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Gyrotroyic Resonances in Afterglow Plasmas*

He Je SCHMITT, Ge MELTZ, AND Po Je FREYHEIT

Sperry Rand Research Center, Sudblry, Masschgsetts
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Resonances are observed in the reQection of radio waves from a decaying plasma column in an axial
magnetic Geld. They are seen by monitoring the rejected signal as a function of time in the afterglow with
the frequency and magnetic Geld held constant. When viewed collectively as a function of Geld strength,
these observations trace the transition between Tonks-Dattner electroacoustic modes in the plasma sheath
and gyrotropic longitudinal modes in the plasma core. At weak Gelds, the resonances are slightly displaced
towards lower densities (later in the afterglow) and damped near each harmonic of the electron cyclotron
frequency. As the Geld is increased beyond a threshold value, each mode is sharply shifted towards lower
densities and rapidly attenuated until it reappears at a higher electron density, i.e., earlier in the afterglow.
The observed phenomena are explained on the basis of the linearized Vlasov equation for an inhomogeneous
plasma. As in the theory of Tonks-Dattner resonances, density gradients play a fundamental role in deter-
mining the resonance spectrum. Their effect is reflected in an approximate dispersion relation derived from the
Vlasov equation by a perturbation approach. The resonance conditions are determined from this relation
in the case of weak Gelds, or from the Bernstein relation in the case of stronger Gelds, by introducing a
locally varying phase constant and applying a selection rule derived from the WKB approximation. Although
the agreement between measured values and predicted results is only semiquantitative, the major trends
are in accord with the theory. In particular, the analysis points out that the role of density gradients in
establishing the transition between the weak- and strong-Geld limits is largely governed by the relative size
of the Larmor radius compared with the effective scale length of the gradient.

glas 'Hoh, 'and others 'Tonks'Dattner 'and others' —"
also noted the e6ect of a magnetic field, but because of
their experimental conditions they could not observe
its inhuence on the entire spectrum of resonances.

The electroacoustic resonances discussed above occur
in an underdense region of the plasma; that is, where
the excitation frequency co exceeds the local plasma
frequency or„.The overdense region of the plasma will
also support resonances but only in the presence of a
suKciently strong magnetic field. These were first seen
in absorption by Buchsbaum and Hasegawa" and
earlier, in emission, by Mitani, Kubo, and Tanaka. "
Several other observations of these resonances were
reported by Crawford. , Kino, and Weiss" and Harp. "

The observations reported herein, when viewed col-
lectively as a function of field strength, trace the tran-
sition between Tonks-Dattner resonances in the plasma
sheath and gyrotropic longitudinal modes in the plasma
core. Experimentally, the resonances are seen by moni-
toring the reQection of radio waves from a plasma
column as a function of time in the af terglow of a pulsed
discharge, or equivalently, as a function of electron
density, while the frequency and magnetic field are
held constant.

I. INTRODUCTION

'HE comparatively slow speed of electroacoustic
waves gives rise to an interesting class of reso-

nance phenomena in bounded, inhomogeneous plasmas
of small extent. These phenomena are associated with
longitudinal standing waves which, in the absence of a
magnetic Geld, are confined to a narrow volume near
the plasma boundary. The principal purpose of this
paper is to examine the inhuence of an axial magnetic
field on this class of resonances, the so-called Tonks-
Dattner resonances, and thereby discuss electroacoustic-
wave propagation across a magnetic B.eld in an inhomo-
geneous plasma. A bounded plasma also exhibits
another, quite distinct, class of resonances which arise
from collective oscillations of the electron gas as a whole,
independent of the random motion of the particles.
These resonances, in contrast to the class studied in
this paper, are independent of the electron temperature.

