal contribute to the resonance. If the areas M

of these sections are also extremal, then M~f=Mo and
direct comparison can be made between the cyclotron-
resonance masses and the corresponding ones found
from the temperature dependence of the de Haas —van
Alphen effect'4; with the exception of those orbits i
whose period values follow the dashed curves in Fig. 12,
symmetry requires all of the orbits which contribute to
the de Haas —van Alphen effect to be extremal with re-
spect to both M and m*. We have mentioned already
how information obtained from cyclotron resonance as
a function of the polarization of the microwave Geld
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Tax.E IV. Cyclotron masses and curvature factors.

Oscillation
orientation

n $001]
n Liii]
~ t 110]
7 [001]

y (111]
7 L110]
v Looi]
p $001]
5 $111]
s $001]
~ Liii]

~ ~ L110]

"[110]
~ ~ ~ Dio]

Interpretation:
zone, orbit

2
2
2
3 gb

3
3
3
3 v

3 8
3
3 0'

3 op

3 Ko

3

Experimental'

1.58 (EM), 1.64(f')
1.14(EM)
1.12(EM)

0.74(EM), 0.75 (Y)
0.68(P)
0.69(EM)

0.55(EM), 0.56(Y)
0.90 (EM), 0.85 (P)
1.22 (EM), 1.20 (P)

1.21(EM)
2.59(EM)

~ ~ ~

1.26(EM) or 1.41(EM)
1.35 (F)
2.47 (EM)

0.796
0.581
0.576

0.66s
0.602
0.586

0.306
0.228
0.353
0.570
0.544
1.197
1.602
0.591

0.242

0.233
0.194
0.484
0.417
1.000
1.000
0.52g

4-parameter Empty-lattice
Fermi surface model

m+exp

m 4-p.m.

2.02
1.96
1.94

2.25
2.41
2.4s
2.12
2.22
2.16

2.13-2.38

—44.8
—2.62

—14.4

+1.38
+18.6
+4.48
-0.29
+4.88

—21.8
12.3

114.1

a KM, from cyclotron resonance (Refs. 7, 8); Y, from cyclotron resonance (Ref. 3); I', from the temperature dependence of the amplitude of the de Haas-
van Alphen oscillations (R. A. Phillips, private communication).

b Nonextremal with respect to ~ in the empty-lattice model; for this orbit m+ could not be calculated reliably from the 4-parameter model since it was
found that the position of minimum area became displaced as Ey was varied.

' Nonextremal with respect to ~ in both empty-lattice and 4-parameter models.

has proved helpful in con6rming our interpretation of
the P oscillations. In Table IV we list the cyclotron-
resonance masses for the various symmetry orbits, and
we also give four values of m* found from the de Haas-
van Alphen effect (detailed. mass results will be pub-
lished later); these four results are seen to agree well
with the more reliab1e values obtained directly from
cyclotron resonance. It is, of course, quite possible to
imagine that orbits exist which may be extremal with
respect to m* but not with respect to M; indeed Khaikin
and Mina" 6nd a resonance which they attribute to
orbit z (Fig. 6, Table IV), for which the area is cer-
tainly not stationary.

The anisotropies of those cyclotron-resonance masses
which can be related to orbits of stationary area are of
the same general form as the de Haas —van Alphen
period variations, and they confirm in some detail the
correctness of the model Fermi surface, e.g. , as regards
the limiting angles for the various orbits. The apparent
persistence of a cyclotron resonance from orbit v over
the entire (001) plane would seem to be an exception.
However the phase involved in the cyclotron resonance
experiment is very lour when compared to the high
phase in the de Haas-van Alphen effect, and thus the
former experiment does not select out such narrow
groups of carriers as those which contribute in the
latter. For this reason, cyclotron resonance may be
observed when m* is not exactly extremal, but only
nearly so," and possibly such nearly extremal orbits
enable the type-v resonance to be found near L110).
Khaikin and Mina~ 8 also report the finding of several

"F.W. Spong and A. F. Kip, Phys. Rev. 137, A431 (1965).

O.II5

03I2—

(2K/a)

O.I09 =0.022
Af.

0306— U, K

l l I

O. I

distance along zone line (2mb)
Q2

Fto. 13.Variation of the L110]area of cross section through an
arm of the third-zone electron surface, as a function of the normal
distance (along $110])from the midpoint of a zone line, E or U.
The curve is calculated from the model Fermi surface, with the
parameter values given in Eq. (30).

additional resonances which do not seem to be associ-
ated with orbits of extremal area, and these resonances
have not yet been satisfactorily accounted for.

