
PH YSI CAL REVIEW VOLL MK 139, NUiV1BER 4A 1. 6 AUGUST 1965

Antiferromagnetism in the Face-Centered Cubic Lattice. I. The
Random-Phase Green's Function Approximation
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Bell Telephone I.aboratories, Murray Hill, Eem Jersey
(Received 29 March 1965)

The random-phase Green's function approximation is used to derive equations for zero-field magnetic
susceptibility and two-spin correlation functions which are valid, at temperatures above the Curie or Noel
point, for all ferromagnets and antiferromagnets which can be described by any isotropic Heisenberg
Hamiltonian. At high temperatures, these expressions are also expanded as series in inverse powers of
temperature. Detailed numerical calculations are carried out for the face-centered-cubic lattice with anti-
ferromagnetic nearest- and next-nearest-neighbor exchange parameters J1 and J2. Susceptibility results are
compared with molecular-field estimates at temperatures near the Neel point, and with the known terms of
the exact power-series expansion at high temperatures. The spin correlations are computed for the first
four shells of nearest neighbors. Finally, the sublattice-magnetization curves at temperatures below the
Neel point are computed, in the random-phase Green's function approximation, for the type-2 antiferro-
magnetic order of the face-centered-cubic lattice. The curve shapes are found to be very insensitive to Js/J&
and approximate closely the shape of the molecular-field Srillouin-function curves. The significance of this
result in connection with the biquadratic-exchange question in MnO is discussed in detail in the following
paper by Lines and Jones.

1. INTRODUCTION

a recent publication, ' the present author has
- - employed the now familiar techniques of Green's
function theory to develop a statistical treatment of
antiferromagnetism. In that paper, the double-time
temperature-dependent Green's functions are used with
a simple random-phase decoupling approximation to
present, for arbitrary spin S, a theory which is im-
mediately applicable to any antiferromagnetic spin
structure which can be separated into two translation-
ally invariant ferromagnetic sublattices, and can be
described by any isotropic Heisenberg Hamiltonian.

In the present paper, we point out that any results
of this theory which are obtained for temperatures
above the magnetic-transition temperature are valid
for an even wider range of lattice structures, and we
develop expressions for susceptibility and two-spin
correlation functions which are valid (in the random-
phase Green's function approximation) for all ferro-
magnets and antiferromagnets no matter how complex
the spin arrangement which is preferred in the ordered
state. These results have been used to compute in
detail the susceptibility and near-neighbor correlations
in the face-centered-cubic (fcc) lattice where we have
given particular attention to that range of exchange
interactions which favors the type-2 antiferromagnetic
order' at temperatures below the Neel point.

Thus we consider, in general, an arbitrary lattice of
interacting spins which may be described by the
Hamiltonian

x=p z;;S.; S, ,
(' p/

~ Present address: Clarendon I aboratory, Oxford Vniversity,
Oxford, England.' M. E. Lines, Phys. Rev. 135, A1336 (1964).' P. W. Anderson, Phys. Rev. 79, 705 (1950).

where pi;, , i runs over all pairs of spins S, and S,. (Note
that the exchange parameters J;; as de6ned by the
above Hamiltonian differ by a factor 2 from those in
Ref. 1.) For the numerical computations we have con-
sidered the fcc lattice with nearest-neighbor exchange
Ji, next-nearest-neighbor exchange J2, and all other
interactions equal to zero, investigating in particular
the range —',&J&/Jr& ~ for which the type-2 anti-
ferromagnetic order (Fig. 1) is stable at low
temperatures.

The reasons for this particular choice are as follows:

(i) The fcc antiferromagnetic structures require at
least two exchange parameters (e.g., Jt and J's) if
stable long range order is to set in at any nonzero
temperature. ' They are, therefore, among the more
dificult structures to treat theoretically.