Resonant phenomena in bounded plasmas have been
the subject of many experimental and theoretical
investigations. Prominent among these are the early
observations of Tonks, ' the detailed experiments of
Dattner, ' and the definitive theoretical work of Parker,
Nickel, and Gould, ' supplemented by the work of
Crawford and Kino, 4 Vandenplas and Messian, ' Wei
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agreement with the result of Biondi, ' and decreases
insignificantly over the range of field strengths used in
our experiment. These results are substantially in
accord with the theory of classical collisional diffusion"
across a magnetic field.
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III. RESONANT MODES IN AN UNDERDENSE

PLASMA

A. Experimental Results

FIG. 2. Tonks-Dattner resonances observed in reflection in the
afterglow of a neon discharge at 0.3 Torr.

phenomena are virtually independent of the gas pressure
and frequency of excitation. Observations in tubes of
different diameter and in other noble gases also gave
substantially similar results.

The instantaneous electron density in the discharge
has been determined as a function of time in the after-
glow by two independent methods. The first method
relies on the onset of plasma absorption which occurs
when the excitation frequency is approximately equal to
the peak hybrid frequency (~o~s'+0')'", where &o~, is the
peak angular plasma frequency in the center of the tube.
The onset is observable as a sharp bend in the trace of
the reQected power. Measurements of the density decay
for weak magnetic fields (8 (70 G) and at late times
in the afterglow (t)2.5 msec) indicate a diffusion-
dominated loss mechanism (Fig. 3). A diffusion-
dominated decay is expected under these conditions on
the basis of a comparison of the time scales for re-
combination processes and radial ambipolar diffusion
losses. The density decay also follows an exponential
law for stronger magnetic fields (8=140 G), but only
at much later times in the afterglow.

The second method of determining the peak density
relies on an evaluation of the Tonks-Dattner resonance
spectrum at different frequencies (cf. Appendix). The
peak plasma frequency as inferred from the resonance
positions at 3 different signal frequencies is plotted in
Pig. 3. Over the range where the density decay is ex-
ponential, close agreement is obtained with data de-
termined from the onset of plasma absorption. In the
earlier part of the afterglow, a slight disagreement arises
due to a difference in the density profile or a higher
electron temperature than assumed for the calculations
(T,=300'K). We conclude that the afterglow is dif-
fusion controlled and substantially in thermal equi-
librium with the neutral gas, except for small deviations
in the time regime of the 6rst resonance at 250 Mc/sec.

A plot of the measured diffusion constant as a function
of magnetic Geld strength is shown in Fig. 4. In the
absence of a magnetic field, the measured value is in fair

IO

NEON

o Io

O
140 G

OG

IO
0

i 1

4
t [msecj

Fio. 3. Peak plasma frequency as a function of time in the after-
glow of neon at 0.3 Torr. Solid curves for different magnetic Qelds
are obtained from measurement of absorption onset. Discrete
points are obtained from Tonks-Dattner resonances in the
absence of a magnetic 6eld at three frequencies {o 250 Mc/sec,
z 400 Mc/sec, o 600 Mc/sec). The density decay is exponential
beyond the range shown.

' M. A. Biondi, Phys. Rev. 79, 733 {1950)."F.Boeschoten, . g. 5ucl. Energy Pt. C 6, 344 {1964).F. C.
Hoh, Rev. Mod. Phys. 34, 267 {1962).

A compilation of experimental results observed in
neon at 0.3 Torr and at 250 Mc /sec shows the shift and
subsequent splitting of several resonant modes as the
magnetic field is increased (Fig. 5). Note that the slight
monotonic shift at weak fields is accompanied by small
perturbations near each harmonic. As the field is in-
creased beyond some threshold value and the next
harmonic approached, each mode is sharply shifted
towards later times in the afterglow, i.e., towards
lower densities, and rapidly attenuated until it reappears
at an earlier time, i.e., at a higher density. The onset of
these effects for higher order resonances occurs at
successively lower magnetic-6eld strengths.