From Table IV it can be seen that the masses pre-
dicted by the model band-structure do not differ much
from those given by the simple empty-lattice modeP4;
the only large differences occur for orbits m and o.. Also
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FIG. 14. The density-of-states curve in the neighborhood of the
Fermi energy as calculated from the four-parameter model; the
individual contributions from the second, third, and fourth bands
are also shown. Dot-dash curve: free-electron model; Q, from
measurements of the electronic specific-heat coefficient y (Ref.
42). The calculation of the third-band contribution is extremely
awkward above the point of minimum energy in the fourth zone
and it has not been carried out; however no startling changes are
expected until the energy reaches ~0.91 Ry (see Fig. 11). The
ordinates have not been doubled to include the spin degeneracy.

given in the table are values of the ratio of the masses
found experimentally to those calculated from the four-
parameter model. No matter whether one considers
large or small orbits on the multiply connected surface,
this ratio is remarkably constant and never deviates
much from 2.2; for orbits on the hole surface, the ratio
appears to be about 15% smaller. The fact that the
experimental and "band-structure" masses do not agree
does not cause us to lose faith in the shape of the pro-
posed Fermi surface. All along we have been regarding
the mass which appears in the kinetic energy LEq. (5)j
as the free-electron mass mo, however, if another choice
were made, its sole effect would be to alter the energy
scale, and hence the numerical values of the fitting pa-
rameters, but the shape of the Fermi surface would not
be affected. Both the Fermi surface and the differential
properties could thus be reasonably well accounted for
by supposing that the mass in the kinetic energy was
increased to about 2.2mo, at least for electrons near the
Fermi surface. This type of effect is indeed expected on
account of the electron-phonon interaction, "—4' which
is particularly strong for lead.

The total occupied volume in ir space is of consider-
able interest, not only as a check on the consistency of
the model Fermi surface but also as a prelude to deter-
mining the density-of-states curve. The volumes con-
tained by the hole surface and by the electron surface

S. Nakajima and M. Watabe, Progr. Theoret. Phys. 30, 772
(1963).

~R. E. Prange and L. P. KadanoB, Phys. Rev. 134, A566
(1964).' J. C. Swihart, D. J. Scalapino, and Y. Wada, 'Phys. Rev.
Letters 14, 106 (1965).

have been calculated by integrating numerically the
areas of unoccupied and occupied sections, respectively,
in the smallest possible calculation region (1/48 of the
Brillouin zone). The final volumes are found to corre-
spond to 0.393 electron/atom and 0.375 hole/atom for
the third and second zones, respectively. These two
volumes should be identical for our model, and in fact
the calculated values may be taken to be the same within
the reliability of the calculation and of the four fitting
parameters. The total occupied volume in the erst,
second and third Brillouin zones thus corresponds to
2+ (2—0.375)+0.393=4.02+0.02 electrons per atom.
It should be remembered that E~ was not determined
by conservation of electrons, but it was treated as a
fitting parameter on the same footing as U~i~, U2oo, and
X; within the accuracy of the calculation and of the
parameters, the total volume agrees, as it should, with
the free-electron volume.

Values of K(E), the density of electronic states, have
been calculated for our model band-structure from the
derivatives of the occupied volumes with respect to
energy; the "Fermi energy" was treated as a variable
and the other fitting parameters LEq. (30)] were held
constant. In Fig. 14 we show the contributions from
the various zones to the total density-of-states curve
for energies near the actual Fermi level, and as far as
the general trend is concerned, the "band-structure"
X(E) curve does not differ much from the curve for
perfectly free electrons. Also shown in the figure is the

experimental value of K(Er) inferred from the electronic

specific heat. " The experimental value is 2.23 times
greater than the "band-structure" value, a discrepancy
which is virtually the same as that which was found
when comparing the experimental and calculated cyclo-
tron masses (Table IV). This observation is thus in
keeping with recent theoretical predictions" —"that the
electron-phonon interaction should manifest itself in the
same quantitative manner in the two phenomena. The
calculated X(E) curve does not show the "peaking" a1
the Fermi level which has been suggested on the basis
of a crude analysis of some transport properties. 4'

However, if the Fermi level were to be changed by
alloying, such a peaking might indeed show up in an
experimentally determined X(E) curve when collisions
with impurities begin to interfere seriously with the
electron-phonon interaction.

