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Importance of Nuclear-Spin Effects in Extracting Alkali Spin-Exchange Cross Sections
from Zeeman Optical-Pumping Signals*
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The importance of the nuclear spins in the analysis of alkali spin-exchange experiments employing optical
pumping by circularly polarized light and performed in low magnetic fields is demonstrated. Since the ex-
change interaction is an electronic process, the spin-exchange cross section is expected to be essentially
independent of the nuclear spins. However, the hyperfine coupling is sufIIIcient to make the expressions for
the signals depend upon the nuclear spins. Failure to include the nuclear-spin effects in the analysis can lead
to errors as large as several hundred percent in the deduced cross sections. The signal for general nuclear
spin is found for the Franzen-type transient experiment and for the Dehmelt-type steady-state experiment
in the limit of low light intensity. The results are quite sensitive to the process assumed for the relaxation
of the ground-state populations. The solutions are given for a general process in which randomly oriented
disorientation fields interact with the spins of the alkali atom only through the electron spin. The steady-
state-signal expression includes the eftects of self spin exchange and partial disorientation in the excited
state. Only the diagonal elements of the density matrix are included.

bers are IJIiM. Thus the cross sections of interest are
between different FJI states; these cross sections de-
pend upon I even though the interaction is diagonal
in Sf'. The optical-pumping signals can then depend
upon the nuclear spin because of the hyperfine coupling.
Failure to include the nuclear-spin effects can 1ead to
errors of several hundred percent in the values of the
spin-exchange cross sections deduced from optical-
pumping experiments.

The calculations of this paper apply to spin exchange
between two alkali atoms in their ground states. The fol-
lowing assumptions are common to all the calcu1ations:

I. INTRODUCTION

ECENTI Y, there has arisen considerable interest
in utilizing the spin-exchange process to study the

forces between atoms and the potentials which describe
these forces, The problem of deducing interatomic po-
tential information from spin-exchange cross sections
has been studied by Glassgold and I ebedeG, particularly
for hydrogen. "The problem of interest in this paper is
that of obtaining the cross sections from optical-
pumping experiments.

Optical pumping has been used more than any other
technique for determining spin-exchange cross sections.
Most of the optical-pumping measurements were made
by one of the methods treated in this paper, which in-
volve the determination of a relaxation time and a
density. Recently it has been shown that information
can be obtained without measuring the density if the
linewidth and frequency shift arising from exchange
effects are determined. ' 4 The analysis of such experi-
ments requires the inclusion of the oG-diagonal density-
matrix elements, which is not the case here.

The spin-exchange process is an electronic interaction.
Since the collision time is much shorter than a period of
the hyperfine precession, the hyperfine coupling has
little effect during the collision. Thus the cross section
for electron-spin exchange should be essentially inde-
pendent of the nuclear spins. But in a low magnetic
field the electron spin is coupled to the nuclear spin by
the hyperfine interaction, and the good quantum num-

(1) The pumping radiation is circularly polarized D&

light.
(2) The four hyperfine components in the pumping

radiation are of equal intensity.
(3) The pumping radiation at a given point in the

cell is approximately constant.

The rate equations which are used to describe the ex-
periments are given in Sec. II. The following contribu-
tions to the rate equations are then discussed: (a) pump-
ing radiation, (b) excited-state disorientation, (c)
ground-state relaxation, (d) spin exchange between
unlike atoms, and (e) self spin exchange. Solutions to
the rate equations of Sec. II are obtained for theFranzen-
type' transient experiment as applied to spin-exchange
measurements in Sec. III; self-exchange effects are
neglected. The expression for the signal in the usual
Dehmelt-type' steady-state spin-exchange experiment
is found in Sec. IV in the limit of low light intensity.
Applications or comparisons are made to the results of
Dehmelt, Jarrett, r Balling et al. ,

' and Anderson and
Ramsey.
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IL RATE EQUATIOÃS

Consider the description of the time variation of the
populations of two diferent species of alkali atoms in a
static magnetic field of weak intensity. The ISFM
representation is then best. F is the total angular mo-
mentum obtained by coupling the nuclear angular mo-
mentum I to the electronic angular momentum S(J=S
since L=O). M is th'e projection of F along the axis de-

Gned by the external magnetic Geld and the incident
light beam. Species 1 is optically pumped and has a
density in the ground state F1M1 of pv, 2I, and a total
density of p. The second species is disoriented continu-
ously during part or all of the experiment and has a
density dv22I, in the ground state F2M2 and a total
density d. The 6rst species has a density eJIpg~I in the
excited state J2F1M1. The time variation of pv12I1 call
be described as follows:

Pvl2It p&12I1 Z L2(v)Fv2 (FlMlpIl Fl Ml )dv
JI'EI'M'I'q

+ Z J'1'vl'2I1' (~l Fl Ml )F1M1)/rI1~ pv12I1 Q zs(F1M1 Fl Ml )Jy'F I'MI' FIIMII

+ g pvl 2I, u(F1M1,F1M1)—p
Fy'M1'
FgMg

F-2'Mg'

(P&12Ildv2M2QE(F1M1F2M2pF1 Ml F2 M2 )

pvl 2I1 dv2 2I2 QE(F1 Ml F2 M2 plM1F2M2) }f(VE)VEd 5E

Fy'Mg'
Fy"M1"
F IIIM III

(pv ~ pv ~;Q»(F1M1F1'Ml', Fl"Ml-F', "'M,'")

pv1"Ml"pvl"'2I1"'QS1(F1 Ml Fl Ml p lM1F1 Ml ))f(&S1)&Sld &Sl ( )

g, J2"L,(v)F„,'(F1M1,J1'Fl'Ml')dv iS the prObability
per unit time that an atom in the ground state F»M»
will absorb a resonance photon and make a transition
to the Fl'Ml' substate of the 'FI; excited state; L,(v)dv
is the light intensity with polarization q and with fre-
quencies between v and v+dv. (1/rz, )P'(Jl'Fl'Ml', F1M1)
is the probability per unit time for the reverse process;
v J,. is the radiative lifetime of an atom in one of the
substates of the 'PJ,' excited state. The quantity
lv(F1M1,F1'Ml') is the probability per unit time for an
atom in the substate Ii »M» of the ground state to make
a transition to the Ii »'M»' substate of the ground state
by relaxation processes excluding spin exchange. In the
last two terms the subscript E refers to exchange between
atoms of different species and S to exchange between
atoms of the same species. Q(F1M1F2M2, F1'Ml'F2'M2')
is the cross section for a spin-exchange collision between
two atoms in which the 6rst atom makes a transition
from P»M» to P»'M»' and the second from P2M2 to
F2'M2'. The function f(li) is the distribution of relative
velocities u with the normalization J'f(v)d2v=1. The
populations are then affected by (a) the pumping radia-
tion, (b) excited-state disorientation, (c) ground-state
relaxation, (d) spin exchange with the second species,
and (e) self spin exchange between atoms of the same
species.

The form of these equations corresponds to a diagonal
density-matrix approach, which should be valid in the
absence of coherence-producing interactions. The radio-

«equency fields used in the experiments treated in this
p~per are ordinarily applied in a manner producing very
little coherence. Magnetic field inhomogeneities are
usually sufhcient to damp out any coherence sects in
a time short compared with the other significant times of
the problem. A solution of the rate equations including
the off-diagonal elements but neglecting nuclear spins
has been obtained by other workers; it is discussed in
Sec. IVD.

Each of the terms in Eq. (1) will now be discussed and
the simplifying assumptions stated. The resulting rate
equations are given in Sec. IIF. For the experiments
treated in this paper, the 2(2I+1) equations for each
species (excluding excited-state equations) reduce to
two equations with the variables being the longitudinal
electronic polarizations of the various hyperfine levels
as defined in (13).However, the particular assumptions
made in Secs. III and IV are necessary before this
reduction is complete; therefore, the rate equations of
IIF are not entirely in that form.

A. Pumying Radiation

I. Circularly Polarized D» Resonance EadiatiorI,

It is assumed that the resonance radiation is 6ltered
with only the Dl line ('F1I2~ 251I2) incident upon the
resonance cell containing two alkali species. It is further
assumed that it is circularly polarized so that M» must
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change by +1 for electric-dipole transitions; i.e.,

I.,(v) P„'(FiM i,Ji'F i'M'i')

L(v)P) (F1M1)sFi Mi+ 1)4i', 1/2~ jri', 3ri+1 ~

p. Eqlo& Inten-si ty IIyperpne Components
Throughout the Cell

electron position vector r, which is a tensor of rank 1,
see Edmonds, ' Chap. 5. Using Edmonds' (5.4.1) and
(7.1.7), one finds

P'(F,M,) ~

t)((Fi,Fi') . (4)
vi (Mi 1 —Mi —1I

The squared 3-j symbol in (4) is given in Table I (from
Edmonds' Table 2). The quantities

It should always be possible to write

P„'(FiMi, —,'F i'M i+1)
=P'(FiMi) 2Fi'Mi+1)f(v —v'v, sr, ,v, ~, ), L(Fi,Fi')=—6(2Fi+1)(2Fi'+1)

where f(v v'v, —sr, v;sr;) represents the broadening of
the absorption line around the center frequency
v'&»&, ,&, ~, by, for example, Doppler or pressure eGects;
furthermore

f(v v~v(M(Fi'M(, ')dv 1 ~

Now assume that

L(v) f(v v'v, 3r, ,v;—jr, )dv =L;

i.e., over the frequencies for which absorption occurs,
the light at each point of the cell is independent of the
frequency. Experimental care must be taken to achieve
equal hyperhne components in the incident light; this
can usually be done by regulating the amount of self-
reversal in the lamp bulb, if one is able to monitor the
components. Since the hyperfine components often have
diferent absorption coefficients, the absorption must
usually be kept low to approximate equal components
throughout the cell (see Sec. IIA3).