A repetitive pattern occurs in each strip between
successive harmonics beyond the threshold. This
pattern is observed under conditions where many
Larmor orbits 6t within the characteristic length of the
plasma resonator. For weak magnetic fields, the pattern
resembles previous observations by Messian and
Vandenplas. ' However, the clarity of our observations,
which is primarily ascribable to the typically low
electron temperatures and small collison rates of after-
glow plasmas, allows us to extend these measurements
to stronger fields.
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B. Theoretical Discussion

Our theoretical interpretation is based on an approxi-
mate solution of the linearized Vlasov equation for
wave motion perpendicular to a magnetic Geld in a
quasihomogeneous plasma. In our model, the effect of
density gradients is retained to lowest order by intro-
ducing a locally varying wave number as a perturbation
to the solution for a uniform plasma. For time harmonic
disturbances and using conventional subscript notation
to distinguish perturbation and equilibrium quantities

(pp+v. V„)fi—L(e/m)Ep+Q(vXz)) V„fi
= (e/m) E,.V„fp. (1)

Cp 4-
3

7—
8-9-

4

t [msec]

N

TO I'I'

50 Mc/sec

The parameters are the electron gyrofrequency 0, the
average thermal velocity tI& associated with fp," and
E the zeroth-order electric field required to maintain ap

~ ~ ~

J.ilocally varying electron density n(r) It is. somewha
difficult to establish precisely the magnitude and di-
rection of Kp in the presence of axial magnetic fields.
Classically,

Ep ———V„eD,g
—Dg.

ii ei+1r'i
(2)

where p,„„,are the mobilities and diffusion coefficients
for electron and ion motion perpendicular to the mag-
netic field. Combining Eqs. (2) and (3), we obtain

Eo= —(V.nln) L(D"—D'r)/p'. ) (4)

Within the range of magnetic fields used in our experi-

lO

if the principal loss of particles is by collisional diffusion
across the magnetic Geld." The ambipolar diffusion
coefficient across the Geld is determined by

D el@ rl+ Drip el

P eS.+PI@

FiG. 5. Radial electron plasma-wave resonances in cylindrical
afterglow plasma as a function of time in the afterglow and axia l
magnetic field. Modes beyond the sixth, shown only for weak
fields, have also been traced through the harmonic where splitting
first occurs.

ment, D,L is almost unchanged. Consequently, if the
effect of the magnetic Geld on ion motion is also negli-
gible, ' then it is reasonable to expect that the unper-
turbed electric Geld is substantially the same as the
value in the absence of an impressed magnetic Geld

Ep —(m/e) (E.T/m) (V,n/n) . (5)

Using this estimate for the zeroth-order electric field,
Eq. (1) becomes

(jpI+v V/„)ft+Qvr+V'„n/n+ (1/II&)zX v).V„ft
= (e/m)E, V'„fp. (6)

It can be seen that the relative magnitude of the acceler-
ation terms" in the second bracket depends on the
ratio of the Larmor radius p=vr/0 to the effective
scale length of the gradient (V„n/n) '. An estimate of
this ratio can be obtained by introducing an appropria, te
average value l for (V„n/n) ',"i.e.,

p(V nln)=pll ~

NEON
0.3 Torr

Fn. 4. Measured
coefficient of ambi-
polar. ',diBusion across
the magnetic field as
a function 'of field
strength. Dashed
line shows zero-Geld
value given by
Biondi (Ref. 17).
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'9The equilibrium distribution function fo is assumed to
Maxwellian in velocity space.

For a very weak magnetic field, p(V'„n/n) is large and,
provided that the gradient is gradual in terms of Debye
lengths () ii(V,n/n)«1), Eq. (6) yields the Bohm-Gross
dispersion relation. A better approximation which
retains lowest order magnetic-Beld effects follows from
the moment equations~ or from the weak-magnetic-
field —low-temperature limit given by Bernstein":

k'= kps=—(pI' —t rp, '(x)+fl')}/3tIrs. (7)
'0 The mean free path of ions is small compared to their Larmor

radius and the tube diameter."F an order-of-magnitude comparison, it is assumed thator
hethere are few particles with velocities much in excess o t

