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Relativistic Electronic Structure in Crystals. L Theory
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A relativistic generalization of the augmented-plane-wave (APW) method is presented. The upper com-
ponents of a Dirac plane wave are joined continuously on the Slater sphere to a linear expansion of central-
field Dirac orbitals. The lower components of the functions in the two regions are discontinuous. A varia-
tional expression for the energy which is appropriate for this type of basis function is developed. The matrix
elements between these relativistic APW's are derived and compared with the nonrelativistic case.

INTRODUCTION

A N increasing number of references in the current
literature dealing with the electronic states in

crystals have attempted to include relativistic effects.
Most of these calculations begin with the two-compo-
nent Hamiltonian which results from application of the
Foldy-Wouthuysen transformation to the Dirac Hamil-
tonian. ' This yields three relativistic correction terms to
the nonrelativistic Hamiltonian: mass velocity, Darwin,
and spin-orbit coupling. The spin-orbit term is the only
one which mixes spinor components. The other two are
radial functions which are simply corrections to the
nonrelativistic crystal potential. By absorbing these
radial terms in the Fourier coeKcients of the pseudo-
potential, Anderson and Gold' were able to fit experi-
mental de Haas —van Alphen data for lead by adjusting
several parameters, one of which was the spin-orbit
parameter. Herman, et a/. ' 4 have considered the correc-
tions to the band structure of tetrahedrally bonded
semiconductors due to all three of the relativistic cor-
rections. Mattheiss and Watson' have shown that the
spin-orbit interaction term can (by an appropria. te
choice of the spin-orbit parameter) lead to band splitting
in W which is of the same magnitude a,s determined
experimentally by Walsh. ' Scop' has included mass-
velocity and spin-orbit perturbation corrections in an
augmented-plane-wave (APW) calculation of the band
structure of AgCl and AgBr.

Conklin, Johnson, and Pratt' ' have used the rela-
tivistic Hamiltonian discussed above for lead telluride
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with a linear variation function consisting of eigen-
functions determined from a nonrelativistic APW calcu-
lation. The 6rst complete formulation of the relativistic
theory for energy bands in crystals was reported re-
cently by Soven. "His approach was to generalize the
orthogonalized-plane-wave method (OPW) by orthogo-
nalizing four-component Dirac plane waves to the four-
component central-held solutions of the core states. The
results of this theory compare favorably with the ex-
perimental data available for thallium. More recently a
theory of spin-orbit interaction in metals has been
presented by Animalu. "It is essentially a generalization
of the model potential of Heine and Abarenkov" which
takes into account the observed spin-orbit splitting of
atomic levels. This experimental information is used to
evaluate quantities in the crystal theory which other-
wise require a knowledge of the crystal potential near
the core.

The theory presented here is the relativistic generali-
zation of the Slater" APW method. The basis function
consists of an expansion of four-component central-Geld
orbitals of the Dirac Hamiltonian inside the Slater
sphere and a Dirac plane wave outside. The expansion
coeflicients are chosen such that the upper (large)
components of the two functions in each region are
continuous on the Slater sphere. As a result the lower
(small) components of this relativistic APW (RAPW)
are discontinuous on this boundary. A variational ex-
pression for the energy which is suitable for this type of
function is developed.

Matrix elements between the states arising in a
reciprocal lattice expansion of the wave function are
evaluated. The resulting expression is very similar to the
nonrelativistic APW theory. Using this method, rela-
tivistic calculations can be performed as easily as non-
relativistic calculations. Hence all of the advantages of
the APW method are available with the added benefit
that the procedure is completely relativistic. The size of
the basis set is necessarily doubled by the inclusion of
both spin states, but as Soven" has pointed out in the
relativistic OPW theory there are relations among the
matrix elements which allow the triangularization
procedure to be carried out for two rows simultaneously.

' P. Soven, Phys. Rev. 137, A1706 (1965).
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TAsLs I, C coeKcients C(lq J; m —nz2, nI2).

FIG. 1. Unit cell
in crystal showing
Slater sphere.
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In this paper only the theory will be presented.
Although the calculations for tungsten are nearly com-
pleted, it was felt that the method itself should be made
available as soon as possible so that others could take
advantage of its relative ease of application. The pre-
liminary results for tungsten are very encouraging,
however, since it has been possible to perform ab initio
calculations which predict the observed spin-orbit
splitting of the energy bands. The complete relativistic
calculation of the Fermi surface of tungsten will be
presented in a later companion article.

