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An electron in helium vapor at O'K is characterized by its s-wave scattering length oft helium atoms.
This scattering length is small compared with the average interparticle spacing in the helium vapor. Con-
sequently, we have taken as a model a particle interacting via hard-core repulsion with an ideal gas. This
establishes a connection with the hard-sphere Bose problem of more general interest. The model described
above is simpler (a) because it has only Boltzmann statistics and (b) because the electron is very light
compared with the helium atoms. For this model, we have calculated the interaction free energy of the
electron assuming that it is in statistical equilibrium with the helium gas. In the s-wave approximation, it
is shown that this interaction free energy is rigorously 22 pa(h'/m) due to single scattering, all higher order
multiple-scattering eBects being zero. Here, p is the average density of helium atoms, e is the scattering
length, and m is the electron mass. Since the p-wave approximation contributes a term of order pu3, it is
evident that the term 22 pa(h2/m) is good to higher densities than might previously have been supposed.
This provides partial justification for the "bubble" model of the electron mobility since the term 2npa(h2/m)
is certainly good up to densities at which the free energy of the "bubble" configuration becomes smaller.

I. INTRODUCTION

'HE anomalous behavior of electron mobility in
helium vapor at about 4 K has been studied both

theoretically and experimentally by a number of
people. ' The anomaly can be simply stated for the pres-
ent purpose as an enormous decrease (a factor of
approximately 10') in the free-electron mobility for
pressures greater than some critical pressure which is
near the saturated vapor pressure. The problem we wish

to consider is the formulation of a statistical-mechanical
theory of electrons in helium vapor at low temperatures.
Leaving aside the question of a macroscopic model
(which has already been disposed of2), we shall adopt
the following simple (and perhaps simplest) microscopic
model and try to deduce the equilibrium and non-
equilibrium properties of this system. The nonequili-
brium property of interest, namely the mobility, will
turn out for the present to represent a far more difFicult
calculation than the equilibrium properties, but we

shall see that the equilibrium properties alone will give
us some insight as to why the macroscopic (bubble)
model works.

II. FORMULATION

Since the bubble model involves only one microscopic
experimentally measured parameter, namely, the low-

energy scattering length of electrons o6 helium atoms,
we adopt a Hamiltonian in which the electron-helium
interaction is characterized by just this length. For the
practical purposes of calculation, we shall regard this
interaction as a hard-core repulsion with the radius of
the hard core equal to the scattering length. Such an

*Present address: Physics Department, Case Institute of
Technology, Cleveland, Ohio.

t Work supported by the National Science Foundation.' See, for example, J. Levine and T. M. Sanders, Phys. Rev.
Letters 8, 159 (1962) and references quoted therein.

~ See Ref. 1.

interaction is consistent with the pseudopotential for
electron scattering o6 helium atoms. ' At present, we
shall regard the helium system as simply an ideal gas,
which it indeed approximates at the densities under
consideration. The Hamiltonian for one electron in a
helium gas is thus

where 2 H, and T, are the helium and electron kinetic
energies, respectively, and V(~ r;—r,

~ ) L= V(r;,)j is the
interaction potential between the electron and the ith
helium atom. V in this case is the hard-core potential
described above so that

V(r) = ~, r(u,
V(r) =0, r) a. (2)

%e now wish to calculate the interaction free energy
of the electron with the helium system. |A'e may think.
of an ensemble of systems containing one electron each
in which the helium atoms are allowed to have all
possible configurations consistent with the interac-
tion. This defines a canonical ensemble in which the
(Helmholz) free energy is given by

PIi=ln tre e~, —
it2l's, 2 l'22/2

=intr exp —
P~ P + +P V(r;,) . (3)

(t=l 2M 2rrt t=l

Here 3f is the helium mass and m is the electron mass.
Since 3E&)ns, we can treat the electron-helium center of
mass as the center of mass of the helium cluster. (This
statement will become more precise later in the cal-
culation. ) We can thus commute the entire helium
kinetic energy with the rest of the Hamiltonian and we

' J. Jortner (private communication).
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st k'k'~—PF= log tr exp'
—P P

'=i 2M)
p42$~ N

+log tr exp —P —+Q U(r, ,)2'
pF—H. PF—r

The helium system acts simply as a classical ideal gas.