(ii) The molecular-field theory and many cluster
theories tend to give more than usually poor results
for these structures. ' '

(iii) Of the several different fcc antiferromagnetic
spin structures which have been observed experi-
mentally by neutron-diffraction techniques, the type-2
order has appeared most frequently. As a few examples
we mention Mno, n-MnS, Feo, Coo, and Nio. 4

(iv) The type-2 order covers a very wide range of
antiferromagnetic situations; from the Js/Jr ———, limit
for which long-range order sets in only at the absolute
zero of temperature, on the one hand, to the Ji —+0
case for which the system goes over into the simplest
of all three-dimensional antiferromagnets (the simple
cubic structure with a single nearest-neighbor exchange
parameter), on the other.

(v) An important question concerning the possible
importance of biquadratic exchange in magnetic

' M. E. Lines, Phys. Rev. IBB, A841 (1964).
4 W. L. Roth, Phys. Rev. 110, 1333 (1958).
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curve, ' in disagreement with results obtained by use

of the Monte Carlo method. ' This last result is very
important in connection with the biquadratic exchange
question, ' and indicates that the anomalous sublattice
magnetization curves observed for MnO and NiO are

probably due to terms w'hich have been omitted from
the Hamiltonian (1.1). We shall develop this question
in detail in Part II where we consider the magnetic
properties of MnO.

FIG. 1. The type-2 antiferromagnetic spin arrangement
in the fcc lattice.

systems has grown up around certain of the properties
of MnO and NiO, both examples of fcc type-2
antiferromagnets.

In Sec. 2 we derive the random-phase Green's function
expression for magnetic susceptibility at temperatures
above the Neel point (T~) and compute it specifically
for the fcc type-2 order. We compare the curves with
those obtained by molecular-field theory and note the
marked difference between them for temperatures near
T~. In Sec. 3 we obtain the Green's function high-
temperature expansion series for susceptibility and
compare it with the exact series as calculated by
Wojtowicz and Joseph. r We also compare the computed
Green's function curve with estimates of susceptibility
obtained by truncating the exact series. We 6nd that
the methods agree well at very high temperatures but
that there is quite a larg~ ™perature range above T~
for which the number of known coefFicients in the exact
series is not sufFicient for the latter to give estimates of
susceptibility as accurate as those obtained by use of
Green's function techniques.

In Sec. 4 we derive the Green's function estimate for
near-neighbor spin-correlation functions and calculate
them numerically for the first, second, third, and fourth
nearest neighbors in the fcc lattice for temperatures
T& T~. We also write the Green's function result as a
high-temperature series expansion in powers of inverse
temperature. Finally, in Sec. 5, we calculate the sub-
lattice magnetization as a function of temperature in
the ordered state. We find, for the fcc type-2 order, that
the curve shapes are very insensitive to the value of
Js/Jr and follow closely the molecular-field Brillouin

' E. A. Harris and J. Owen, Phys. Rev. Letters 11, 9 (1963).
'D. S. Rodbell, I. S. Jacobs, J. Owen, and E. A. Harris, Phys.

Rev. Letters 11, 10 (1963}.
P. J. EVojtowicz and R. I. Joseph, Phys. Rev. 135, A1314

(1964).

2. SUSCEPTIBILITY ABOVE THE
NOEL TEMPERATURE

Reference fuses Green's function techniques to discuss

those antiferromagnets with spin patterns capable of
separation into two translationally invariant ferro-
magnetic sublattices. At temperatures greater than or
equal to the Neel temperature T~, and in the presence
of an external magnetic field B, the average spin value

per site 58 is givenby Eq. (3.34) of Ref. 1as

where

2S(5+1) sinhn

368 coshe —coshP

n= [gp'~+6S(pi+ a') j/kT,

p=M8/kT,

(2.1)

(2.2)

(2 3)

S

pi= P J, [ex,p[iK (j—g)]—1j, (2.4)

"s= Z~jg' (2 3)

p, =P ~„exp[iK (j—g)], (2.6)

If the allowed values of K are now taken to run over
more than one reciprocal sublattice Brillouin zone and,
in particular, if they are taken to run throughout the
first Brillouin zone of the reciprocal lattice, then Eq.
(2.7) is naturally still valid, but it may now be simpli-

fied further to read

S(5+1))35S=(1/(n+P))», (2.8)

where ( . )I is now an average for K running over the

A. B.Lidiard, Rept. Progr. Phys. 17, 201 (1954).
' E. A. Harris, Phys. Rev. Letters IB, 158 (1964).

g") runs only over values for which

j and g are on the same (different) sublattice, and
where ( )K is an average value for the wave vector
K running over the values allowed by periodic boundary
conditions in the first Brillouin zone of the reciprocal
sublattice.