THEORY

Form of the RAPW

I.et us consider a unit cell which contains only one
Slater sphere (Fig. 1). Our results can easily be gener-
alized to more than one sphere. In region II the poten-
tial is zero and the wave function in this region is

)k„*+1)'l'
e ir e'~" (m =a-,') . (1)

x(~)
k *+1

The normalization is one particle per unit volume. '4

k *=(k '+1)'~2 lr is the reciprocal space vector,
4+K„. o is the usual notation for the Pauli matrices,
and x(&~) are the Pauli spinors. ' The Dirac Hamil-
tonian is

H=n y+P+V
For zero potential the eigenvalue equation is

and they have the properties

These functions are orthonormal in the sense that

x„»x,.~' sin8d8dy= b„„.b.,

The C coefficients as given by Rose' are reproduced in
Table I for completeness. Notice that they satisfy

C'(j) =1.

The radial functions are solutions of the following
coupled linear differential equations:

df («—1)f—(W—1—V)g,
dr r

The expansion coefficients A,„" are chosen such that
the upper components of +„'and +„"are equal on
the Slater sphere. This is easily done if the plane wave is
expanded in terms of the spin-angular functions. The
result is'

ji(k.r)x."

(3)

In region I the wave function is a linear combination
of the central Geld orbitals": where

+.„"=Pa„„""ik„S„
Zt (k")x-."

k„~+1

t'k '+1y't'
I C(4j;l —~, ~)V, ~ --»(k„).

(4) 5 2k„-' i
(13)

'4 Units are m =c 5=1.Later in the paper we will convert to
atomic units with e'=2 m=2, and A=i.

"The subscripts nm are in anticipation of the joining require-
ment which will be discussed.

ji(x) is a spherical Bessel function. S„means "sign of
z." The a summation is over all positive and negative
integers (not zero). j, l, and l' are speci6ed by «ac-
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from Eq. (1) that
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(yM) j,(~k~ —k.~R)rk."+1)"'
g I

I=fM„~s„~ 4~—R'
knm) lk~ —k„l I 2k„'

This completes the derivation of the matrix elements.
In the next section various sirnpliications will be con-
sidered, and the procedure for the relativistic calculation
will be compared to the nonrelativistic APW method.

(k„++1)kt2

xl
E 2k~* )

k~ k„
1+ ~mM

(k„'+ 1)(k~'+1)

ik„xk~. (mlo IM)
(25)

(k *+1)(k~*+1)

where 0 is the volume of the unit cell. The spin-matrix
elements are given by

(& I

o'
I &)=&e„(&I

o'
I W) = e &ie„. (26)

The integration in the surface term of Eq. (23) is over
the Slater sphere: do.=R' sin8d8dg. Hence all the radial
functions are evaluated at r=E. We use 0 ' given in
Eq. (4) Lwith A„„" from Eq. (15)j and 4r' from Eq.
(12). Operating n i on 4"—%r and performing the
angular integrations yields

.VM k„*+1 '"(kN*+1)'"

(S =4~R2
nm 2k„* k 2k~* )

DISCUSSION

Our results to this point are expressed in relativistic
units: m= c= A = 1. Let us now convert to atomic units
with e'= 2, m = —,

' and A = 1.The energy will be expressed
in the form W =E+mc', where E is the energy measured
with respect to the rest mass in the region of zero
potential energy. If we agree to neglect terms of the
order (137) ' as compared to unity, the expression for
the matrix elements becomes

I
.YMi

Ml I= (k~' E)0„~8 —~+47rR'
&nm)

t NM~
I 2~(k R) ji(kNR)

nm)

cf„(R,E)k, j t (k~R)4S—. , (34)
g„(R,E) )

,VM) k~S„
XQ D„ I j)(k~R) j &. (k&R)

nm) k~ +1

where

jk(lk~ —k- I R)
0 g =05„~—lyre' (35)

where

f (R)—j&(k~R), (27)
g.(R)

)NMy
I=4 P P(l,kj;&—

m,
m)c(/-', j;p,—M, M)