The mass which occurs in the interaction free energy
should, of course, be a kind of reduced mass but for
practical purposes it is equal to the electron mass. The
above approximation is equivalent to the adiabatic
approximation since the helium atoms are taken to be
stationary scattering centers for the electron in I'y.
They are, of course, allowed to move as a classical Quid.

The quantity of interest being I'&, we resort to the
usual' cluster expansion. Ill is 6rst rewritten as follows:

tt'Asks

PFz —ln tr ——exp —
~

+P Q U(r, ,)
2 i=8

X'k' N
=ln tr exp — +ln&tr expL —(g'k'/2+p g V(r, ,))]/tr exp( —g'k2/2)),

2 i=e

PF, PhF—, — (~)
where X= (O'Itl/m)'~' is proportional to the thermal wavelength of the electron. For the rest of the computation,
we work. with the quantity AF. We have

( X'k'
PAF=—ln tr exp~ — exp

2

= ln exp — V, d

x~k2-
v;Ql)dg) tr exp( —

)

=»&II(1+f'(0))&,

~ ~ ~ t ~ ~ ~ (6)

V;(P) is the interaction representation of U(r;,), while

gi is its exponential, the product is ordered to give the
exponential of the sum, and angular brackets mean
average. The last term is a sum of semi-invariants of
which we have exhibited the 6rst two.

At 6rst sight, it appears that we have accomplished
little, if anything, by all this rearranging and expanding.
Indeed, if we were dealing with a purely classical system,
the only term to survive would be the first since the
rest are all unlinked by translational invariance. Since,
in the quantum-mechanical case, all terms are coupled,
the expansion looks like some kind of virial series, but
as we shall see, the second term is in6nite at zero tem-
perature and we are thus forced to "sum to in6nite
order" which in this case appears to be the entire series.

III. MULTIPLE-SCATTERING THEORY

To see immediately that the last statement repre-
sents an impossibility, we need only notice that sum-

ming the entire series implies evaluating the eth term
and this, of course, means solving the problem of a
Hamiltonian with e spherically symmetric interaction
terms. In fact, if we had been able to solve this, we would

not have had to make the expansion at all since the solu-
tion for e=S would give us all the energy levels directly.
But it is just this fact which enables us to find an ap-
proximation scheme for this problem. First, we do some
more rewriting:

P&F= Z(g—; 1&+ 2 E&—g'g &
—

&g')(g &j+

where we have noticed that g's can be substituted for
f's in all semi-invariants but the erst. Now, the products
of g's in the averages are ordered. This means, for
example, that

g,g, = expL —(X'k'/2+P V(r;,)+PV(r;,))),
= exp( —I9H &'»), (g)

where Il&i j~ stands for the Hamiltonian of an electron
with two scattering centers. Since the average of the
ordered product of g's involves a trace, we must 6nd
wave functions for an electron with e spherically sym-
metric scattering centers as stated. In the present con-
text we "simply" have to find a wave function which
satisfies the free-particle Schrodinger equation and the

' R. Kubo, J. Phys. Roc. Japan 17, 1100 (1962).
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elk red ei kren

(12)
kr, 2 kr,

This function clearly satisfies the free-particle wave
equation. To determine the coefficients A;, we expand
all terms but the ith around the ith center and equate
the wave function to zero at r„=u, keeping only s-wave
parts. The result of all this is the following system of m

linear equations:

sinks e" e'~"" sjnka ei "'"sinku
+At +As + A„

ka ku k'rg2a k'rona
ei"'"' sinka ei ""sinka

+Ay
kc k T2]p

eika ei'"» sinks
+As + A„ =0, (13)

ka

=0 )

k'~2„a

sink@ ikPrsJ. Sjnkg
Ag

ka k2P'„yc

e»&» sjnkg ei It;a

+As + . A„=O,
k2f~qa ka

'This form of the wave function is similar to that used by
L. Foldy in the treatment of multiple scattering of waves. See
L. Foldy, Phys. Rev. 67, 107 (1945).The spirit of the present cal-
culation is somewhat diBerent, however.