average thermal velocity.
~~ The length I, is computed by averaging V'„e/e over the region

in which wave propagation takes place. For a fixed value of the
magnetic-Geld strength and a constant frequency, l increases wit
mode number. Higher order modes extend deeper into the plasma
and consequently are associated with smaller average gradients

be or larger values of /.
s3 I. B. Bernstein, Phys. Rev. 109, 10 (1958).
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Clearly, Eq. (7) cannot account for the observed per-
turbations near harmonics. It does, however, predict
the gradual shift of the zero-field Tonks-Dattner
resonance to lower densities as the magnetic field is
increased.

For strong magnetic 6elds, p(n'/n)«1. In this limit,
provided that that XD(V',n/n)«1, Eq. (6) yields a dis-
persion equation of the form previously derived by
Bernstein:

40„'(x) 2p'
A= g Iv(A)e 4, —

Q2 v=& (~/Q)' —P'

where A.—= (kp)' and k is the local wave number. Although
this relation exhibits a periodicity with increasing
harmonic number p and accurately predicts phenomena
for strong magnetic 6elds and high-order modes, it
cannot account for the observed monotonic shift at
weak fields. Note that in deriving these relations we have
assumed, for simplicity, a slab model of the cylindrical
plasma. '4

In the transition region between the two previous
limits, both the Lorentz force and the electric force
associated with the density gradient must be re-
tained. Proceeding in the spirit of a perturbation
analysis, we attempt to estimate the interaction term
vrp(V'n/n) (Bf/Bv, ) for weak magnetic 6elds. Differ-
entiating Eq. (6) with respect to v„neglecting both the
electric force and the Lorentz force terms in the second
bracket, and replacing V,f& byj kfz where k is the propa-
gation constant in an isotropic plasma, we obtain the
following estimate

Bfg (e/n4)E, (B'/Bv, ')fo jkfg k
+ ~ f~ (9)

Bv, jr'(1—kv, /o)) j(u(1—kv /(o) 40

Thus, to the order of approximation where kv, /co&&1,
we have Bfq/Bv, (k/ar)fq. For weak magnetic Acids,
this estimate is improved by replacing k by ko deined
in Eq. (7).

Substituting this result into Eq. (6), we obtain the
following approximate form of the kinetic equation

40 vvko Vn) v Vj —j p I+ f~
Q o) nr Q

~ ~

+ (2xv) ~ V„fi E.V„fo. (10)
1nQ

Note that this approximation has in eGect introduced a
complex frequency or damping which is to be associated
with the interaction between pressure gradient and

'4 If the resonances are con6ned to a narrow underdense region
near the wall, as they are for weak and moderate magnetic fields,
then the dominant modes are mainly radial and dipolar. Under
these conditions, it is unlikely that quadrupole or higher order
multipole modes would be observed since the eigenvalues of these
modes nearly coalesce with those of the dipole mode. Moreover,
since the width of the resonance region is small compared to the
radius of the tube, we may neglect the curvature and use a plane-
]ayer model.

Lorentz forces. One recalls that in a homogeneous
medium collisionless damping does not occur for propa-
gation across the magnetic Geld; however, it does appear
for propagation at an arbitrarily small angle to the
Geld. 25 Moreover, one cannot obtain the Bohm-Gross
result from the general form of the Bernstein dispersion
results without retaining this damping in the limiting
procedure. Mathematically, the same problem appears
in treating the inhuence of gradients.

Using Poisson's equation in (10) and formally inte-
grating the result, we obtain the following

4xe'
~ 1

ting

jco
jYo/Q exp ——y

o — 0
82

+p'(1 —cosy) dy —1 nZ. g (11)
8$

where ~/Q is a complex frequency de6ned by a&/Q
—j(vrko/co)p(n'/n). Note that the damping or imagin-
ary part of ~ increases with p~n'/n). The derivation of
Eq. (11)is identical to that given by Bernstein with the
exception that co is replaced by ~ and —k' by B2/Bx'.