The first term in (1) contains

I q(v)Pvq (F1Mi)J1Fi Mi )dv

2 Pl Il 2

X
Pl

= 6(Fi',Fi) (5)

P'(&, Mi) =P'(FiMi) =CL1%Mi/(Ii+1/2) j
=CL1—2(Fi—Ii)Mi/(I, + 1/2) j, (6)

where LP (FiMi) is the total probability per unit time
that an atom in the substate PlMl will absorb a reso-
nance photon; C is a constant independent of the quan-
tum numbers of interest.

3. Low Absorption

The experiments analyzed in this paper employ the
transmission monitoring technique; the changes in the
absorption constitute the signals. The absorption by the
cell can be found as follows: The light intensity at fre-
quency v and time t at a penetration depth of x into the
resonance cell of length l decreases by

dL(v, x,t) = —L(v, x,t) P pv, sr, (x,t)
E13II F1'

XP) (FiMi) 2Fi Mi+1)hvdx (7)

are given in Table II; they were obtained with the aid of
Edmonds' Table 5. Then, for F1=Ii&~,

Jt.'Ii j.'M1'
P

between x and x+dx; it is assumed that L(v,x, t) is

Lp P)(F,M, iF,)M,+1) LP~(F,M, ) (2) circularly polarized, so that EMi ——+1 in absorption.
With the assumptions of Sec. IIA2, (7) yields, for the

P'(F iMi)

P(~(IiIiFiMitr(1, 1)~IiIiFi™i+1)~')s i/g (3)

where r(1,q) denotes the qth component of the valence

TABLE II. Values of

a()i, p, )=6(2p,+()()P,'+,()'t, ' (').

P1 1 F1TABLE I. Values of
1 1

+1.

II+g
(2I(+2}(2I(+3)

Il
4I& (2Ig+ 2}

»+z
2 PIP+2I&+$ —M1 —M12j

(2I&+1)(2I1+2) (2I)+3)

I —-'

2 I I12 —$ —2M 1I1+MP'j

4I1(2I1+1)(2I1+2)

2I1+1

4I((26+2)

2I1+1

2I1+1

2I1(2I1—1)

2I1+1

2 )I12+2I1+~a +(2I&+2)M1+M1~j 2 t I&2 —~~ —M1-M)2)

4Iy (2Iy 11)(2I1+2) (2I1—1)2I1(2I1+1) 9 A. R. Edmonds, Amgglur Momeetlm ie QNun4nm Mechanics
(Princeton University Press, Princeton, New Jersey, 1957).
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absorption,

A (t,t) =I.(O,t) —L(t,t)

I.(x, t) P p/, sr, (x,t)P'(FtMt)hvdx. (8)

The conditions necessary for maintaining the equality
of the hyperfine components throughout the cell can be
found by integrating (7):

L(v,x,t) =L(v,O, t) exp
F1m1F1~

ps, sr, (x', t)

XP„'(F&Mt, ', Ft'M—&+1)h~dx'

=L(v,0,t) exp — h„(x',t)dx', (9)

where L(|,O, t) is constant over the frequencies for which
the absorption is appreciable. L(v, x,t) =L(v,O, t) if the
absorption is low, i.e., hot«1 where ko is the peak ab-
sorption coeKcient. But for some cases slightly less
stringent requirements are sufFicient. For example, if
the excited-state hyperfine separation and the Zeeman
splittings are much less than the absorption width, the
two resolved components are approximately equal to
each other at each point of the cell if hei/(2I, +1)«1.
This requirement is satisfactory, since the difference in
their absorption rates is only 1/(2It+1) times the total
absorption rate. Experimentally, an extrapolation to
zero absorption or a demonstration that the signals are
independent of absorption should be made.

With the assumption that the absorbable light at each
point in the cell is independent of frequency, the ab-
sorption (and the signals) can be expressed as a simple
function of

Here P is the longitudinal electronic polarization, and
P+ and P are the contributions to this polarization
from the two hyperfine levels. Completely analogous
polarizations D, D+, D are defined for the second
species. Although only P is needed to dehne the signal,
P+ and P usually appear in coupled equations and must
be solved for separately in order to determine P. Or,
since

(Ilg) = (Frg) (Slg) =I1Py (I1+—1)P ~ (14)

the equations for (8,) and (I,) can be found and solved
instead. In either case the 2(2I+1) equations for each
species reduce to two equations in the cases treated in
this paper. Consequently, the rate equations for P+ and
P rather than for p/, sr, will be determined. Then the
absorption term of (1) gives

(P,)-.=~L Z MrP. ,~ P'(FtMr)/(It+sr)P, (1&)

when (2), (6), and (13) are used.

B. Excited-State Disorientation

It is customary, in analyzing optical-pumping signals
in which a buffer gas at a pressure greater than 1 cm of
Hg is used, to assume that complete mixing occurs in
the excited state. In other words, the excited-state
polarization relaxes nonradiatively in a time short com-
pared with the radiative lifetime. Recently, excited-state
disorientation cross sections have been reported which
are considerably smaller than those found earlier for
sodium. Yellin and Marrus' report for Rb' -Ne colli-
sions a cross section of 5)&10 "cm', which implies an
excited-state relaxation time of T=0.4 t/sec for Jarrett's
experiment (2.8 cm of Ne at 90'C).r The corresponding
mixing parameter"

P pp, sr, (x,t)P'(FtMr)
F12lf1

q= r/(T+r) (16)

=CpL1 —p 2(Ft—It)Mrpy, M,/(Ir+s)p7, (10)

which can be expressed as a function of the elec-
tronic polarization as follows. It can be shown that
(FM~S.~FBI)=2(F I)M/(2I+1). Then—the absorp-
tion is

A(l, t) =h L(x,t) [1 P(x, t)7dx, —

with the absorption coeKcient h=Cphv and

P=2(Sr,)=2 P pp, sr,
F1M1

X(FtMr~Sr, ~FrMt)/p=Q P/„(12)
l1+1/2

p| rr+t/s —Py —& Q Mtprg+$/s, sr|/( ]+s)p ~

M1~I1P1/2

(13)

P( I'rF'rM', rFrM)r=1.
F1M1

(17)

The time rate of change of the density of excited atoms

"J. Yellin and R. Marrus, Bull. Anr. Phys. Soc. 9, 720 (1964)."C. 0. Alley, Princeton University (unpublished).

(where r=2. 58X10 ' sec is the excited-state lifetime
against spontaneous emission) is less than 10%%uo, im-

plying that Jarrett's conditions produced very little
excited-state mixing. Since one of the primary objec-
tives of this work is to determine the importance of the
nuclear spins in Jarrett's experiment, it is of interest to
investigate the necessity of the assumption of complete
mixing. It will be shown that the signal for Jarrett's
experiment (in the limit of low light intensity) is inde-
pendent of the amount of excited-state disorientation,
regardless of the mechanism producing the mixing.

By de6nition, the probabilities P" must satisfy
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in the F~'3l ~' substate of the 'PJ, excited state is

nfl El Ml ~ p pf, M,P (FlM11Jl Fl Ml )4I1™1+141',1/2 nfl'El'Ml'/rfi'
EyMy

J~ff+jfIMjll
nf, f, M;louie(Ji'Fi'Mi', Ji"Fl"Ml")+ Q ng, "f;M,-z e(J1"Fl"Ml",Ji'Fi'Ml'), (18)

Jgf fggf f M~f l

where me(J1'Fl'Ml', Jl"Fl"Ml") is the probability per
unit time that an excited atom in state Jj'F~'3l j' will
make a transition to the excited state J] Fy JI/Iy"

(without returning to the ground state by emission of a
photon). Since the excited-state populations reach
equilibrium very rapidly (~& r), the equilibrium value of
nf, f, M, can be used in (1). Notice that at equilib-
rium (18) is of the form

Rn=Lm,

where R is a matrix independent of the various popula-
tions, n is a column vector with components eJ] py

and m has components

rnid 1'Fi'Mi' Q pf 1MiP (F1M1 Jl Fl Ml )
EyMy

X4&, ,M,+i&f, , i(2. (20)

The general relaxation Hamiltonian satisfying the
above restrictions can be written

X'=p nl( —) &S(1,q)H(k, —q), (22)

where H(k, q) is the qth component of a randomly ori-
ented field of rank k )for example, a scalar contact
field (k=0) or a tensor dipole field (k=2); see Ref. 12j
and is independent of the alkali atom spin coordinates.
S(1,q) is the qth component of the spin of the valence
electron of the alkali atom. '

Abragam" shows that, if K'(/) =AF(/), where A is an
operator acting only on the variables of the alkali, and
F(t) is a random function independent of the alkali,
the transition probability from state a to b of the
alkali is

Therefore a and eJy py M are proportional to L or
higher order terms in L. The reemission term of (1),
which becomes, when (13) is used, J(~.~)—= g(r)e '""'dr

(23)

(P+)Re ~ 2 n Jl'Ei'Mi'
J'gf+1f M j I

Xp M1P"(Jl'F, 'Ml', F1M1)/(I,+,)pr, , (21) provided that

=2.&F«)F«»/(1+-. ",) (24)

is then proportional to L or higher order terms in L.
This term vanishes in the transient experiment of Sec.
III for which L =0; it will be found to be independent of
P+ and P for the Dehmelt-type steady-state experi-
ment of Sec. IV.