boundary condition of being zero on e spheres of radius
a, the scattering length. Let us first do this for the trivial
case of one scattering center. Since we are interested
in a trace, we are free to choose any representation we
please. For mathematical convenience and physical
interest, we use the coordinate representation and write
the wave function as a plane wave plus a scattered
wave. This amounts to picking a particular linear com-
bination of radial wave functions and spherical har-
monics. We pick a wave function which obviously
satisfies the wave equation and require that it go
to zero on a sphere of radius a. Since we are dealing
with very low energy (the Gaussian in the trace
limits k values to essentially less than 1/X), we have
ka(u/X 1/200(&1 at O'K so that we need concern
ourselves only with spherically symmetric scattered
waves.

4&tl(r„)= e's "'+'A ~(e+""/kr )

using 6-function normalization. Expanding the plane
wave in spherical harmonics and setting the wave func-
tion equal to zero at r, j ——a, we have

sinku /ku+A~(e'" /ka) =0, (10)
ol

At= —si nka /e' s=(e '"" —1)/2i, (11)
which is the usual result for s-wave scattering from a
hard sphere. We now try the same trick for e scattering
centers, namely, we write the wave function as'

eikre1

({r,j) elk rey+A
kreis

the solution of which we write in determinantal form as

eire
ei&&&~ sink@

krj„

—Sink 9 elks r12

i&~21 sjnkQ eilt'r2

kr2

eik~ 1 1rs

kr„g

kg

(1O)
et@7'12 Sinks e'~"~rs sinks

ikr2& synkg

kry2

e'bIccE

e'~"' sinks

kr,.
e"" 1 sinks

k&ni

e"" ' sinks

kr„2
eike

where we have multiplied Eq. (13) by ku. This deter-
mines the wave function (Eq. (12)g. Two remarlrs
must now be made regarding this wave function. The
first has to do with the approximation of expanding all
terms and keeping only s-wave parts. For the single-
scattering problem, we know that this satisfies the
boundary condition to order (ka)s since this is the
p-wave part of the plane wave. For the multiple-
scattering case, the approximation clearly depends on
the separation between scattering centers since we are ex-
panding spherical waves from one origin about another
origin. The p-wave terms from the spherical waves are
of order (a/r;, )s where r;; is the distance between the
ith and jth scattering centers. For most distributions in
the canonical ensemble, r;, will be of the order of the
mean interparticle spacing so that the p-wave term will
be of order pa', where p is the mean density. For the
present case of helium vapor at about one atmosphere
pressure and O'K, we have pa' 1/300 so the p-wave
term may be dispensed with.

The second remark concerns the question of nor-
malization of the multiple-scattered wave function.
For the single-scattering problem, the integral of 0'*0'
over a box of volume Q goes like Q-v, where e, is the
hard-core "excluded" volume, —,'xa'. For multiple scat-
tering from e scattering centers distributed throughout
a Quite volume, it is a straightforward matter to con-
vince oneself that the normalization will go like Q-m,
provided one makes the assumption that the normaliza-
tion is independent of volume shape for large volumes.
In fact, the very condition on the coe%cjents A; which
makes the wave function zero on the boundaries of the
hard spheres eliminates all cross products of spherical
waves in the normalization. The excluded volume of the
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r 1 re1

a ika2
e—ik'rel.

rel re1

Z2k2

dkdr, drl —1exp~—

2re1

((2 )3/'/X )n&

Z2k2—
sinkr (e'"" &+e """