For low temperature and weak magnetic fields, the
major contribution to the integral arises from the
vicinity of y=0 where the attenuation term contained
in the complex frequency is negligible. Replacing B'/Bx'
with —k', one obtains to lowest order in the expansion
parameter kp

or

k'p'=
07~ Q~ Q2

k'p' 1+—+3k'p' —. .
N OP GO

(12)

~2 (~ 2+Q2)) 112

k= k0

exp) —j(2n(o/Q —~/2) $
X (13)

1—exp (—j2v.o)/Q)

our previous result.
The major correction to ko will arise from the se-

quence of relative maxima in the integrand which
occur near y=27rp, p=1,2, . Because of the attenu-
ation term in ~/Q, these contributions decrease in

amplitude with increasing values of the harmonic
number P. We proceed by replacing B/Bx by jko, an
approximation which is valid for weak magnetic fields,
changing variables to s = 2v P—y and developing 1—cosy
to second order in s. The contribution of each maximum
is evaluated separately by bilaterally extending the
range of integration to inanity. The sum of these inte-
grals yields the following dispersion relation:
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Note that the imaginary part of k accounts for the at-
tenuation of the longitudinal waves. It is strongest
where oi/0 is an integer, hence, exactly at a harmonic as
observed experimentally. Within the limits of validity
for Eq. (13), the attenuation also becomes more pro-
nounced with increased magnetic field. In view of the
perturbation procedure, the range of validity is limited
to the region where p(e'/ri)) 1.

Using these results, we can estimate the resonant
frequency of any order mode by applying a selection
rule derived from the WEB approximation in con-
junction with the locally varying wavenumber k =k(x).
In the spirit of this technique, a resonance condition is
established by equating the total phase between reRec-
tion points to a rational multiple of ~ determined by the
reQection conditions of the particular mode in question. "
Since the density profile is known, the variation of 4
within the plasma, for a fixed harmonic ratio oi/0, can
be inferred from dispersion curves which display
k/kr =—ko~/er as a function of cv„/oi.

A representative set of curves for the propagation
constant calculated from the Bernstein relation is
shown in Fig. 6. Numerical computations for higher
harmonic numbers indicate a periodicity with harmonic
ratio in accord with the repetitive pattern in the meas-
ured resonant structure for p(e'/ri)«1, Fig. 5. Note that
the curves intersect the ordinate at a point determined
by the hybrid resonance condition o~s=co~'+Q' and
continue to an asymptotic wavenumber as o~~/oi —&Do.

With moderate density gradients, undamped waves
can propagate in a region bounded by a surface where
the angular rf equals the hybrid frequency and a surface
with a local-plasma frequency corresponding to the
value associated with the minimum in the curves of Fig.
6. For this electron density, the group velocity vanishes.
For lower densities, the propagation constant becomes
complex resulting in a damping of electron acoustic
waves. (The real part of the complex wavenumber is
shown by a thin, solid line. ) For magnetic fields near
the harmonic, e.g. , co/0-2. 05, 3.05 or 4.05, etc. , this
damping may be small due to the narrow space in
which the density is low, and resonances may be set
up between the wall and a surface within the plasma
where the hybrid frequency is equal to the applied
frequency. The propagation constant for such modes is
always smaller, and hence the wavelength longer, than
in an isotropic plasma of equal density. This leads to a
smaller phase integral and a resonance at a lower peak
density than for the corresponding mode in an isotropic
plasma. In the limit cv/0 —+ p, the wavelengths become
extremely large, and all resonances vanish. As the
magnetic Qeld is decreased from its value near an exact
harmonic, damping becomes stronger and ultimately
prevents observation of the resonances.

On the basis of this model, the position of the observed

2~ I. B.Bernstein Ref. 23, p. 16.
'6 A classical turning point occurs at the interior surface where

cy' —(~„'+0')=0; specular reQection is assumed at the wall.