CONCLUDING DISCUSSION

From the experimental information provided by the
angular variations of the de Haas —van Alphen periods

4' Good agreement is found between values of the electronic
specific-heat coefhcient p determined calorimetrically and those
determined thermodynamically from the superconducting critical-
Qeld curve. For recent determinations, which also give references
to earlier work, see: N. E. Phillips, M. H. Lambert, and W. R.
Gardner, Rev. Mod. Phys. 36, 131 (1964) (calorimetry); D. L.
Decker, D. E. Mapother, and R. W. Shaw, Phys. Rev. 112, 1888
(1958) (critical fields). We have taken the value 3.05 mJ mole '
deg '.

"A. V. Gold, Phil. Mag. 5, 70 (1960).
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in lead we have been able to arrive at a quantitative
description of the Fermi surface in terms of a simple
model involving only four parameters, and with this
model it should be possible to make accurate calcula-
tions of any physical properties which depend directly
on the geometry of the Fermi surface. Furthermore, we
have seen that the model will also account reasonably
well for differential properties near the Fermi energy if
the free-electron mass in the kinetic energy of an elec-
tron is increased by a factor of about 2.2 to allow for the
effects of the electron-phonon interaction; when this
change is made, the model couM be used to calculate,
for example, meaningful values of the Fermi velocity at
any point on the Fermi surface. The accuracies quoted
for the four fitting parameters LEq. (30)) are dis-
cussed in Appendix II, but we might point out here that
the dimensions and areas of cross section predicted by
the model Fermi surface will actually be more reliable
than the percentage accuracies of Vyyy, V2pp, and
might suggest. As would be expected from the qualita-
tive similarity with the empty-lattice model, the dimen-
sions of the Fermi surface depend much more critically
on the fourth parameter E~, and it is this parameter
which has been determined with the greatest precision.

Before any attempt is made to attach direct physical
significance to the numerical values of the fitting
parameters, it must be remembered that they have
been evaluated within the framework of a model which
is undoubtedly oversimplified. Thus any lt-dependences
of the Fourier coefhcients of the pseudopotential and of
the spin-orbit matrix elements have been ignored (but
see Appendix I for a further discussion of the spin-orbit
terms), and a detailed band calculation from first
principles is badly needed to check these assumptions.
The spin-orbit interaction is, of course, the lowest order
relativistic correction, but since it is the only correction
which involves the electron spin, ~ we might expect
that a fundamental relativistic calculation would yield
a value for X which is reasonably close to that given by
our simple model. On the other hand, the relativistic
terms of higher order are functions of coordinates only, 44

and thus their effects are implicitly incorporated in our
fitted pseudopotential coefEcients.

From the large spin-splitting of the levels Ws(W, )
and Wr(Ws), as well as from the observed trends in the
numerical calculations of the areas, it is clear that in
lead the spin-orbit interaction is just as effective as the
ordinary lattice potential in modifying the energy bands
and in creating band gaps. For our choice of normaliza-
tion parameter Xs (or Es), the value for X turns out to
be some 50%%u~ greater than the value of the parameter
$s„for the free atom; some enhancement over Ps~
might be expected because the wave function near the
ion cores should be of somewhat greater amplitude in
the metal since the volume of normalization is re-

stricted to a unit cell.4' It is also interesting to note
that the value of E~ turns out to be slightly greater than
the free-electron Fermi energy. A calculation by second-
order perturbation theory (for X=O) actually predicts
a decrease in the Fermi energy when the effect of just
one of the appropriate Bragg planes is considered. '~

However the (111}and (200) Bragg planes all intersect
along lines which are very close to the Fermi surface,
and thus it is perhaps unrealistic to suppose that the
total change in the Fermi energy should be given by a
simple superposition of the results for individual planes,
Finally as far as the dependence on

~
L~ is concerned.

the fitted values of V~~~ and V2pp seem to follow the
trend suggested by Harrison" from considerations of
the resistivities of various lead alloys.

In the experimental part of this study, little emphasis
has been placed on obtaining information from the
amplitudes of the de Haas —van Alphen oscillations.
Unlike the periods, the amplitudes depend critically on
the experimental conditions and their detailed behavior
is not yet fully understood. Nevertheless, for the sake
of completeness we have given in the last column of
Table IV values of the curvature factors ej'Ms/Bk, s

predicted by the model Fermi surface; these factors
and the orbit masses m* have a large control over the
final amplitudes. The very low curvature factor for
orbit v certainly helps to account for the abnormally
large amplitude of the associated P oscillations, but the
entries in Table IV offer no real clues as to why the ~
oscillations should be so weak. or as to why any mani-
festations of orbit co have thus far escaped observation.
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Notes added ie Proof.
(a) We have computed the total free area of the

4-parameter Fermi surface. In terms of the surface area
of a sphere containing four electrons per atom we Gnd
that the contributions from the hole and electron sur-
faces are 0.220 and 0.369, respectively. The sum of
these, 0.589, is in excellent agreement with Aubrey's'~
value of 0.55&0.05 from the anomalous skin effect in
polycrystalline lead.