&) exp~—

((27r)/V)' "11

X'k'~ak
sin2kr, l exp

(2m)'/'0

A.212

dkd .
2

cos2kre1=A 4~X3
r,1

1/2

2r~P/x&dr—3 2 g2=4m paX (2~)"'
2Xre1' 82re1

00
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to 6rst order in the scattering length. It is important to note that this is not the 6rst-order term itself but the
"6rst order" of the 6rst term, so to speak. What we shall now do is 6nd the 6rst order of all the higher order terms.
We first note that the order of magnitude of succeeding orders in the first term goes down like a/X which is ex-
ceedingly small, a very desirable expansion parameter indeed. We therefore expand all terms in powers of ka and
try to evaluate the terms with lowest power of a for a given power of the density. The second term will make this
clear. From the evaluation of the first term [Eq. (15)],we see that the relevant quantity is 4'( ) 2Ir( ). We write it
out in full detail for m=2:

+(»*({r-))+(2)({r-))
-~ikre1 &-ikrey gikre2 g

—ikre2

=1—8 i—k rrel+ ~ik rel+ r ik re2—+ haik re2

~e2 ~e2

1
+&2 (&ikr12& ik rerrik—rel+e ikr12&ik r—err ikrel)+ — (&ikrlr& ik rel&i—kre2+& ikr22&ik—relr ikrel)—

~12~e]. ~12~e2

ik ik
+ (rlkrelr, ik rel g

—krelr-i)r rel)+ (~ikre2r —ik re2 r ikrerrik re—2)

~el ~e2

1
+ + + ~ikrey~ —ik &$2~—ikre2 ~

—ikreI~ik Iym~ikre2

~el ~e2 ~el~e22 2

-2 k' 2 k'
+&2 (&ikrl& ik rl+& ik—rl&ik rl)+— (&ikre2& ik re2+& ik—rer&ik rel)—

-3 ~el 3 r.2

2ik
+ ((e

—ikrlrr —ikrelgi)r re2 —rikr12~ikrelr ik're2)+-
~12~el

2jk
(e ikr12(e i krerrik—rel g—ikrlreikrerg —ik rel)

~ ~

~12~e2

(~ik r12eikr12+~ ik rlrr ikr12)— —(~i)2 r12(e—ikr12+~—ek r12rikr12)

~12~el r12r 22

~12~el~e2

where we have stopped at the a2 term since the next higher power is contributed to by p-wave scattering. In order
to see what is going on, we calculate the diagonal matrix elements of e &~(" using Eq. (17).

X'k'1)
4'(2)*@(2)exp

~

— ~dk,2)
(2 )'I'2r

——4xu
0 — ~el 2 ~e2 2

" -k sin2krel k sin2kre2 Vk2~
exp/ — /dk2)

0 ~el~12~e2

2k sink(r. l+rl2+r. 2) k'-cos2kr, i k' cos2kr, 2+-
~el 2

&2k21,

exp/ — /dk
2 i

~e 1~12~e2~e2

k sink(2r, l+2r12) k sink(2r, 2+2r12)

~ 2~12

" -2 k' sin2kr, i 2 k' sin2kr, 2 k' cosk(r, i+ri2+r, 2)+— —4.

0 -3 ~el

( )(2k

exp/ — /dk,
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Vk')
cos2kr. u exp 2)

.X'k')
cos2kr. x exPI ) „2g(2r )

dk+ ——
(2')"'

+4m+
r,p g(2r. i)

X'k'~
cosk(rel+r»+r'~) P )

dk—im'+
r,~r»r. 2 ~(r.~+r»+")

Z'k'y
cos2kr. , exp—

2)
X'k2) 1

cos2kr~x exP
) „ 2 ~(2r )2

dk+
1

+
r, i' &(2r.~)

X k
cos2kr. 2 exp

2

pe 2

cos2kr, z exp dk+-+4m a'
3„, 2 g(2r, x)' 0

A, k 1
cosk(r.x+r»+r»

2 r, pr„2 g(2r, ~+2r»)
dk+„„„„., a(r.i+r»+'~) '

Vk )
cosk(2r. u+2r») exPI

2 )

X'k' 1 8
cosk(2r, i+2r») p~

2 r,2r»2 8(2r,2+2r»)
ex — dk+

2 (2r.2)')= (2~)"' —+ r, 2 a(2r, 2) 2X'(y r,p 8(2r.x)