C. Ground-State Relaxation

The most common assumption for the ground-state
relaxation in optical-pumping experiments is that it is
uniform. It has been suggested that a better assumption
is that the electron spin is randomized without affecting
the nuclear spin zx Recently Bouchjati2 has carried ou
a detailed analysis of relaxation on para%n-coated cells.
She assumes that the relaxation arises from the inter-
action of randomly oriented disorientation 6elds with
the spin of the valence electron. This section contains a
short derivation of the contributions to the rate equa-
tions from such an interaction which parallels the ele-
gant density-matrix treatment by Bouchiat. A dis-
cussion in terms of the assumptions of uniform relaxa-
tion and electron randomization is also given.

g(r) —= (F(~)F(&+r))= (F(&)F(&))exp( —
I
r I/r. ), (25)

i.e., if the interaction can be characterized by a single
correlation time 7,.

It should be a good approximation to assume that the
Hamiltonian (22) is the sum of several terms each of
which satisfies the restrictions of Abragam's derivation.
Then

w(F 13II1,Fl'Ml')

=2 I (F1MllS(1,q) IFi'Ml') I'J.(~fiMi » Mi ), (26)

where J,(~f,M, ,f, M, ) is proportional to (pa 1, ni, *nI,
X&*(k', q)EI(k, —q)), which is—independent of q,
since the 6elds are randomly oriented.

In a magnetic Geld of low intensity the hyperfine
energy separation 68' is much larger than the Zeeman
separation arf. Furthermore since the operator S(1,q) is
a tensor of rank one, 3fj can change by at most one unit
in each relaxation event. Therefore, J(d,W) and J(~f)
are sufFicient to characterize the ground-state relaxa-

"M. Bouchiat, J. Phys. Radium 24, 379 (1963). This article "A. Abragam, The Principles of /Nc4ur 3fegeetism (Oxford
contains a detailed analysis of relaxation in paragon-coated cells. University Press, London, 1961), pp. 272 and 297.
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tion. Then one has

lo(FlMl Fl Ml') =2 ~
(F1M1~ ~(1,q) (

Fl'Ml')
( '(&p, ,plJ(alp)+Br, ,pylJ(AW)) (27)

( Fl 1 Fl)1
A(F 1, Fl')(8 p, , p, LJ(cop) —J(AW)g+ J(hW))/4.

Ml Ml Ml Ml~
(28)

Equation (28) substituted into the third and fourth terms of (1) yields

(Q Mlgip, 1r,)It —$J——((op) —J(EW)7 Q M1Pr, pt, /(2I1+1)'
M1

The quantities

M1

—(3 Q Mlpr, 1r,/4 —Q A(F1)F1')r(F1,F1',Ml')pp, 1r, /4) J(AW). (29)
E1'M1'

r(F,,F,',M,')=—E M, l i
=Ml'r(F1, F1')

~l ™1Ml' —Ml —Ml ) (30)

1/Tl'= J(b,W) . '

(32)

Equations (13) and (29) give, for the contributions to
the rate equations from ground-state relaxation,

(P+) rt P+/Tl ——(2—I11+Ii+—1)Pp/(2I1+ 1)'Tl'
—(2I1+2)(2Il+3)P /2(2I1+1)'Tl', (33)

(P )P P /Tl——Il(—2Il 1)P—/(2I1+—1)'Tl'
—(2IP+3I1+2)P /(2I1+1)'Tl' (34)

To gain some insight into the time constants (31) and

(32) consider the two limiting cases.

(a) Zeeman relaxation. Let J(d W)«J(&op), i.e.,
T~(&T~", in this case the correlation time is much longer
than the hyperfine period vHp. Relaxation then occurs
within the Zeeman sublevels of each hyperfine level,
but transitions between hyperfine levels are rare. The
longitudinal electronic polarization of each hyper6ne
level relaxes as a singIe exponential of time constant Tj.
T~ is then the characteristic time for Zeeman relaxation
in which the electron spin is randomized within each
hyperfine level, but no transitions are made between
hyperfine levels.

(b) Relaxation by electron randomization. Let J(~p)
=J(t),W), Tl'&&Tl, r,«rHp, in this case both Zeeman
and hyperfine transitions occur. The electron spin is
completely randomized without affecting the nuclear
spin. Such a model has been used by workers at Prince-
ton."The term electron randomization will be used to
identify this limit, and Tz is the electron randomization
relaxation time.

Then in general if the relaxation occurs through ran-
dom interactions of the alkali electron spin with ran-

are given in Table III, which was found by using Table
2 of Edmonds. '

Now define two time constants

1/Tl LJ(~p) —J(A——W) j/(2Il+1)', (31)

domly oriented disorientation fields not involving the
alkali spins, the relaxation of the electronic polarization
of each hyperfine level can be represented as the sum
of two contributions: that from Zeeman relaxation

LJ(AW)«J(cop), r.))rHp, Tl«T1'j and that from elec-
tron randomization LJ(AW) =J(cop), r.«rHp Tl &(Tl).

Equations (33) and (34) correspond to Eqs. (53) and
(54) of Bouchiat" if (12) and (14) are recalled and her
time constants T, and T„are related to Tj and Tj' by

TAsI.E III. Values of

p I 2

I Pl+I 3I1 ) ~ 3I1 3I ~ 3I 3II 3I1~1 (+lgl ) ~

~x 1 1 1 1

71+—
Mg' (4IP+8I1—1)

(2Ig+1) (2I&+2) (2I&+3)

CV1'(2I1—1)

(2Ig+1) (2I&+2)

E1——
Ml'(2I1+3)

2I& (2I1+1)

3II,'(4IP—3)

(2Iz—1)2Il (2Iz+ 1)

14 R. A. Bernheim, J. Chem. Phys. 36, 135 (1962).

1/T, =1/Tl+ 1/Tl',

1/T„= 1/T 1+2/(2I1+ 1)'T1'.

A Hamiltonian of the form of (22) was taken by
Bouchiat to describe relaxation in wall-coated cells. It
appears that (22) should also hold for relaxation by
collisions with burr-gas atoms. For example, Bern-
heim's model for buffer-gas relaxation is of this type. '
For buffer-gas collisions the correlation time is no longer
than the collision time, =10 " sec, which is much
shorter than the hyperfine period. One would then ex-
pect disorientation by buGer-gas collisions to satisfy the
conditions for electron randomization.
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There appear to be at least two reasons for retaining
uniform relaxation as a decay channel in addition to the
mechanism proposed by Bouchiat. First, in cells con-
taining sidearms for controlling the densities of the
various alkali vapors, effusion to and from the sidearms
constitutes a uniform relaxation process; i.e., when an
atom in a given Ii~M~ substate leaves the cell, it is re-
placed by an atom which has an equal probability of
being in any of the 2(2I1+1) possible substates. Second,
if an atom sticks to the wall for a very long time, the
relaxation will again be uniform. For example, if the
atom undergoes many effective relaxation collisions of
the Bouchiat type while on the wall, its initial polariza-
tion will be completely destroyed. Imperfections in the
coating or small pools of alkali atoms could cause long
dwell times.

Uniform relaxation can be included by adding to (28),
w(F 1M1,F1'M1') = 1/2(2I1+1)T1",where T1" is the uni-
form relaxation time. Equations (33) and (34) readily
become

doublet spin states. The stationary state of the molecule
formed by atoms 1 and 2 is then either a singlet or
triplet state. With each of the possible states there is
associated a potential which describes the interaction
of the two atoms. In the usual manner, the solution of
the scattering problem leads to the scattering ampli-
tudes, f. and f~, where the subscripts refer to singlet and
triplet. Spin-orbit interactions are neglected in the col-
lision. For spin-exchange collisions for which the initial
states of atoms 1 and 2 are A and 8 and the final states
A' and 8', the cross section is"

Q(AB,A'B') =Qr(A)B) og g os s +Q2(AB,A'B'), (37)

where

a+3 t

Q1(A,B)=

+l «I:(f'*+3f*)(f f.)j—
x(ABls1 s2IAB) dQ, (38)

(P )a= P /T1"' I—1(2I1 1)P—~/(2I1+—1)2T1'
—(2I1'+3I1+2)P /(2I1+1)'T1', (36) xl(A'B'Is, ~ s IAB&l, (39)

(P~) r1 P~//T—1—
"' —(2I1'+I1+—1)P+/(2I, +1)'T, '

—(2I1+2)(2I1+3)P /2(2I1+1)'T, ', (35)
Q, (AB,A'B') =

I f,—f, I2dn

where 1/T1"'=1/T1+1/T1" t—o simplify the subsequent
equations. See Sec. IV for a discussion of experimentally
determined relaxation times.