(b) A first-principles relativistic APW calculation for
lead has been carried out recently by Loucks. 4' Loucks'
theoretical energy bands bear strong resemblance to
those predicted by the 4-parameter 0PW interpolation
scheme (Fig. 11), and the two sets of bands are in re-
markably close agreement for energies in the neighbor-
hood of the Fermi level.

(c) Dr. V. Heine (private communication) has sug-
gested an alternative Hamiltonian matrix which differs
from that given in Eq. (23) only by the suppression of
the factors V2 in the off'-diagonal spin-orbit terms
/with corresponding changes in Eqs. (28)j. In our
scheme, these factors are an immediate consequence of
the basic requirement that the spin-orbit matrix (Eq.
20a) be Hermitian, and no further assumptions have
been made regarding the normalization of the wave
functions. While Heine's proposal does not appear to
be consistent with our scheme, we have nevertheless
investigated its merit as an alternative model for a de-
scription of the Fermi surface. The Gtting parameters
have been redetermined and are found to be:

V»&' ———0.085&0.002 Ry, EJ'= 0.718~0.001 Ry,
~200 —0.040&0.002 Ry X' =0.099&0.002 Ry.

Not only do these values hardly diGer from those given
in Eqs. (30), but also the value of Q;, was found to be
lowered by only 10%. In fact the fit to the dominant
experimental periods (areas) is just as close as in our
original model; the major difference is a 3'Po increase in
the area of the $ orbit at L100j, i.e., in the sense of
improving slightly the agreement arith the period of the
s oscillations (Table I).

where

1 Si Ss

2 —Ss St*I
(AI.1)

1
0Sg=

.0

1 1
0 i
1 —1
0 i

1'
—1
—1

0 0 0 0
1 —1 0 0

p p p
~

1 0 0.
(AI.2)

In order to calculate the form of the spin-orbit
matrix elements for an arbitrary point k, allowance
must be made for the fact that the basis functions (16)
will not in general reduce to either pure s or pure p
functions in the ion-core region as they did for k= ks .
As can be readily verified by considering plane-wave
expansions of the OPW's, s-p mixing appears only in
the functions Cj' and C~', and the other functions in
the set (18) remain unchanged. As we leave ks, the
two affected functions are given by

C ',C '~ $N,P,+N ((k, x)P,+k„—P„„
+ (k.—1)P„,)$nt, ns. (AI.3)

In our problem the relative strength N„/N, of the
p-like and s-like contributions is not known a priori,
and if N„AOthe functions (AI.3) may not be orthogonal
to the other wave functions in the set. The matrix ele-

ments are readily evaluated as before, and in the spin-

orbit part of the Hamiltonian (20) we now have

where

A.. B,. i
sc,.'= i

&—a.. x..*l
(AI.4)

APPENDIX I: SPIN-ORBIT MATRIX ELEMENTS
FOR ARBITRARY WAVE VECTOR

For any point k, the transformation matrix which

appears in Eqs. (17) and (21) is given by

iN~»,'(P+P*)

iN~Ns ,' (P+—Pe)-iN~g-,' (P+P*) 2N „Ns (7s n/a—)—.

yiN, Ns ,'(PyP*)—
0 0

and

'NP sk(p-+p )
—2N,N s (0 —s /a)

iN„NP~(P+P*)—

—iN, N»'(P —P*)
0
0
0

0
iN„Ns,' (P P*)-—~-='/2 -'N"„N.'j(p- p*)

.—iN„Nsg (P—P*)

Ns/Ns—
iN,N,—;(P—P*)

0
0
0

—2Ns/Ns

—2Eg'

iNP. s (P P*)—
0
0
0

(AI.S)

(AI.6)

4r J. E. Auhrey, PhiL Mag. 8, 1001 (1960).
4' T. L. Loucirs, Phys. Rev. Letters 14, 1072 (1965).



FERM I SURFACE IN Pb

Here P=k„—i(k, —(2s-/a) ). We note that J3,.=0 on the
plane k, =2~/a and 1V, enters the calculations only
through the normalization of the wave functions. We
have set Xs ——VZ/2 and 1Vs= 1 as explained in the text.