(2 )28 (rel+r&2+r'2
expI

r, z 8 2rez

2 g3g 1 2f 1 r121 (2r 2)
exp—exP

2 2r 'g 2r, y+2r»)

2X

(2. ,)' » ( ")
. (is)

pg(2r )~ 2X

eZ 12r.,' &(2r.2)'

I9 (r, +re+~.)
)

8 (2r.2+2r») l exp-exp, ) „,„„„,8(r„+r»+r 2), ,'r„2 g(2r„+2r»)

I%a
e t

%a~
e 2

ta
e I

~ I

+a
e 2

Ia
e l
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V. COMBINATORICS (EVALUATION)

Before we can use the (diagram) notation established
in the foregoing section, it is necessary to understand
the algebra of operation of the original terms. In par-
ticular, we shall show that the combinatorial factor
associated with a particular term is given by the number
of ways of picking the points of the associated diagram
from S points subject to restrictions caused by the
symmetry of the diagram. In order to classify terms
according to some semblance of order of magnitude, we
first note that the terms in the second semi-invariant
look just like those arising in the classical Coulomb
problem (electron gas). This leads us to hope that we
will find terms which look like ring (polarization)
diagrams. However, we must be careful not to draw the
analogy too closely.

Rather than try to compute @*@as we did in Sec.
IV, we examine the coefFicients A; in the wave function.
Expanding all the elements in A1 in powers of ku, we
have from Eq. (14)

8 8
gikr12. . . giks'1st

r12 r1n

8
~ikr2n

r2n

5'& 4

e I e l 3

FIG. 4. Diagrams. contributing to the coefBci,ent of. p'u' in b,F.

(20)
. r23r34' ' ' rn1 rgi

which leads to the term in the trace of

opposite sign from the rest. Again, the m=2 ter+ will
make this clear. Upon examining Eq. (1'7) again and
performing the angular, integration of, J'dk, as in Eq.
(18), we .see that the only contributing terms are the
plane-wave terms. All other terms cancel those parts of
the plane-wave:terms in which the argument of the
trigonometric function is not positive definite (or'nega-
tive definitive).

From the above argument and the semi-invariant
theorem, we can find the terms of lowest order (i.e. ,
lowest power of a) in +& &*4&„&.We first note that the
semi-invariant theorem:tells us that in order for a term
in 4'& &*4&„& to contribute to the trace (average), it
must contain all e coordinates. Because of the structure
of the coefficients A; as ratios of determinants, the
lowest power of u to contribute will be a" and this will
be obtained by making a "ring" in the determinant in
the numerator, that is, for example, the term

&vhe rI2+n &skr&I

e ' '"'+c.c. ,

r2n

8 8
gikrI2. . . ~ikrln.

(1V)
p ngs ~ e ~

1 c& ( s') N—expl-
r, trrerea r„,Bs ~ 2X 1 ~-i

r12 r1n

8
gikr2n

= (diagram in Fig. 3), (21)

where s=r, t+rtn+r23+ ~ r„,. As mentioned before,

r12

rln

gik&In
8

gi n ~ ~ ~

r12

r2n

ik rl2

Q
Qa, s

l4

34

l5

'25

35
Now, there are two types of terms which occur in O'*0,
namely, terms which arise from the cross product of the
plane wave and a spherical wave and terms which arise
from the product of two spherical waves. Since we are
looking for terms in which the exponential is the sum of
all the coordinates involved, it is only necessary to look
at the 6rst class or what we shall call plane-wave terms.
The second class of terms must necessarily contain at
least one coordinate in the exponential which has the

elk rl4

ik rl5

l2

'25

l2

35 45

l4 l5

24 ' 25

F1G. 3. Diagram for Eq. (21).

n-I '23

.
Qa

34
'

Qss

45

l5 25 35 45 .