D. Spin Exchange Between Nonidentical Atoms

The results of Dalgarno's quantum-mechanical treat-
ment of the spin-exchange process are used to describe
the spin-exchange collisions between the two species. "
Atoms 1 and 2 are assumed to be nonidentical and in

and S1 and S2 are the electronic angular momenta of
atoms 1 and 2. In the experiments discussed in this
paper, contributions from the direct cross section, Q1,
cancel out because only net changes in state populations
are detected. From (39) it is seen that the spin-exchange
experiments considered here yield information about the
interatomic potentials only through the quantity
I'l f f I'«—

The matrix element of S1.S2 between FM states is
found as follows: By Edmonds' (5.2.4),'

(F1'M1'F2'M2'I S1 S2 IF 1M1F2M2) =2(—) '(F1'M1'I S,(1,q) IF,M1&(F2'M2'I ~2(1, —
V) IF2M2&

Then by the Wigner-Eckart theorem, Edmonds' (5.4.1),

(F1 M1 F2 M2
I
S1' S2

I
F]M1F2M2&

F1' 1 F1) / F2' 1 F2
=~(—)"""*'' "", ll, l(F1'll5'('&IIF &(F 'll~ (»IIF & (41&

2 —M1' q Mgf 5 M2' —
q M2)—

Application of (7.1.7) and (5.4.4) of Edmonds leads to

Q2(F1M1F2M2 F1M1 F2 M2 ) I f1 f I

'«—
=

I (F1'Mr'F2'M2'I ~1.S2 IF 1M1F2M2& I

'= (9/4)(2F 1+1)(2F1'+1)(2F2+ 1)(2F2'+ 1)

f Fl 1 Fl) F2 1 F2 l 2 Fl Il F2 I2
xpl

2 k —M1' q Mr& —M2' —
q M21 F1 -', 1

(42)

The following selection rules are immediately apparent: M1+M2 ——M1'+M2',
I
AM1I &~1, I AM2I &~1. Using (5),

"A. Dalgarno, Proc. Roy. Soc. (London) A262, 132 (1961).
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one has

Q2(F1M1F2M2 Fi Ml F2 M2 )=
!f, f,—!' ( Fi' 1 Fi)2 Fs' 1 F2)2

dQ 6(F1,F1')h(F2,F2')Q! (43)
16 2 ~ —Mi' q Mil M—2' —(I Ms)

Then the exchange term in (1) becomes, with (13),

(P+)E=
47 ggf F1M1'

FIMs

wliere

a(F, , F')t(F&, F,') I Fi' 1 Fi)' P' 1 F )'
2M1 5 Mi Il Mi) M2 (() M2

X (pti irides i(rs per'Arr "dE2'lrs') ~ (44)

1

~El
!fi f, !

2E—dQ vEf(vE)dsvE=
TE2p

ere y'~~ is the time which characterizes the influence of the second species upon the first species through the
spin-exchange interaction. Similarly, T~2 indicates the efIect upon the second species arising from spin-exchange
collisions with atoms of the first species. The normalization is in agreement with accepted convention. Equations
(44) are not yet in a useful form because they depend upon the populations and not just upon the polarizations. The
further assumptions made for the particular experiments in Secs. III and IV will correct this situation.

A short digression will show that the cross sections derived here agree with the results of Glassgold. ' From (43)
one has, for the case in which the second species is unpolarized,

Ifi—f.l', ( Fi'
!Q2(F13II1F2M2)F1'Mi'Fs'Ms') =2(2I2+1) dQ h(F1,Fi')!

Ii gMg 16 4—Mi' Mi' —Mi Mil
F2'M2'

=2(2I2+1) o(f2)s, fI2N'; 8)dQ, (47)

in the notation of Glassgold with f=F1and 222=Mt. The A(F1,F1') defined by (5) and given in Table II are identical
to the A(f, f') of Glassgold, which are listed in his Table I. Therefore, by Edmonds' (3.7.3),

1 1 0

o(fm, fI2N'; 0)=- A(f, f')(fmf' m'! Im —2)—2')2, (48)

where fi f& and f() f,——. Equation ——(48) agrees with Eq. (4.6) of Glassgold's paper.
If one defines

Q2(F1M1F2M2 F1'Mi'Fs'Ms') =~~o'(I (F1'M 1'F2'Ms! P1+v Fs!F1M1F2M2)! )A (49)

then (44) are still valid if 1/TEid is replaced by 52rv/()s2.

This substitution places the rate equation in the form
used, for example, by Anderson and Ramsey. ' This
approach is similar to the semiclassical description used
by Wittke and Dicke" and by Purcell and Field. '
I'~ and I'0 are the projection operators for a total elec-
tronic angular momentum of 1 or 0. The relative phase
shift, p, between the singlet and triplet parts of the
wave function, arises from the difference between the
singlet and triplet potentials, which describe the mole-
cule formed by an alkali atom of each kind. For a
"strong" collision, d is assumed to be large and random
((cosd)=0); collisions not classified as strong are ne-
glected. The maximum impact parameter for which a
strong collision occurs, $0, is usually taken as the one

"J.P. Wittke and R. H. Dicke, Phys. Rev. 105, 620 (1956)."E.M. Pnrcell and G. B. Field, Astrophys. J. 124, 542 (1956).

for which the particle will have zero velocity at the top
of the centrifugal barrier for the singlet potential.
Glassgold and I.ebedeG have discussed the validity of
this approximation. '

E. Self Spin Exchange

Glassgold' has shown that the cross section for identi-
cal atoms, corresponding to (37), is

Q(AA', A "A"')=
! (A "A"'!&!AA')! 'dQ/2, (50)

where the 6rst atom in the collision has electronic spin
(ri/2 and undergoes a transition from state A (repre-
senting F1M1) to A" in an exchange collision with the
second atom of spin ei'/2 which makes a transition
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from 3' to 3"':
s=Fd(s)+F.(s)~, ~ ~,'

+(-) '"QI.F.(--0)+F.(--0)- ' j, (»)
Fs= (f.+3f1)/4 (52)

F*=(f2 f )—/4

I=Iz+Iz', I1 I1'——i, ——

S=S1+Sz'=22/2; S1——S1'———,.

(53)

(54)

(55)

Here Q is the operator which interchanges both the

electronic and nuclear spins; Q=Q„Q„where

Q. l IMzSMs) = ( )s—+'I IMzSMs&,

Q„ I
IMzSMs& = (—) + '

I IMzSMs& .

For a general operator 0,
&a "a"'IQo I

aa'& = &a"'a"
I
o

I
a~'&;

(56)

(57)

toe first quantum numbers of each bra or ket always
reIer to the first atom.

The factor of 2 in (50) is necessary in order to avoid

counting Anal states twice. The cross section is then

Q(AA', 2"A'")= DFs(0) I20, ,,-0, ,-.+ IF.(~ s) I
20,—,„-.0, ,-

4TS1P Fl'Ml'
F IIM II

F lllM III

+(—)"+'2 «(Fs*(0)Fs(2r—0)0~,&'»" ~" +Fd*(0)F*(~—0)&~~'I o'1 (zz'I ~~'&0~.~-0~ .~-
+Fs*(~—0)F.(0)&~'~ I~1 ~1'l~~'»~.~- 0~.~-+F**(0)F*(~—0)&~"~'"I~1 ~1'l~~'&&~"'~" I~1 ~1'l~~'&&

+2 «Fs*(0)F*(0)(~~'I~1 ~1'I ~~'»~, ~-0~,~- +2 «Fs*(~—0)F*(~—0)&~'~
I
~1 ~1'I ~~'»~.~- 0~,~-

+ IF*(0)I'I (~"~'"
I ~1 ~1'I ~~')

I
'+ IF*(~—0) I

'1(~'"~"
I
~1 ~1'I ~~'& I 'j«l/2 (59)

Fortunately, none of the terms involving deltas contributes to the rate equations, as can be seen by substitut-

ing (59) into (1).The
I
F,(0) I

term in (59) is the cross section one would expect between two nonidentical atoms.
The IF,(2r—0) I' term arises because no distinction can be made between the incident and target atoms. The
2 ReF, (0)F,(2r —0) term arises from the quantum-mechanical identity of the two colliding atoms. An estimate of
the interference term using the model of Purcell and Field is given in Appendix I and indicates that it is small

compared with the other two terms, at least for Rb'; it will be neglected entirely in the subsequent calculations.
Equation (59) in (1) produces, with the aid of (13) and the fact that J'

I
F,(0) I

2d&= J'
I
F,(2r —0) I

2d&,

+1 A(F1,F1")h(F 1',F1"')
(P+)»= 2, 2 M1

(Iz+2)p

Here T», dined by

) F" 1 F ~2 F"' 1 F' ~2
XI I (P»M1P» M PF -M;.P„.—-M;-). (60)

( —M1" q M1J —M 1"' —
q

—M1'J

&Bi
I f2 f. l

Sz(if'&Sz—f(FS1)d 2)S11 (61)

is the self spin exchange time for the first species; for the second species,

1

T's~
I fl —f2I"-S2dfl(S2f(2S2)d 2S2 (62)

F. SimpMed Rate Equations

Combining the results of this section, one has

1 d, (F1,F1')A(F2,F2')

4Tzzzd Fl Ml (I1+-,')p
F2M2

M1pF1Mlp (F1M1) (+I 'F 'M ') M1F (I1F'1 Ml F1M1)
p»-zl~zi2= ~L Z IE

(Iz+2)p L I Ml (I1+2)ptz, ~

—8+/T1"'—8»,»+zz2L(2I1'+I1+ 1)8+—(I1+1)(2I1+3)8 3/(2I1+ 1)2T1'

—BFl,l, » 1/2LI1(2I1—1)P++(2I12+3I1+2)P 3/(2I1+1)2T1'

—Mz' q M1 5—M2' —
q M21

Fg'Mm'

47 S1P Fl'Ml'
F IIM~II
F IIIM III

z),(F1,F1")A(F1',F1"')

(I1+-',)p

XM1(pF1Ml~F2M2 pFl™1'dF2™2')

( F" 1 F)' F"' 1 F'
Zl
2M1 (—M1" q MgP —M1"' —

q M1'

XM1(pF2MlpF2'Ml' pFl" Ml "pF1'"Ml'") ~ (63)
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Clearly additional assumptions are necessary before
these equations involve only P~ and D+ and none of the
individual populations.