FIG. 6. Dispersion
curves for propaga-
tion normal to the
magnetic Geld.
Dashed line (B-G)
is the zero-Geld limit
and thin solid lines
(Re) are the real
parts of the complex
extensions of the
Bernstein modes.
The wave number
k is normalized by
~/sr, where sr is
the electron thermal
velocity.

0.2

cu/0 = 2.05

\

tl i 1

0.6 0.8

kp& p 'vz kp
dr~0.409 (1—(0/c0)')'" (14)

co co „,a—rp

where a is the radius of the tube and rp the interior
turning point k(rs)=0. A inore detailed numerical
calculation which also considers the locally varying

resonances in the cylindrical plasma column may be pre-
dicted in a region where p(e'/n)«1. The results are
shown in Fig. 7 by the thin solid lines and thin dashed
extensions, the latter corresponding to highly damped
solutions. Although the agreement is semiqualitative,
the major trends are in agreement with the measure-
ments, indicated as heavy lines. The theoretical result
for the first resonance is displaced from the experimental
value by a Axed amount related to the difference be-
tween the peak density obtained from the onset of
plasma absorption and the value inferred from measure-
ments of the Tonks-Dattner resonances. (See Figs. 3
and 5.) The value obtained from the onset of cold-plasma
absorption has been used in the computation of the
predicted first-order mode. In the case of higher order
resonances, no discrepancy occurred between the inde-
pendently measured values of the peak density.

The dispersion curve for the weak magnetic field
limit p(is /n)))1 is also shown in Fig. 6 for comparison.
The predicted resonance pattern obtained in this case
(thin solid lines in Fig. 7) correlates with the gross shift
in the resonant frequency but does not account for the
observed major splitting or minor perturbations near
harmonics. Corrections to this result, obtained from
Eq. (13) in conjunction with the WEB procedure, are
shown for the 6rst resonant mode (m=0) by a thin
solid curve with rapidly damped Quctuations which are
interrupted by dashed sections near a harmonic, to indi-
cate attenuation. For purposes of this calculation, we use
an average value for ks and p(e'/rs) in the perturbation
term in Eq. (13).Explicitly,



A 1438 SCHM ITT, MELTZ, AND FREYHEI T

the electron temperature, and the tube radius. This
explains the similarity of our experimental observations
at diferent signal frequencies and gas pressures.

4
3

&—&p» I

n'
n

n'g—&Paln

0.1 O.R 0.5
(d

G)pp

0.8

FIG. 7. Radial electron plasma-wave resonances in cylindrical
plasma column as a function of peak plasma frequency and mag-
netic field. Heavy lines are experimental results from Fig. 5.
Theoretical results are shown as thin solid lines for strong
((I'/gg)p«1) and weak magnetic helds ((gg, '/n}p))1). Dashed con-
tinuations correspond to damped resonances. Resonant positions
in transition region are shown as a thin oscillating curve for first
resonant mode.

where a= 2.405 and co~p is the peak density at the center
of the discharge. The dashed-dotted line in Fig. 7 indi-
cates where this ratio is equal to unity. This curve
roughly coincides with the onset of observable pertur-
bations in the mode positions. In lieu of the frequency
ra, tio og/og~s, the mode number of Tonks-Dattner reso-
nances for weak magnetic fields may be introduced
Lsee Appendix, Eq. (A4)). For a 6xed mode number, the
scale ratio is virtually independent of the rf frequency,

nature of these parameters in the perturbation term is
probably not justi6ed in view of the approximate nature
of the dispersion relation. Even so, fair agreement with
the experiment is obtained and serves to suggest the
role of density gradients in establishing the transition
between the two regions. Apparently, the main effect
of a gradient is to dampen the pronounced resonance
phenomenon near harmonics of the electron cyclotron
frequency. The transition from one extreme of the dis-
persion relation to the other extreme is gradual and is
determined in order of magnitude by the size of the
scale factor p(e'/tg).