Fn. 5. Schematic representation of the algebraic term represented
by Fig. 4(c). Factors in the term are circled.
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eik'fia

!k'fl3

l3

~23

34

alS

25

35

ik Fla

ik rl3

i2

23

l3 l4

24

l5

'as

-ik r'
e l4 c124 45 4~5 e l4 a 24

ik. r

l k ris 'as elk
'

Vis 25 35 45

QI2

'i3

l4

l5

'ia

424

25

QI2

'a3

35

24

Q„
(a)

l5

'as QI2

!4

'is

l2

Q22

24

'as

Qlll

'23

35

i4

24

45

'lS

'as

35

FzG. 6. Schematic representation of two irreducible terms contributing to the coefBcient of p u . Factors in the terms are circled.

for the case of m=2, this term is cancelled by the full
semi-invariant expression. (See Sec. VI.) The diagrams
shown in Fig. 4 contribute to the coeKcient of g"+'.
Figure 4 shows the case m=5 with the obvious exten-
sion to any e. These diagrams arise in the following
way. (a) comes from taking a ring in the numerator
and one power of ka in the denominator. The rest of the
diagrams are formed by taking the appropriate ring in
the numerator given by the part of the diagram con-
taining the electron and a ring in the denominator
given by the other part. For example, the term con-
tributing to (c) is shown schematically by Fig. 5. All
these diagrams are linked. Diagrams which are unlinked
are zero because of cancellation between numerator and
denominator. For example, the term given by Fig. 6(a)
cancels the term given by Fig. 6(b) since they occur with
opposite signs. This is obviously true in general. It re-
mains only to find the combinatorial factor associated
with each diagram and evaluate the most general type
of integral in order to obtain an answer. By examining
the determinants again, we can easily determine how
many ways we can form a given term. This is the com-

iy&~2&se& ~ .&i~+m,

cV(E—1)($—2) (S—e—m)

(m+m)!

(22)
(a+m)!

binatorial factor. We 6nd this in general for a diagram
containing an electron loop with e vertices and a second
loop with m+1 vertices as shown in Fig. 7. Such a
diagram contributes to p™a"++'. Referring to Eq.
(19)for.4q, we see that thenumber of ways of obtaining

/m+I —1
an "e" loop in the numerator is

~ 2 (I—2)!
while the number of ways of picking the appropriate
loop in the denominator is (e—1)(m+1)!.Combining
these, we get (e—1)(m+e—1)!for the total number of
ways of obtaining the diagram in Fig. '7. Now, there are
I+m plane-wave terms coming from the I+m co-
eKcients 2; and a factor of 1/(e+m)! which comes
from the (e+m) multiple summation over all 1V helium
atoms. This is actually the number of ways of picking
e+m helium atoms from 1V helium atoms, that is,

n 2'

n 0 In-l

FIG. 7. Typical diagram
contributing to the coefB-
event of p~+ u~+m+'

Consequently, the combinatorial factor for the diagram
is n —1 or the number of ways of attaching the helium
loop onto the electron loop. For a single-loop diagram
with n helium atoms, the combinatorial factor is clearly
e since this is the number of ways of picking the extra
ka in the denominator.

Evaluation of the integrals poses a more difFicult
problem. In the first place, thy contribution of each
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represe
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8m'

8m8

(4m)"
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00 00
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1 I&+) for X=2 and 3xamine the multiple integra

I'= — (+ )ep — ik
k' p p

00 $

sinkt sink(s —t)deedss exp~ — sin

2k' p

2k'

( cosk(s —2t) —cosksfd&!dss exp
2X'

s' -sinks —s cosks Gss exp
2X'

S2=' -'—')
2k' k Bk o

k~X~(2m)'" B
f('& k —k exp~—

2 Bk 2
(31)

(32)

where

erator f"&(k B/Bk) is de6ned by Kq,t=rq. The polynomial operathere we have cha gn ed varuna es
(l 6'

bles to s=r~+r~+ 3,r k=r1 r2 a
w e

ate I(", we change varia

x '
(31).To evaluate

m)'" B ( k9
I(3& =X' f ' k,—— p—k pi-

Bk

Clearly, , I'~) can be written as

1 3 3

Sk'(k' k kk kk'

(2~)»' k'& '
I(~)=X' f(N)k exp

2

(33)