A(~)—A(t)
S(Ii,t) =

~(~)—~(0)
(65)

where the absorption at time 1 is given by (11).Equation
(11) becomes, on the assumption that P is independent
of x and that L is approximately independent of x
and t,

In that case,
A(t, i) =8/1 —P(t)jI.. (66)

S(I,1)=P(t)/P(0) = (S *(1))/(S (o)) (67)

If the resonance cell contains no buffer gas, P should be
independent of x because of the rapid motion of the
atoms; L is approximately independent of x and t if
the absorption is kept small. At any rate, (67) is valid
only if experimental care is taken to satisfy (66); other-
wise the signal becomes a much more complicated func-
tion of the polarization as indicated by (11) and (65).

The continuous application of the rf field at the reso-
nance frequency of the second species,

2.8IIp/(2I, +1) Mc/sec, (68)

where Ho is the static magnetic Geld strength in gauss,
results in equal populations among the substates of each
hyperfine state throughout the experiment. One has
in (63)

dp,~,——dp,/(2F2+ 1) (69)

dp, ia, =dp, /(2F2'+1). (70)

(It may take a time "T2" in paramagnetic-resonance
nomenclature for the spins to dephase after the applica-

III. TRANSIENT EXPERIMENT

In this section the rate equations are solved for the
case of a Franzen' transient experiment applied to the
measurement of the spin-exchange cross section in a
resonance cell containing the vapors of two alkalis.
The first species is optically pumped and the envelope
of the decay in the dark of its electronic polarization is
traced out, yielding a single relaxation time 7 if the
nuclear spin is neglected. In the presence of the second
species, which is continuously disoriented by an rf
Geld, the relaxation time is shortened to

1/T = 1/r+1/T~i, (64)

neglecting the nuclear spins. A measurement of the
density of the second species then permits a determina-
tion of the spin-exchange cross section. This transient
experiment has the advantage that the density and re-
laxation times of only one of the two species must be
measured, whereas in the steady-state experiments
they must be determined for both species.

The transient signal is conveniently defined as

tion of the rf Geld; but since the Geld is applied con-
tinuously and is sufficiently strong to overpower the
pumping effect of the light, the coherence will not
reappear. )

It is necessary to exclude the self-exchange term in
(63) from the following solution because of its nonlinear
character. Experimentally this is a good approximation
whenever Tq~ is much longer than the shortest time
constants affecting the relaxation; for example, for two
alkalis, cross exchange dominates over self exchange
when d&)p. The importance of self exchange is also re-
duced because there is no change in the absorption if the
two atoms undergoing a collision have both initial and
final states in the same hyperGne state:

AA ~ 5 Q Mpgia. pp Mi( —1)+Mi'(—1)

+Mi"(+1)+Mi"'(+1)=0, (71)

since Mi+3II&'=Mt"+Mt"' always. a

With (69), (70), Tsi po, and——I.=O the 1/T~i term
in (63) becomes identical in form to the Ti term in (29)
or (33) and (34). Then

P+ Pp/Ti——"' (1—/T ~i+ 1/T—i') L(2Ii2+It+ 1)P~
+(Ii+1)(2Ii+3)P 7/(2Ii+1)', (72)

P = P /Ti'" —(1/T'ai+1—/Ti') LIi(2Ii—1)P~
+(2Ii2+3Ii+2)P J/(2Ii+1)'. (73)

Alternatively, with the aid of (12) and (14),

&S.)= (1/T'"+1/T'+1/T —)(S' )
+2(1/Ti'+1/T~i)(Ii, )/(2Ii+1)', (74)

(Ii,)= —$1/Ti"'+2(1/Ti'+1/Tai)/(2Ii+1)')(Ii, ) .
(75)

The solution of the above equations yields, for the sig-
nal for a I'ranzen-type spin-exchange experiment,

S(Ii,])= (1—a) exp( —1/r i)+u exp( —t/r2), (76)

where

1/r i ——1/T i+1/Ti'+1/Ti"+ 1/T I;i, (77)

1/r2= 1/Ti+1/Ti' +2(1/Ti'+1/T@i)/(2Ii+1), (78)

= ( .(o))/( 'y —)(S (0)) (79)

=4LI,P,(0)—(I,+1)P (0)j/
(4I 2+4I, 1) (0), (80)—

where Iy is the nuclear spin of the Grst species, TE~ is
defined by (45), and Ti, Ti', Ti" are the times for Zee-
man relaxation, electron randomization, and uniform
relaxation, respectively. (Si,) and (Ii,) are defined by
(12) and (14). Note that for Ii=0 or Ii——-'„P =0, im-

plying (Ii,)=2Ii(S»). For Ti" Tst op these results—— ——
agree with Bouchiat"; for Ty= Tj = Ty = ~, with
Grossetete. '

~8 I"or an independent derivation of the results of this section
using density matrix techniques, see F. Grossetlte, J. Phys.
Radium 25, 383 (1964) and Compt. Rend. 258, 3668 (1964).
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For a single species, the relaxation of the electronic
polarization is a single exponential if the relaxation is by
Zeeman or uniform transitions only and is the sum of
two exponentials Lwith characteristic times in the ratio
(2Ii+1)'/2] if it is by electron randomization only. The
experimental results of Bouchiat and Brossel" for Rb"
in paragon-coated cells indicate that, at least in some
cases, the relaxation is a single exponential; i.e., Zeeman
or uniform relaxation is dominant. On the other hand,
one would expect buBer gas collisions to produce relaxa-
tion by electron randomization, since the correlation
time is short compared with the hyperfine period if the
collision is elastic.

In summary, the signal for the Franzen-type transient
experiment, neglecting self spin exchange, is given by
(76). In general, the signal is the sum of two exponen-
tials. For Zeeman or uniform relaxation the ratio of the
time constants ranges from 1 to (2Ii+1)'/2, depending
upon the relative sizes of Ty, Tj",and T'Ej. For the elec-
tron randomization case, the ratio is always (2Ii+1)'/2.

In either case, the nuclear spin eGects must be included
in the analysis if correct spin-exchange cross sections
are to be deduced.

pi, ir, =p/2(2I i+1)+n p,~„
dp,~,=d/2(2I2+ 1)+bi,~„

(81)

(82)

where the deviations x~,~, and b~,~, of the populations
from the depolarized values are small and proportional
to L in first order. Substitution of (81) and (82) into (63),
dropping terms proportional to L' (e.g., m i,ir,L,
~i,ir, B&,ia„etc.) immediately, leads to the following rate
equations in the limit of low light intensity (see Ap-
pendix II for the details):

IV. STEADY-STATE EXPERIMENTS IN THE
LIMIT OF LOW LIGHT INTENSITY

A. Rate Equations

In this section some experiments are analyzed in the
limit of low light intensity, for which

(2I,+2)(2Ii+3) ( D++D — 1 ( 1 1 ) 2I,'+I,+1 2I,(2I,—1)—
p+ ~

I
L+C+ — +I + I + P+6(2Ii+1)' k Tzi Ti'" ETi' TEg) (2Ii+1)' 3(2Ii+1)'Tsi-

(2Ii+2) (2Ii+3) 1 1 2
+ + P, (83)

2(2Ii+1)' Ti' Txi 3Tsi
2Ii(2Ii—1)( D++D )1 Ii(2Ii—1) ( 1 1 2

I
L-C+

I

—
I + + IP+

6(2Ii+1) E T@i 3 (2Ii+1) (Ti' Tzi 3TBi)

f 1 1 )2Ii2+3Ii+2 (2Ii+2)(2Ii+3)
+I + i + P . (84)

-Tl ~T1 TE1~ (2Ii+1)' 3(2I1+1) Tsl

The corresponding equations for the second species are found by setting L+——L =0, interchanging I'~ and D~,
and replacing the subscript 1 by 2 in (83) and (84). L+ and L, defined by (A16), are independent of the polariza-
tions and are linearly proportional to the light intensity L; L+=L =L for complete mixing. Recall that the hyper-
fine components in the incident light are equal; i.e., L+ and L do not refer to unequal pumping components.

Transforming to the (Si,) and (Ii,) representation by using (12) and (14), one finds

(gi.)=$(Ii+1)(2Ii+3)L+C/2+Ii(2Ii —1)L C/2+(4Ii'+4Ii+3)(S2, )/Tsij/3(2Ii+1)2
1 1 1 4Ii(2Ii+2) ( 1 1 1 )+ + + (S„)+2~ — + + i(I„)/(2I,+1)', (85)Ti' ' Ti T@i 3(2Ii+ 1) Tsi- (Ti T@i Ts/J

(Ii,)=Ii(2Ii+2) f(2Ii+3)L+C/2 —(2Ii—1)L C/2+4(Sg, )/Txij/3(2Ii+1)'

4Ii(2Ii+2)(S&g) — 1 ( 1 1 1 )+ — +2~ + +-
~

(2Ii+1)' (Ii,). (86)3(2Ii+1) Tsi Ti LTi T@i Tsgl-

The corresponding equations for the second species are
again found by setting L+.=L =0 and interchanging
the subscripts 1 and 2 in (85) and (86). Thus in the limit
of low light intensity the rate equations reduce to four
blear equations.