In the limit of very small Acids, Eq. (2.1) reduces to

25(5+1)/388=(( +P) '+( —P) ') . (2.7)
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values allowed by periodic boundary conditions in the
Grst Brillouin zone of the reciprocal /uttice. The right-
hand side of this equation involves exchange inter-
actions only in the form

p Jlll+ps+X= g J;,t exp| iK (j—g))—1j, (2.9)

t.o—

0.8

where g;, runs over all pairs of spins in the lattice.
Thus, this equation and the resuiting susceptibility of
Eq. (2.11) are completely independent of any sublattice
structure which may become evident when the tern-
perature falls below T~. They can, of course, be ob-
tained in a rather simpler manner by using a single
Green's function transform G» (Fourier transfornied
with respect to the whole reciprocal lattice) throughout
the calculation in place of the two functions Gi» and
Gs» defined in Ref. 1. This simply recognizes the
equivalence of all spins in the lattice for temperatures
above T&, and shows that the equations are not subject
to the two sublattice restriction of Ref. 1.

Writing the zero-field magnetic susceptibility X equal
to Ng'p~'Xo, where N is the number of spins in the
lattice, and where

X,= (8S/gpnH)Ir p,

we obtain, from (2.8), the equation

1/Xpr = (1/(1+Xpp) )»,

where

(2.10)

(2.11)

r =3kT/S(S+1), (2.12)

1.0 '
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and where p is given by Eq. (2.9). This equation for
susceptibility is valid for all ferromagnetic and anti-
ferromagnetic structures which can be described by a
Hamiltonian of the form (1.1). For comparison, the

0.6
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F»G. 3. The same as I'ig. 2, but with the curves now plotted on
a "reduced" scale, making them independent of the absolute
magnitude of exchange.

molecular-Geld result, in a similar notation, reads

1,/Xpr = 1+P J;,/r . (2.13)

We shall now compute the susceptibility from (2.11)
for our particular case of interest, which is the type-2
antiferromagnetic order in the fcc lattice (see Fig. 1).
We define a nearest-neighbor exchange J», a next-
nearest-neighbor exchange Js (putting all other ex-
change parameters equal to zero), and consider the
range J2// I»= —,

' ~ ~ over which the type-2 spin
arrangement is the stable ordered state. For this case
we may write

p= 4&1(clc2+cscs+cscl 3)
+4js(cts+cs'+cps —3) ) (2.14)

where

ci=cos(EgG) ) cs= cos(EpG), cs= cos(K~c) ) (2.15)

where x, y, z, label the cubic axes, and where "a" is
half the distance between next nearest neighbors. The
average ( )» is to be taken for E„E„,E„r unni ng
independently between —rr/a and pr/a. Thus, we have
treated the fcc lattice not in terms of its primitive
translations, i.e., as a monatomic lattice, but as a cubic
lattice with four spins per cell. Such a procedure lessens
the burden of machine computation.