(34)

2
f(&)

& 3(2~)»~

2 1

o evaluate the result ofr &~' we only have to eve ol nomial operatorevaluate the coefficients of the po y—k9P/2). To do th', tf(~) acting on k exp( —k9P 2 . o o

1 B f k9.'
(N) exp

~
'""'"" '"'"= k' kk ( k)

00 S2
cosks ds

2X'
exp — cosk

X' ~(2~)'&' B

s exp~ — sinks s

&,3(2~)»~ k~ »
00 00

&k'(2~)'" k o o

s ex — sinkr~ sinkr~. sin rp,~

2X~

r — sink» f'r "(k,—sirrkr'drrkr
2X'

X'(2m ')1/2 &kr~&r kk (k Bkl

1 S

lin&—
&k'(2~ '" ( as),

ik' lk'd ds exp
2Z'

s2

s expi—-„'.)
k' k)r)'jdr ds—X-' cos(ks —(k+k')r) —cos(ks+ ( — r2
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2 1
lim —f&~ '& k,—I

X2(22r)'&2 ' " O' Bki ()

s2~ 1
s exp~ —

~ (k sink's —k' sinks)ds

2 1 8) 1 "- 8 8 s
lim f—' " k,—

~

k'—cosks —k cosk's exp — ~ds
&(2(22r)"2"' " k' Bkik2 k"—o Bk Bk' 2!&2i

e

1 8 ~
kk' —

O2&(2~ k'9,2~—
= lim —i'&~ '& k,—

~

—exp —
~

—exp"' " O' Bkik"—k' 2 i 2 i
8 ) O9&') L1—exp( —(k"—k')l&'/2) j= lim f(~ '& k,—~k exp

k' —+k Bki 2 i k"—k2
(35)

Now define

then

( 8) ( 0'1')&1—exp( —(k"—k')V'/2)]
J&»(k,k', &(,).') = f&N '&~ k,—~k exp~—

& 'ski

BJ 8 ~ (—O2(l(' —X")
&(

—k"V2~
=Vf&~ " ky

—(k exp~ exp~
a&,

' 'aki 2 i

(36)

(37)

Clearly, i'&~& acting on k exp( —O92/2) yields a polynomial of the form

) 2(e—1)

P a„
n=1 P (N—n)

=P&»(O2 X2)

times exp( —O9,2/2). Therefore

lim J&»(k,k'; l&,&),') =lim
k'-+k k'-+&!&:

8 O2(y2 & 12)~
Yf&~ " k,—k exp-

/
expf — dV

Bk 2 i & 2

t' O2!&2)
l&'P&))& 1&(O2 &),

2—l),'2) exp~— 2i
=Q&"—'&(O' l&') exp( —k'l&'/2) (38)

where Q&~& is also a polynomial with X terms. But Q&~ '& must be equal to I'&~&; therefore P&N& can contain only
one term and from 8&2&, we see that this term is the highest power of & 2, namely, a))(&(2&))' '&. From Eq. (38), we
immediately get the recursion relation

so that we have Anally

(2])&——(1/2(X—1))a&)) „ (39)

y2(N-1)O2!&2) O2l(2)
lim J& '(k O'XX')=f& &k exp — ~= exp

k' -+k 2 i 2N '(P' 1)! 2 i- —
n' ~x

since (21——1. Returning to Eq. (29), we have

1 && s2) &)( Q (4n.)~—exp — ~g dr;= ——
~12~23' ' '~N1 &() ~ 2Ãi e=1 &(2 82r2

»(O,X)dk

Q (42r) Ã (2~)1/2 $2&N—1& (2 )2 f2

&' 8~2 2 2"-'(X—1)!
y2(N —2)

= —Q(22r) ~
(N 1)!— (41)
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in Fi . 10 takes the formthat the diagram in Fig.Finally, we see t a
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e fo
' ' k: First definee following tric:To find J )&~&(k!&.) we use the to

then
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0 2~ '(N —1)!