"M. Bouchiat and J. Brossel, Compt. Rend. 254, 3650 and
3828 (1962}.

B. Dehmelt Exyeriment

The experiment analyzed in this section was first used
by Dehmelt to estimate the sodium-electron spin-
exchange cross section. ' A resonance cell contains two
atomic species or one atomic species and quasifree elec-
trons. The first species is optically pumped, and the
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transmitted resonance radiation is monitored. The signal
can be defined as

S(Ii,I2)= LA (O,Hg') —2 (0,0)j/
L~(H, ,O)-~(0,0)g, (8~)

where A(Hi', H2') is the absorption in the presence of
two rf fields (Hi' disorients species 1, etc.).The absorp-
tion is given by (11), provided that the incident
light is constant over the frequencies for which the
absorption is appreciable. It will be assumed that
L(x,t) or L(x,Hi', H2') is the same at each point in the cell
for arbitrary values of the rf fields; i.e., L(x,Hi', H2')
=L(x,o,o) =L(x). This should be a good approximation
in the limit of low light intensity, for which—
because the polarization is always small —the absorption
changes very little with polarization changes. One has
P(x,Hi', Hm') =f(x)P(Hi', H2'), where P(Hi', Hm') is in-

dependent of x and f(x) is approximately independent
of Hi' and H2' since the polarization is small I see (90)
below/. Then

S(Ii,Ig) =1—P(O,Hs')/P(0, 0), (88)

since P(Hi', 0) =0. For Ii——0, (88) is valid for any ab-
sorption if the polarization is low.

Applying H2' is equivalent to reducing the relaxation
time of the second species to zero; therefore, P(O,H2')
=P(rg ——0) and

S(Ii,I2) = 1—P(T2 ——0)/P(T2)
=1—(si*( 2=o))/&Si*( 2)) (89)

By solving the four simultaneous equations (85) and
(86) and the corresponding equations for the second
species, one finds, at equilibrium ((8i,)=0, etc.),

where

( 1 1 1 2Ii+1 ( 1 1 1 2Ii+1
(Ii+1)(2Ii+3)

I + —+ + IL+C Ii(2Ii 1—) I
+—+ — L C

Tzi (Ti' Tzi Tai 2Ti"'
(s,)=—

6(2Ii+ 1)I P(1)—n(1)n(2)/P(2))

1 ( 1 1 1 4Ii2+4Ii+3)
~(1)= -I,+ + +

TB1(Tl TE1 TS1 6T1 )

1 1 ) 1 1 1 ) 4Ii2+4I,+3 1 1 2 ) (2Ii+1)'
~(1)=,+ I,+ + I+ „, ,+ + I+

(90)

(91)

(92)

Then

s( , .)= ( )-( )/~( )~( ) (93)

randomization only,

is the signal for the Dehmelt-type' steady-state experi-
ment in the limit of low light intensity. Ij is the nuclear
spin, 1/Ti"' ——1/Ti+1/Ti", Ti the Zeeman relaxation
time, T~" the uniform relaxation time, Ty' the electron
randomization relaxation time, and Tg~ and Tg j the
self- and cross-exchange times of the pumped species;
I2, T2, T2", T2', T82,and T+2 are the corresponding
quantities for the other species.

The signal is independent of J+ and I=, i.e., of any
assumptions about excited-state disorientation. But
(90) indicates that the electron polarization depends
upon the excited-state disorientation. However, the
signal is defined as the ratio of two signals, and the dis-
orientation e8ects cancel out. S=O for T~'"=0 or T2' ——0
because the second species is not aftected by the rf field,
since it is never oriented. Similarly, S=O for T~"'——0
or T~' ——0 because the first species is not pumped. For
Tg j ——~, S=O, since disorienting the second species has
no e8ect upon the first species in the absence of spin
exchange. Equation (93) is not valid for both Ti'"= ~
and Tg = .

If Tj"'——T2"'——~, i.e., the relaxation is by electron

S(IiI )I, -
TQQT@2

Also

1 1 ' 1 1X,+ --I,+ I (94)
Tu' Tz2&

1 1 1 1
s(o,o) =

I + +
T~,r„&r,'" T,' T~,J

1 1 1 ~-'
X I „,+,+ — I, (93)

Erg'" Tg' Tsgl

which is identical to (94) in the limit Ti"'= T2"'
Therefore, nuclear spin sects are unimportant if the
ground-state relaxation is predominantly by electron
randomization.

In order to compare the results above with earlier
analyses by other authors, it is useful to compare the
rate equations for the case Ii=I2=0; Eqs. (1) become,
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SE(0,0)= 22lVT, rv Q 2. 2 (98)

Of course, Il was actually —'„ for which (93) becomes,
with 1'——T2' ——Ts1——

SD(3/2, 0) = 3@iVT,rv2Q2/8 =3'(0,0)/8. (99)

Therefore, if the experiment is performed in the limit of
low light intensity, the cross section deduced from a
given signal becomes (8/3)'/'=1. 63 times as large if
nuclear spin is included in the analysis, if the ground-
state relaxation of the alkali is by Zeeman or uniform
transitions only, and if self exchange is negligible. But
if the ground-state relaxation is by electron randomiza-
tion, (98) is valid (with T.=T2' and r=T1') for
arbitrary I1.

C. Jarrett Experiment

Comparison of (96) with Eqs. (12) and (13) of the
paper by Jarrett' indicates 1/TEld =v,Q~, 1/Tl"'
= 1/T, '"=2R, p = lV, and d =glV; therefore, with
Tl' T2' ~, (95) beco——mes

Sg(0,0) = alV2v„2Q, 2(2R+lVv, Q ) '
X (2R+alVvrQ, ) ', (100)

with 22', Erl ——22/2(2I1+1) for complete mixing, C= 12,

TS1 TS2 T1 T2 ~) ~S
Pl/2= Ip 1/2/2 — (Pl/2 P/2)/Tl

(pl/2d —1/2 p 1/—2d1/2)/TEld p

72—1/2 ip 1/2/2— (p 1/2 —p/2)/Tl'"

(p—1/2dl/2 P1/2/I 1/2)/—TEld i (96)
dl/2= (dl/2 —d/2)/T—'2"'

(dl/2p —1/2 d 1/2—pl/2)/TEld 1

d—1/2 (d 1/2
—d/2)/T2"'

(/f—1/2p1/2 dl/2p 1/2)/TEld—

Using peal 2/= Q&(pl 2/p 1/2)]/2, one has

//I. 1 1 i
pl/2 —p-1/2= Lp/2 —

i

—+ „,+&2 T,"' TE &

X (pl/2 p 1/2) + (&$1 2//f —1/2)/TE2 1

1 1
+ i (dl/2 d—1/2)

ET,"' TE2)

+ (pl/2 p 1/2)I—TE1

By comparing (97) with the rate equations used

by Dehmelt' to describe his sodium-electron experi-
ment, one finds that the following identifications must
be made: p=lV, d=r/, 1/TE1——22vQ, Tl" = r(IO=0), -
T2'"= T,. Then with Q/2K(1/r or 1/T„(95) becomes,
with T1'——T2'= ~,

TABLE IV. Rb"-Rb" spin-exchange cross sections deduced from
the data of Jarrett (Ref. 7). Q~= 1.7&&10 '4 cm'.

I2

Relaxation: Zeeman,
uniform, or electron Self exchange

randomization included? Q/Q~

Zor U
Zor U
Zor U

BR
ER

Yes or No
No
Yes

Yes or No
Yes or No

1
4.6
6.8

1

7 Twall Tbuf fer

(102)

(103)

it is seen that if the relaxation is by electron ran-
domization only, (100) is valid for general nuclear spin
and includes self exchange (with Tl"'= T2"'= oo and
1/Tl' ——1/T2' ——2R). However, if Zeeman or uniform
relaxation is dominant, (93) implies a large correction to
the deduced cross section for the actual nuclear spins
(It=2, I2=2). These effects may be demonstrated by
assuming Jarrett's experimental values of the param-
eters and signal and then deducing the spin-exchange
cross section. This author estimates 0el/4 = -', for Jarrett's
experiment; the fact that kol/4 is not much less than 1
)which is the condition that (11) hold in his experi-
ment] is ignored in the following discussion.

I'or spin exchange between Rb" and Rb one has

1/Tsl =p/TExd and 1/TE2= 1/TE1, (101)

because J'~ f& f, i2dQ is —only weakly dependent upon
nuclear properties. With TE2= TEld//p, T2"' Tl"', ——
T2' Tl', in (93), th——e cross sections Q are deduced
with R=413 sec ' iV=3.33X10I1 cm ', a=d/P=2. 59,
v„=4.59X 104 cm/sec, and S /S= Sq ——0.107. Values of

Q are found for Zeeman or uniform relaxation (Tl' ——oo,
Tl"' 1/2R) and for rel——axation by electron randomiza-
tion (Tl' ——1/2R, Tl"' oo). By the n——ature of the meas-
urement, the self-exchange contributions to R were
presumably eliminated. Qz ——1.7X10 "cm' is the cross
section deduced by Jarrett, neglecting the nuclear spins.
A comparison of the deduced cross sections for diferent
assumptions is given in Table IV. The nuclear spins are
important in the analysis of Jarrett's experiment unless
the ground-state relaxation is by electron randomiza-
tion only.