The results of this computation are shown graphically
in Figs. 2 and 3. In Fig. 2 we plot 3Xp(T+8)/S(S+1),
where 0 is the Curie-Weiss constant given by

e= (12Jr+6Js)S(S+1)/3k, (2.16)

0.8

P»G. 2. Curves of magnetic susceptibility as a function of tem-
perature, calculated in the random-phase Green's function approxi-
mation, for the fcc lattice with antiferromagnetic nearest- and
next-nearest-neighbor exchange parameters J~ and Js. Le is the
Curie-Weiss constant of Eq. (2.16).g

as a function of T/TN, where Tsr has (also) been cal-
culated by the simple random-phase Green's function
theory (using the results of Ref. 1 which are reproduced
graphically in Fig. 4). The ordinate of Fig. 2 is, there-
fore, a quantity which is equal to unity on molecular-
Geld theory for all valuesof T& T~.The Green's function
curves are seen to approach unity for very large values
of T/T~ but they do so rather slowly if J, is larger than
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J2. Near the Neel point, the departure from a Curie-
Keiss behavior is seen to be greatest for the simple
cubic (Jr=0) limit. In Fig. 3, we plot a reduced
susceptibility against T/T& to give a set of curves
which depend only on the ratio Js/Ji, i.e., are com-
pletely independent of the magnitude of exchange.
Such curves are useful in giving very direct information
about the ratio of exchange interactions, as will be seen
in Part II. In Fig. S, for comparison, we show the same
curves calculated by molecular-field theory.

I
n.

0.6

Q.e

3. COMPARISON WITH EXACT SERIES
EXPANSIONS

0.4—
I Io

The theory of high-temperature magnetic suscepti-
bility of Heisenberg ferromagnets and antiferromagnets,
using the exact power-series expansion method of
Opechowski, " has, over the years, been extensively
developed by several authors. ""The susceptibility is
expanded as a Taylor series in reciprocal temperature
and, for systems with only a single exchange parameter,
the coefficients are now known up to the sixth-power
term. "Only recently, however, has the problem been
developed for Hamiltonians in which two exchange
parameters are present. ' The latter susceptibility ex-
pansions are extended as far as the fourth-power term
in inverse temperature and are directly applicable to
the present problem. The series-expansion formulas,
like the equivalent Green's function ones, are applicable
to both ferromagnets and antiferromagnets, i.e., for
exchange interactions of either sign.

In the present section, the Green's function Eq. (2.11)
will be expanded as a series in inverse powers of tem-
perature and compared with the exact expansion results
of Wojtowicz and Joseph. r In this way we can obtain
some indication of the accuracy of the random-phase
Green s function approximation in this high-temperature

MOLECULAR FIELD THEORY
2

region. Ke shall also compare the various truncated
exact power-series expansions with the computed
Green's function curves to estimate for what range of
temperatures the latter results are likely to be the more
useful.

From Eq. (2.11) it is possible to obtain high-tem-
perature series expansions for susceptibility or its
inverse. Ke shall concentrate on the series expansion
for inverse susceptibility because the pertinent co-
eHRcients are much simpler for this case, and the
molecular-held approximation also takes on a particu-
larly simple form. Expanding Xo ' as a power series in
1/r, using Eq. (2.11), we obtain

where

Xs-' ——rLI+P C;(r*J,
i 1

c =-(.)-,
Cs= &p')K —&p)K'

C.=-&")-+3&.)-&p')--2&v)*,

(3.1)

(3.2)

(3.3)

(3.4)

FxG. 5. Curves of magnetic susceptibility against temperature,
as calculated for the Icc lattice (with antiferromagnetic nearest-
and next-nearest-neighbor exchange parameters Jr and Js) by
molecular-Geld theory. These curves are to be compared with the
equivalent Green's function estimates of Fig. 3.

RANDO4f PHASE
EORY

where p is given by Eq. (2.9). For the particular case
of the fcc lattice with exchange parameters Ji and J2,
these coefficients work out to be

Ci——12J,+6Js,

Cs ——12Jis+6Js')

Cs= —24Jis(2Ji+3Js) .

(3.5)

(3 6)

(3.7)

FIG. 4. The Noel temperature Tz for the fcc antiferromagnetic
type-2 order, as calculated by the molecular-field theory and the
random-phase Green's function theory,

In molecular-field approximation we should find C~ as
in Eqs. (3.2) and (3.5) and all other coefficients equal
to zero.