Wave propagation in both the strong- and weak-
magnetic-field limits occurs in a region between the
wall and an inner surface where the applied frequency
equals the local hybrid frequency. The average value of
the scale ratio p(e /e) within this region is obtained from
from Eq. (A3) of the Appendix and is given by

S' co&p 1 Js(n) 'vg og)
p 2gg ~1(cg),+- — ——

I (13)
'g og' —Q' 3 Jts(n) ao) Q/

IV. RESONANCES IN AN OVERDENSE
PLASMA

A. Experimental Results

The resonance mode pattern discussed in the previous
section applied to electron waves in inhomogeneous
plasmas where (og~s(r)+Qs)'I'& ng In a cylindrical after-
glow, this is near the wall of the tube. Inspection of Fig
6 shows that real propagation constants are also possible
in the overdense case, particularly if the magnetic
field is slightly stronger than that corresponding to an
exact harmonic value, i.e., og/Q 1.9, 2.9, or 3.9, etc.
Under these conditions, standing waves are set up in the
plasma core inside the region where the local plasma
frequency corresponds to the hybrid frequency. This
"resonator" may extend over almost the entire plasma
cross section for a high peak density. For short-wave-
length phenomena, very many wavelengths fit into this
spa, ce, and resonances would be extremely narrowly
spaced. Resolution of individual resonances is unlikely
under these conditions. However, when the peak hybrid
frequency on axis is near the rf frequency, the diameter
of the "resonator" is relatively small, and individual
resonances in the plasma core can be resolved.
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FIG. 8. Radial electron plasma-wave resonances in the core of a
cylindrical plasma column for different magnetic-field strengths
observed in reflection in a neon afterglow plasma, 0.02 Torr,
P =400 Mc/sec, time scale 0.2 msec/div.
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FrG. 9. Radial electron
plasma-wave resonances in
the core of a plasma column
as a function of peak plasma
frequency and axial mag-
netic field. ( ) Reso-
nance position for dipolar
modes based on WKB ap-
proximation, T,=300 K.
(~ ) Experimental results,
neon afterglow, 0.1 Torr,
normalized to computed
curve for lowest order reso-
nance. Dashed line (- ——),
corresponding to the hybrid
resonance condition cy'=0'
+co„o', shows the limit of
the resonant frequencies.
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These resonances were first observed in noise emis-
sion" and subsequently studied in detail by measure-
ments of the resonant absorption of a plasma column in
a microwave cavity. " Related experiments have ex-
amined wave propagation between antennas immersed
in a nearly uniform plasma. ","

In our experiments, core resonances were observable
near the second harmonic and much weaker ones near
the third harmonic for gas pressures of 0.1 Torr and
lower. The resonant interaction is most pronounced for
low-peak plasma frequencies in the vicinity of

~ (~2 g2)1/2 .

hence, at later times in the afterglow than the Tonks-
Dattner resonances in the outer shell. Up to 35 reso-
naces could be resolved as a function of time in the
decaying plasma, column (Fig. 8)."

The positions of the first 10 resonances have been
recorded as a function of time in the afterglow for a gas
pressure of 0.1 Torr, a fixed frequency of 400 Mc/sec,
and magnetic fields near the second harmonic. All
resonances occur at elapsed times of more than 3 msec.
A separate calibration of the electron density decay
using the onset of plasma absorption again showed a
diffusion-controlled loss mechanism, allowing one to
relate the time scale to the instantaneous peak plasma
frequency.