This author has not determined which relaxation
mechanism predominated in Jarrett's experiment. How-
ever, the following discussion is pertinent. The relaxa-
tion time of the electronic polarization in a cylindrical
cell containing a buGer gas can be approximated by'

which is Jarrett's S /S, as can be verified by solving for
the latter from (18) of Jarrett's paper. But from (94) &bufter= po/IV 0&vp q (104)
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where p is the pressure of the buffer gas, Dp is the dif-
fusion coeKcient at atmospheric pressure pp a and L are
the radius and length of the cell, Xo is the density of
inert-gas atoms at pp and at the temperature of the vapor
cell, 0 is the disorientation cross section, and 8 is the
mean relative velocity between inert-gas atom and
alkali. For Rb in Ne, Dp=0.31 cm'/sec, o =5.2X10 "
cm', and Xp=2.29X10" cm ' at 47'C.' For Jarrett's
case p=2.8cm of Ne, a=2.5 cm, L=1.43 cm, T=90'C,
implying ~~,»=21 msec and 7bg ff p 0.38 sec. %all col-
lisions should dominate for Jarrett's experiment, giving
r=21 msec, but Jarrett found =1 msec. In deriving
7„,» it was assumed that every wall collision produces
complete disorientation, implying that 7„„»&~21msec.
If, however, the cell contained some impurity in the
vapor phase, the relaxation might be greatly accelerated
and be dominated by electron randomization. The cross
section deduced by Jarrett would then be unchanged by
the addition of the nuclear spins into the analysis and
would be in agreement with the paramagnetic resonance
measurement by Moos and Sands. "

D. Off-Diagonal Density-Matrix Elements

In the derivation of the general expression (93), the
of'f-diagonal elements of the density matrix were neg-
lected. Balling, Hanson, and Pipkin4 have carried out
an analysis for zero nuclear spin for a general density
matrix. It is of interest to compare their result with this
work. The polarization for I1——I2= 0 can be found from
(97) or (90) with Tei=Te2=Ti'=T2'= ~ and L~=L:

-T1 TE1

1 1 1 ~-'-
(lo5)

TslTE2 T2 TE2i

Equation (76) of Balling et aL is to be compared with
the above, with E, T1'", T~1, T~2, and T2"' substituted
for (P(R)), Tire, T,ii, T„,and Ti., respectively:

IBHP

where

+
T1 Tg 1 T@1TE2

1 1 —i-
xi + -+

(T2 T@2 1+r2 (ppp
—Soap —6)) i

cvi= g g( 12pH2/k), cop= gg(ppHp/A), —

(106)

Boo is the spin-exchange frequency shift, and

1/r 2 1/T2, +1/Tss. —— (107)

Here T2, is essentially the time required for coherence
effects to damp out, i.e., the usual "T2" in magnetic-
resonance nomenclature; T2, should not be confused

'p H. W. Moos and R. H. Sands, Phys. Rev. 135, A59t (1964).

with T2 of this work, which is a "T1"time for the second
species. For H2'=0 there are'no coherence effects, and
(105) and (106) agree. For

1 1 1 1
(H, ')'»

—T1 T2 TE2 T2 TE1-

1 1 1 1 ggtip '
XI + I I „,+ I I, (lo8)

kT, T„i kT,"' T,i a i

(106) agrees with (105) in the limit T2"' ~ 0, implying
that the second species is completely disoriented. On
the assumption that all the time constants are equal to
1 msec, (108) requires H2'))0.4 milligauss. Thus when
the resonance is saturated the polarization, obtained
from an arbitrary density matrix, reduces to the
diagonal-treatment value at equilibrium. The time re-
quired to reach equilibrium is related to T2, for the o8-
diagonal contributions. If T2, is made short —for
example, by increasing the inhomogeneity of the static
Geld—the coherence e8ects are damped out more
rapidly, but a larger rf field must be applied to saturate
the resonance. In general, T2, should be made small com-
pared with the period of switching the rf fields; H2' is
then chosen large enough to saturate the resonance,
i.e., satisfy (108).

Although the frequency shifts and line shapes resulting
from spin-exchange collisions can be seen and studied,
nonetheless, the calculations of this section apply to
realizable experiments in which these effects are unim-
portant. For a much more thorough demonstration of
the unimportance of the oR-diagonal matrix elements,
see Refs. 12 and 18. This problem is dificult to treat in
general, but it should be clear that if a state possesses no
coherence initially it cannot acquire any by relaxation
processes, which are random.

Even though it is unrelated to the discussion of this
section, one other aspect of the paper by Balling et al. 4

may be worth mentioning. They state that they dernon-
strate in an appendix that their results are valid for
general nuclear spin. However, using their Table IV and
their Eq. (24) and making the simplifying assumptions
that the second species is disoriented Li.e. , P(e)=0)]
and that p(e, R) is diagonal, this author finds that
dP. (Rb'2)/dt is not proportional to P,(Rb") as in their
(A14), but rather arrives at the Eqs. (72) and (73) of
Sec. III of this paper with I1———,', I2=0. They have re-
cently pointed out that their (A14) is in error. "

E. Anderson and Ramsey

Anderson and Ramsey' (AR) have performed an ex-
periment to measure the self-spin-exchange cross sec-
tion in sodium. The steady-state populations are needed
to analyze their experiment, not just the electronic

~' L. C. Balling, R. J.Hanson, and F.M. Pipkin, Phys. Rev. 135,
AB1 (1964).
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TxnLE V. Comparison of population differences for thee Anderson and Ramsey (AR) experiment (Ref. 8)
(Tq& =—2T&, T&'" Ti—, LC/2= A—, I& = 2; see IV E).

Anderson and Ramsey
(uniform relaxation)

This v ork
Zeeman or uniform relaxation

(Ti'= ~)
Electron randomization

(Ti= ~)

P 8 T1 4T2 T1 8T2

A T1'

(pi, gi/p =i+&~a)

32 8 4)
TP TiTr T2sj

+ +

Pan. ATif1 1 1 3
/

—+ —+
8 (T 4T 1' ST,)

(pr, ~i/p=-', +p~a)

32 24 4 )
TP TiTs Trrj

T1 T2 Tl T1T2

(p~, ar/p = 8 +o.'~R)

polarization. They define pi, ~i/p=1/8&3~R, Ps, +i/P
= 1/8WPga, and Ps,~s/P = 1/8&ir~R.

It is shown in Appendix III that, if complete re-
orientation occurs in the excited state (q=0.8 for Na in
3 cm of He at 154'C and with 0 = 23)&10 "cm' as de-
termined by Jordan and Franken"),

where ~~,iu, is defined in (81), and that

l1+1i2
(110)

i1+&/2

~P1M1 ~1&F1)

»om (83) and (84) with TEi= ~ (single species) and
I-+= I- =I (complete mixing in the excited state), and

(109) using (110), one finds that at equilibrium

LCP 1 1 2I +1
2Ii+1 T,' Tsi 2Ti'" j

1 ( 1 1 4Iis+4I,+3 1 2 (2I,+1)&
,+ + „, + +Ti' (Ti' Tsi 2Ti'" T,' 3Ts, 2T "'s

Equation (111)as apphed to the experiment of Anderson
and Ramsey is given in Table V. Notice that if the

"$.A. Jordan, Jr., and P. A. Franken, Bull. Am. Phys. Soc. 9,
90 (1964).

ground-state relaxation were by electron randomization
only, the signals would be independent of the exchange
time. Since they used 3 cm of He buGer gas, one might
at erst expect electron randomization to dominate.
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rbon-= p p/Ãpa))p =310 sec (113)

for Na in 3 cm of He at 154'C )Do ——1cm'/sec, g = (3~4)
X10 "cm' R=Scm, 8=1.6X10'cm/sec, Xp ——1.7X10"
cm ').' The measured relaxation time was 87 msec, in
excellent agreement with the wall relaxation time.
Consequently, Zeeman or uniform relaxation may
dominate; such would seem to be the case in light of the
reasonable cross section deduced by Anderson and
Ramsey assuming uniform relaxation.

However, for a spherical cell, '4

rwa)) =R'p/7r'Dopo= 100 msec, (112)

"exact" calculations to within a factor of 2. The
Purcell-Field model divides all collisions into two classes:
weak collisions (l)lp) for which there is no exchange
and (sin'(8), )

—8),,))=0, and strong collisions (l(lp)
for which b~, ~

—b~, , is large and random, with the result
that sin'(8) ~

—8~, ,) averages to —',. Then

0

Ip ~ (4~/&') 2(—)'(2l+1) =(4~/&')( —)"(l +1) ~ (A7)
L=O

and
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APPENDIX I:JUSTIFICATION FOR NEGLECTING
ONE OF THE SELF-EXCHANGE TERMS

Appendix I compares the quantities

Assuming a Lennard-Jones potential of range
and depth e, the range of the strong collisions is
approximately'

and
«=~{pL1 —(1—5Eo/4)"'j) '" (A9)

lp+ ~p= krp{ (6/5) [1+(2/5Ep)
X(1—(1—5Eo/4)'")7)'", (A10)

where Eo——E/p, E= A'k'/2p is the kinetic energy in the
center-of-mass system, and p, is the reduced mass. At
room temperature, for Rb' —Rb'" collisions, 8=0.025
eV, &=0.5 eV, 0-=43 =7.6ao, then F0=0.05((1.There-
fore, rp= p(S/Ep)')o and lp+~~ = (po)"'ko(S/Ep)')o,

and

If~(b))-f (0) ~'d" (A1) (ka,)'=—
( )

=—(1836)( ),
kap= 12,

2 Rel fp*(e)—f *(b)j
X(f ( —0)—f.( —e))do, (A2)

which appear in (59). The author wishes to thank Dr.
Sergje LebedeG for outlining the following estimate.