"&nm)
x I'i™-M"(4)I' "-"(k-) (2g)

I= IHIP&(N a) iS.(NX'&)—*Pi'(N &), (3 )

I= —S.Pg'L(NXA)„+i(NXR), ], (31)
(~V—

y

&n+ )
cV— f V+

(32)
I +i

D.
l

I= —D.*I ~

(N+) (
(33)

"& —i "I+

The coeKcients D, are evaluated using the addition
theorem for spherical harmonics:

m~l
(21+1)P((N 6)=47r Q V) t(N)V) (8). (29)

m l

In some instances the necessary expressions are found

by applying the orbital-angular-momentum operators
to the addition theorem. The results are

In our present units c= 2,'e, where n = 1/137 is the fine-
structure constant. Of course, lengths are in Bohr radii
and energies in rydbergs.

By considering the divergence theorem for the case of
plane waves in region II, it can be shown that

n„~s„~(k~'—k ')

=4 R'PS„D„I
(NMk

&nmi

X(kyar j~(k R)jv (kxR) —k„j,(k~R)j,, (k„R)) (36)

This can be substituted into Eq. (34) to yield an index
symmetric form for the matrix elements:

l (NMq
E~8 p-Q,„~+47rR' Q D—„l) knm)

(cf.(R,E))x ji(k.R)ji(kxR)l
g„(R,E) i

—2S„I kyar jg(k„R)j( (k~R)
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It is interesting to compare the above expression with
the nonrelativistic APW' matrix elements":

E~ 00

APW
~

= (k~ k„Z—)Q~pr+4rrR' Q (21+1)Pt(1' 6)
nj l=o

d(cf) tt —1
cf (~ —V)a-

dr

dg ((E V) — (tt+ 1)
+1 cf

dr k c' r
(40)

The following comparison can be made in the non-
relativistic limit:

lim cf/g = (tc+1)/r+u'/u . (41)

ut'(E, I!)
Xj,(h„&)j,(h~Z) . (38)

ut(Z, Z)

Instead of a single sum over atomic orbitals labeled by /,
we have the double sum over ~ which includes both
possible orientations of the spin. In place of the loga-
rithmic derivative of the radial wave function I, it is
necessary to evaluate the ratio of the two central-field
functions f and g. These satisfy Eqs. (10) and (11),
which are repeated here in a convenient form:

Methods for solving the coupled equations have been
discussed by Hartree' and by Rose. ' For numerical
work the Runge-Kutta method and the Milne method
are applicable.

The last term on the right-hand side of Eq. (37) does
not appear in the nonrelativistic theory, but it increases
the necessary computing only trivially because the
spherical Bessel functions must also be determined for
the preceding term in the expression. Hence the only
significant complication which the relativistic theory
imposes on the matrix elements is in the coeScients D„.
Because these are complex one must use complex
algebra in triangularizing the secular determinant. Here
again, however, the additional computing requirements
are negligible.

There is a significant increase in computing time
which results from the spin-doubling of the basis set.
However, this can be substantially reduced because of
the relations between matrix elements indicated in Eqs.
(32) and (33).It is found that if the matrix elements are
ordered according to the following scheme"

ter+, rtr —,rts+, Ns —,etc. , (42)

it is necessary to apply the triangularization procedure
only to the odd rows. H M(i, j) is the matrix element as
determined by either Eq. (34) or (37), the operation
necessary to triangularize the determinant can be
written

M(v, v)Y OM

~s I Me(v, i)M(v) j)+( 1)~'M—*(v j+ (—1)t+')M(v, i+1)j
M (i,j)~ M (i,j)—p

Because the even rows are not needed, there are gaps
in the machine storage of the matrix. It has been found
convenient to store the real parts and the imaginary
parts each in vectors. There is a one-to-one relation
between matrix elements (I,J) in the odd rows (above
and including the main diagonal) and the vector com-
ponent EV, where

(I—1)
I I+1~~

I
&+2-

~

I+&-I+1 (44)
2 L 2 jj

IV is the dimension of the matrix (two times the number
of reciprocal lattice vectors included in the expansion).

The maximum storage locations required for the corn-
plex matrix elements using this identification is
2L1V(%+2)f4—1j.
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