B. Theoretical Discussion

For the conditions of this experiment, p(B'/is)&(1 and,
as shown by Buchsbaum and Hasegawa, "the dispersion
relation in the vicinity of the second harmonic may be

2~ It was noted in the experiment that very slight misalignments
of the magnetic 6eld with respect to the tube axis would seriously
perturb the clarity and resolution of resonances.

approximated by

$~2 (~ 2(r)+@2)jL~2 4Q2j
k2=

This form can be derived by a small temperature ex-
pansion of Eq. (8). Again using the WKB method to
predict resonance conditions, one obtains"

The term —,
' on the left-hand side results from combined

reQection conditions at the turning points, r» and r2,
near the surface where co~ (&o'—0')'/' and near the center
of the cylindrical discharge column. For dipole modes
s = ~; for quadrupole modes s =—,'.Thus, the scaling of the
radial-wave equation into a one-dimensional wave equa-
tion results in a noticeable displacement of eigenmodes
with higher order symmetry. The higher order modes
are not observed in our experiment. "We have numeri-
cally integrated Eq. (17) for an afterglow profile
r/= iipJp(ur) at 300'K. The first 10 predicted dipolar
eigenmodes are shown in Fig. 9 as a function of cp/o/&p

together with the theoretical limit when or equals the
peak hybrid frequency (dashed line). Experimental
points are included after normalization of the last
observed resonance position to the theoretical curve.

28 P. M. Morse and H. Feshbach, SIethods of Theoretical Physics
(McGraw-Hill Book Company, Inc. , New York, 1953), Pt. II,
p. 1101.

'9 Significant splitting between multipole modes takes place if
the resonances arise from oscillations in the overdense plasma core
(cf. discussion in Sec. IV). However, under these conditions, the
effect of a multipole field can be shown to be insignificant because
of the suQiciently large separation between the strip line and the
effective plasma resonator (cf. Parker, Nickel, and Gould, Ref. 3).
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This normalization is necessary to avoid a small scatter
in the correlation of resonance sequences measured at
different magnetic 6elds. This scatter occurs because
the onset of cold-plasma absorption cannot be measured
with sufhcient accuracy, i.e., the scatter is comparable
to the spacing of adjacent resonances as a function of
(v/(o„p. A comparison of the calculated. curves with the
experimentally observed pattern shows the fair agree-
ment obtained. In this experiment, the electron temper-
ature enters as a critical parameter which largely
determines the spacing between consecutive resonances
for any fixed magnetic 6eld. Different measurements
taken at much lower pressures and, hence, earlier in
the afterglow, showed a signi6cantly increased spacing
between eigenmodes, indicating a substantially higher
electron temperature. This is consistent with the slower
energy relaxation rates expected for a lower gas pressure.
Indeed, the observation of the separation between
interior eigenmodes may offer a sensitive measurement
of electron temperatures in the presence of magnetic
6elds.
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APPENDIX: THE USE OF TONKS-DATTNER
RESONANCES TO DETERMINE THE

PEAK PLASMA DENSITY

In the absence of a magnetic 6eld, the relation
between the peak. plasma frequency co„oand a particular

mode m is obtained from a selection rule based on the
WEB approximation and a locally varying wave
number k. Explicitly,

(222+-,') =
(~2 pp

2 (y))1/2

dr, (A1)
3'vz'

~n2(~) =~np2Jp(~r/~), (A2)

where n=2.405. Near the wall x/a= (a—r)/a«1 and

pp,'(2)~,p'L~A(~)*/~+(p)~'J2(&) (2:/~) j (A3)

Evaluation of Eq. (A1) in conjunction with Eq. (A3)
yields to 6rst order in the small contribution resulting
from the quadratic term of the density pro6le

m 4@~
343'V2'Q'Jy(G) M2p

J2(n) pp2

(A4)
5Jy (cE) M~p

The accuracy of this expression in determining the ratio
cu/~~p is estimated to be better than &10%. It yields
substantial agreement with calculations for a compar-
able profile carried out by Parker et ul. ' if the different
electron temperature assumed in Parker's experiment
is taken into account.

fg p $ ~ ~ ~
7 )

where a is the radius of the tube, 2tr ——(ET/221)'~2 is the
thermal velocity, and ro is the radius at which the signal
and local plasma frequencies are equal. 'b The above
relation is derived on the basis of a slab model of the
narrow annular space near the wall in which plasma
oscillations are excited.

The radial-electron-density pro61e late in a diffusion-
controlled afterglow' is given by