) '~ ' 2n. "' (2N —5)(2N—)'~ ' 2n. —'7) 3X1~
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~ ' ik' &(n+m)' dZ'12Xg'tk'&n lg~ ' n

Q(4m)"+"+'

(Sm')'X'

Q(4~)"+ +'

(s )'&'

PnP ~m+1

'a). .
(m+1)
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' drn+m(n+m)' ' 'drnn'drln+1' nr12' '
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8 )kk' exp( —k'

k 'ak)
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using Eq. (35). Again define

M I CHAEL COOPERSM I TH

f 0 0 k9, ') L1—exp( —(k"—k')V'/2)7
II&" ~+'&(k,k'; &~, &i')—= f'"&~ k,—f'"+" k' kk' exp

gk Bk' 2 & k"—k'

and take the derivative:

(5O)

BH ] 0
t

0 ~
k'9." k'(& '—V')~

=X'f&"&~ k,—f& +"
(

k', ~kk'exp — exp
BX' 5 Bk k Bk'1 2 2

X"' '(4' —l '& k"X" A'(l' —
X"&)

exp — exp
2 "+m+'(zz 1)—!z&z! 2 2

(51)

using Eq. (40). As before, we integrate on k and k' before integrating on». '. This gives

BH(k,k'; &~,V)
H(k, k' &~)dkdk'= dkdk'dZ'

0

&
~2n 4(&

~2—
&

2)m,—3/2d& ~

o
2"+" '(zz —1)!zN!

8&3/2 (n+m) —6

2n+m+1(zz 1) &z&z &

m/2

(sing)z~-4(cosg)2™-zdg

Rather than evaluate this integral alone, we evaluate

N—1

P (zz —1)H~" ~'+' "&(k,k'; &)dkdit'
n=2

as given by Eq. (25).

N—j.
P (&z 1) H &" ~+'——"&(k,k'; 'A)dkdk'
n 2
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(sinzg)" z(coszg) " &dg
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8&3y2N —8

2x—1(IV 1) &

8~92N '

N—& lV —1
(sin'8)" '(cos'8)~ "dg

(:QS g () S]n |I n=2

a/2 ]
L(sin'0+cos'8)~ '—(sin'8)~ '—(cos'0)»' 'jdg

2~ '(IV—1)! 0 cos'0 0 sin'8

m'/2

(1V—1) L1—(sin'8) ~ 'jdg
2~ '(E—1)! 0 cos'8
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(E—1)
2~ '(E—1)!
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(53)
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Finally, we have

N'~ s(4rr)~(2rr)'I' s.
—(2X—5)(2$—/) X3X1. (54)

2'~ '(E—2)!(1V—3)!Ss' 2

Comparing with Eq. (48) and remembering that the combinatorial factor for that term is 1V—1, we see that
the sum of the two integrals is zero.

VII. CONCLUSIONS

We must now regard the above result as a theorem:
The free energy of a particle interacting with a system of
hard-core scattering centers is given in the s-wave
approximation by 2s.pa(h'/nz) including all multiple-
scattering eRects. To obtain a better approximation,
one must use P-wave terms in the wave function

LEq. (12)j.For the electron in helium, the s-wave ap-
proximation is sufficient; it shows that at the appropri-
ate density, ' the free energy can be lowered by changing

' By assuming the electron trapped in a well of depth 2s puk'/m
and radius R, one Gnds easily, by balancing the zero-point energy
of the electron against PV for the helium gas, R as a function of
density and consequently the free energy of the electron at zero
degrees as a function of density. The density at which the zero-
point energy becomes less than 2s.pub'/m is about -,'the saturation
density at T=4' and a saturation pressure of one atmosphere.

to a "bubble" configuration. For the problem of more
general interest, namely, the hard-sphere Bose Quid, it
is certainly necessary to include higher order scattering
terms as well as the eR'ect of statistics although it is by
no means evident how to do this consistently. Finally,
it should be mentioned that the method used here is
just the converse of the pseudopotential method for
hard spheres since we are replacing a potential-scattering
problem (with a given s-wave scattering length) by a
boundary-value problem.
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