For our model Fermi surface we have simply taken
E„=0, and in order to make some check on the validity
of this simplifying assumption, we have calculated the
areas of the eleven symmetry orbits taking Ã„=0.5 and
using the same values of the parameters which were
obtained. from the best fit for E„=O$Eq. (30)j. The
results for Ã„=0.5 are given in brackets in Table I,
and it can be seen that these area values are almost
identical to those for Ã„=0,i.e., the shape of the Fermi
surface is evidently not very sensitive to the choice of
this parameter. Strictly speaking, the parameter values
should all be redetermined for each choice of Ã„,but
the very tedious computations which would be in-
volved do not seem justified in view of the close agree-
ment between the two sets of calculated areas in
Table I.

A somewhat simpler approach for estimating the
spin-orbit matrix elements was tried initially, in which
it was assumed that in the core region the OPW's
could be represented by functions of the form

Ep kn, , (AI.7)

where N is a normalization coefficient and y k is the
projection of an atomic p function in the direction k.
In this approach the wave functions in the core region
have the same symmetry as the OPW's, but any s
contribution to the wave function is neglected. How-
ever, with the choice (AI.7) for arbitrary k, the results
did not match up properly with those calculated for the
point W using the basis set (18) and this simplified
approach had to be abandoned.

APPENDIX II:THE LEAST-SQUARES ITERATION
CALCULATION AND ACCURACY OF THE

FITTING PARAMETERS

The sum of the weighted squared deviations Q LEq.
(29)$ for the eight principal symmetry orbits was
minimized subject to the simplifying assumption that
in the neighborhood of Q„„.each of the calculated areas
was a linear function of the fitting parameters. When all
the calculated and experimental areas M' are normalized
by dividing by the corresponding experimental uncer-
tainties 8M' (Table I), we may write

n„i,'(X,+"oX;)=n..i,'(X;)+Be'oX;, (AII.1)

where X; stands for a trial set of the parameters X, Ef,
Uiii, and Uooo, and 8;;=Bn„i,'/BX; The least-squ. ares
solution for the changes bX; which would be required
to bring Q to Q;„is, in matrix form, 4o

SX= —(88) 'SC= WC, (AII.2)
4'Cf: 0. Kempthorne, Design and Analysis of Experiments

(John Wiley 8r Sons, New York, 1952), Chap. 5.

where the element in the ith row of the column vector
C is n..),'(X)—n. ,'.

The initial trial values of the parameters X; were
the coordinates of the point at which an approximate
minimum in Q had been found by rough graphical in-
terpolations (see main text). However, while some of
the calculated areas were found to vary linearly with
some parameters, others did not, and for this reason
Q;„hadto be approached by an iterative process. For
each iteration, the X; were changed by one-twentieth
of the predicted bX, , and the areas M„~,' and the de-
rivatives 8;; were re-evaluated at each stage. The
variance-covariance matrix WW= (BB) ' was also
evaluated after each iteration, and the process was re-
peated until the square of any predicted change 8X;
became typically less than 10'P~ of the smallest element
in the row (or column) of WW appropriate to that
variable X;.

When the iteration calculation was terminated, the
matrix 8'8' had the numerical value given below, in
units of 10—' Ry',

X

gf
~iix
~200

3.96
1.02

—2.46
—0.54

gf
1.02
0.72

—0.32
—0.89

~111
—2.46
—0.32

3.29
—1.74

~200
—0.54
—0.89 (AII.3)
—1.74

2.93

There is evidently a strong covariance between the
parameters since all the elements are more or less of
the same magnitude. Had there been no covariance,
WW would have been diagonal, and the standard devia-
tions of the parameter values would have been given by
the square roots of the appropriate diagonal elements;
however, in order to give some indication of the uncer-
tainties involved, we have simply quoted in Eq. (30)
the square roots of the diagonal elements of the non-
diagonal matrix (AII.3). It must be remembered that
the least-squares 6t was made to only eight symmetry
orbits, whereas if all the period values in the (110)
plane had been taken into account, the almost perfect
fit for the n, p, and y oscillations (Fig. 12) would have
resulted in much smaller uncertainties in the param-
eters. On the other hand, the agreement with the 8
period values is not quite so good, and the discrepancy
between the m period values and those calculated for
orbit t should. not be overlooked. For these and similar
reasons, we believe that the uncertainties quoted in
Eq. (30) are quite realistic. No doubt slightly different
parameter values would have been found if the total
occupied volume had been constrained to correspond to
exactly four electrons per atom throughout the least-
squares 6tting procedure; the volume constraint was
not incorporated because of the prohibitive amount of
computer time which would have been involved in
arriving at accurate volume values for each step in the
iterative fitting calculation.