Recall that'

$0= 260,

Ip/I), =0 S%%uo (A11)

Thus for Rb' -Rb" collisions the interference term in
(59) should be small compared with the other terms and
can be neglected to a good approximation.

f (8) = (1/2ik) P (2l+1)t exp(2ib)„) 1)P,)(c—os8), (A3)
L=O APPENDIX II: SIMPLIFICATION OF THE

RATE EQUATIONS IN THE LIMIT OF
LOW LIGHT INTENSITYwhere e refers to t for triplet or s for singlet. Using the

orthogonality properties of the Legendre polynomials,
one finds

I)= (4pr/k')P(2l+1) sin'(b), )—b),), The absorption, re-emission, and exchange terms of
(63) are found in the limit of low light intensity, i.e.,

(A4) for pr), &,((p/2(2I~+1).

and Ip (Spr/k')P( —)'(2l+1) sin——'(8),~
—8),,) . (AS)

A. Absorytion and Re-emission

In order to proceed with the calculation, one needs a
model for estimating the phase shifts. Glassgold and
I ebedeff' have found that cross sections predicted by
the Purcell-Field model'~ agree with the results of

Ipr, ~,= Ip/2(2I)+1),

(P~)~b, =2I.C g JET/(2I), +1)'.
MI

(A12)

(A13)
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TABLE VI. Values of Z 3II1 .
u,=r

Values

(2I)+1)(2I)+2) (2I)+3)/12
(2I)—1)2I) (2I)+1)/12

The quantities

(2I1+1)' (22J)'p)'Mz')
L =I. 1a

Cp Q M12 ~)'p)'2r)' k L

M1P"(Ii'F1'Mi', F1M1)-
(A16)

(22J, p, 2r, ——22q, /(2J1'+1)(2I1+1);nq;

Now consider the re-emission term of (63). Equation are indePendent of the ground-state PoPulations to first

(20) becomes in the limit of low light intensity, i.e., order in L. For complete mixing within each Ji' level,

for (A12),

~Jj.'F1'Ml'
2t'2I1+ 1)

21m, P, 2r, ),

+2 P (F1M1 1, &1 Fl Ml )h J)' 1/2 ~

Then (19) indicates that the excited-state populations
sJy Fy M1 are independent of the deviations mF, M, of the
ground-state populations from P/2(2I1+1), to first
order in L. Therefore, in general, in order to include
excited-state mixing of any amount and by any process, B. Cross Exchange

Equations (81) and (82) in (44) yield, to erst order
in L,

(P~)2b,+a.=L2C p M12/(2I1+1)'jL~. (A15)

(A14) one has L~=L, since +2r, P"(Ji'Fi'Mi', F1M1) is inde-

pendent of Mi and+2', M1=0.
Equations (A15) become, if one uses Table Vl,

(P+)gb,+a,——(2I1+2)(2I1+3)L~C/6(2I1+1)', (A17)

(P )Abs+Re
——(2I1—1)2I1L C/6(2I1+ 1)'. (A18)

2rp, 2r, Mi'I'(Fi, F1')
(Pp, )z = 3Pp,/4T pi+ (1—/4T pi) P a(F1,F1')

2r)'=-» 2(F1—I,)(I,+-,')p

Mi(hp2)2r; hp22r, )W(I1I—2F1M1F2M2F1'Mi'F2'M2') ) (A19)
2(F1—Ii) (2I1+1)2Tsid

F2'M2'M1

where 6(F1,F1') is defined by (5), I'(Fi,F1') by (30), and

I).(F1)F1')dE(F2&F2') Fi' 1 Fi '( F2' 1 F2)'
W(I1I2F1M1F2M2F1 Ml F2 M2 ) !

=W. (A20)
qM 5—M' —

q

Table VlI is useful in evaluating the second term in (A19). To evaluate the last term, interchange F2, —M2 and
Fg'3l 2'.

Mixup„212 W= Q Mihp2, 2r2W,
F1 M1 Fl Ml
FgM2 F2M2

Fg'M2' F2 M2'
M1 Mg

(A21)

by Edmonds' (3.7.5). Table VIII contains the values of a quantity u(F1,F1',q) arising in the above sums; then,

&(Fl)F1 )g)&(F2) F2 ) g)M1
Q Mixup, 2r,W= Q hp, 2r, Q

p22r2 p) p) 4(2I1+1)'(2I,+1)'
M&q

(A22)

16(F1—Ii)Q M12

(F2 I2)M24'2M2 ~

(2I,+ l)(2I2+1)»2r2
(A23)
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TABIE VII. Values of (2Ii+1)'I'(Fl Pl )&(Pi,Pi'). APPENDIX III: EXPRESSION OF THE POPU-
LATION DIFFERENCES IN TERMS OF THE

POLARIZATIONS IN THE LIMIT OF
COMPLETE MIXINGIl+ g

4I12+8I1—1
4Ii(2Ii —1)

2 (2Ii+2) (2Ii+2)
4I12—5

Substituting (81) into (13), one has

Pp, ——2(Fi—Ii) Q Mi i;sr, /(Ii+s)p,
M1=—E1

In thiS Appendiz it iS ShOWn that m.E,~,=3E17rE, in
equilibrium if there is complete mixing in the excited
state. Since this proof is of interest in connection with
the experiment of Anderson and Ramsey' in which a
single species is present, set T~i= ~ in (1).Substituting

(A24) (81) into (1), one finds, with the aid of the discussions of
the various terms given in Sec. II,

E2 i'rp, ir, =n(F i)Mi+P(FiMi)7rp, sr,
D~,=2(Fs—Is) Q Msoi, ir,/(Is+ ,')d . (A2—5)

M2=—E2

Equations (A24) and (A25) in (A19) with (A21) and
(A23) gives

(2Ii+2) (2Ii+3)
(P+)~ = (D++D=3P )

6(2Ii+ 1)'Ts i
(2Ii'+Ii+1)

P~, (A26)
(2Ii+ 1)'Ts i

2Ii(2Ii —1)
(P )= -(D++D-—3P+)

6(2Ii+1)'Tsi
(2I s+3I,+2)

P . (A27)
(2Ii+1)'Tsi

C. Self Exchange

Examination of (63) reveals that

(P+)»= (P+)~
Dp =Pp
TEl =2 Sl

+ Q y(Fi'Mi', FiMi)sp, .sr,.=0, (A29)
E1'M1'

where'(Fi, —Mi) =p(Fi Mi) andy(Fi', —Mi', Fi,—Mi)
=y(Fi'Mi', FiMi). Then

'rrPi, Mi LQ(F1)—M1+P(F1M1)( KFi,—Mi)

+ 2 v(Fi'Mi'PiMi)( &I&'. sr, ~)7=0. (A30)
E1'M1I

Comparison of (A30) with (A29) reveals
7l E1~, i.e., an expansion of 7l E1~ in 3f1 must be odd.

Set Tsi ——ao and L+ L(complet——e mixing) in (83)
and (84) and find, at equilibrium,

1 2I +1~
,+—2Ii(2Ii—1) &Ti' Tsi 2Ti'" )

I' = (A31)
(2Ii+2)(2Ii+3) ( 1 1 2I,+1)+ +

&Ti' Tsi 2Ti"'2

3(2Ii+1)'Tsi 3(2Ii+1)'Tsi

in the limit of low light intensity.

—2Ii(2Ii —1)P~ (2Ii+2) (2Ii+3)P
(A28) i.e., +sr, Mi'ir», sr, o- p~, Mgr~, sl, for both values of

Fi ~ Equation (83) or (84) can then be written for
equilibrium,

TAsLz VIII. Values of

n(Pi, Pi', rI) = (2Ii+1)'&(Fi,Fi') Z 2I I ~ a.~1 ~ ~1
Ml'

PM, „,= (F,)LQM, , (A32)

1
0

—1

2(I1+a+Ml) (Il+ s+Ml)
4 (Il+$+Ml) (I1+»—Ml)
2 (Il+g —Ml) (Il+$ —Ml)

2 (I1+-;+M1) (Il ——,
' —Ml)

4M12

2(I1+g Ml) (Il —g+Ml)

2 (Il+-', +Ml) (Il+~s —Ml) 2(Il —~a —Ml) (Il+-,' —Ml)
4M12 4(I1+$+Ml) (Il+$ —Ml)

2 (Il+$ —Ml) (Il+~s+Ml) 2 (Il+$+Ml) (Il —$+Ml)

x'E1~1=MgrE» (A33)

where ir~, is independent of Mi. (A33) in (A24) results in

m i,——(Ii+—',)pPs, /2(Fi —Ii)Q Mi'. (A34)

where (A15) has been used for the radiation term. Sjnce
rE1~1 must be an odd function of 3f1, one has