If we write the high-temperature expansion for
inverse susceptibility in the form

» W. Opechowslri, Physica 4, 181 (1937);6, 1112 (1939)."H. A. Brown and J.M. Luttinger, Phys. Rev. 1DD, 685 (1955).
"G. S. Rushbroolre and P. J. Wood, Mol. Phys. 1, 257 (1958). (&sr) '= 2 C-(Jr!r)"(Jl~)",

m, n=o
(3 8)
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TABLE I. Numerical values of the cock,cients C of Eq. (3.8)
as calculated for the fcc lattice with exchange parameters J1 and
J2 and spin quantum number S.

Exact

X=S($+1)
Random-phase Molecular-

Green's function Geld
approx. approx.

32

30

Coo 1
C1o 12
Col 6
C2o 12+9/X
C11 0
Co2 6+9/2X
Cpo (—6/5) (36+11/X—6/X')
C21 —72—36/X
C12 0
Cpa (3/5) (4+9/X+6/X')

1
12
6

12
0
6—48—72
0
0

1
12
6
0
0
0
0
0
0
0

28

Ng p~
26

24

22

& Reference 7.

then the coeKcients of the Green's function expansion
may readily be compared with the exact expansion
coeiTicients as obtained by Wojtowicz and Joseph. '
Such a comparison is made for the fcc lattice in Table
I, where the molecular-Geld results are also included.
Ke note firstly that the Green's function coefficients
C„are not spin-dependent whereas the exact coefB-
cients, with a few exceptions, are.

If we call e+m the order of the coefficient C„,
then all three sets of coeKcients coincide exactly only
for the zeroth- and first-order terms. In the second
order, the Green's function coeKcients are correct in the
limit of infinite spin but become progressively worse
for smaller spin values. Only in the case of spin -', (and
possibly spin 1), however, are they badly astray. In
the third order, some of the Green's function terms are
incorrect even in the infinite spin limit, but again the
major terms are rather well approximated, particularly
so for high spin values.

In Part II, we shall be concerned with the properties
of MnO for which S=~ and J1=J2. It is of interest,
therefore, to consider this particular case in more detail,
and to compare the inverse susceptibility as computed
from Eqs. (2.11) and (2.14) with the estimates obtained
by use of the exact series expansion. Such a comparison
is shown in Fig. 6 where we plot the computed Green's
function curve together with a set of four exact series-
expansion curves obtained by terminating the series, in
turn, at the first-, second-, third-, and fourth-order
terms. Since the exact coeKcients of fifth- and higher-
order terms have not yet been published for Hamil-
tonians containing more than one exchange parameter,
we are not able, at the present time, to plot any curves
of higher order.

For the higher values of temperature, we see that
the successive exact series-expansion curves converge
rapidly and enable a good quantitative estimate of
susceptibility to be made. For temperatures below

3T~, however, the series-expansion curves converge
very slowly or not at all indicating that, for this

l8
6 8 lO

3 kT/J S(S+ I)

l2 l4

FIG. 6. Estimates of high-temperature magnetic susceptibility
for the fcc lattice in the case S=—',, J1=J2. The Green's function
curve (G.F.) is compared with successive approximations (1,2,3,4,)
obtained by use of the exact high-temperature series expansion
(Ref. 7).

temperature region, far more terms in the series are
required before any reasonable susceptibility estimates
can be made using this approach. Thus, for tempera-
tures below 3T~, the Green's function method, at
least for this particular problem, is the more direct
approach. We are, therefore, encouraged by the fact
that the Green's function curve (Fig. 6) appears to be
in very close agreement with the best series estimates
in the temperature region where the series-expansion
approximations converge rapidly.

K=BCp—gpgH Q 5,',
4=1

(4.1)

where Ko is the Hamiltonian for the system in the
absence of the field. The thermodynamic and magnetic
properties of the system are derived from the partition
function

Z= Tr( exp( —K/kT)), (4.2)

and it follows, therefore, that the magnetic suscepti-
bility in the limit of zero Geld is given by

(4.3)

where (S&,*5,') is the thermodynamic mean correlation

4. NEAR-NEIGHBOR SPIN CORRELATIONS
FOR T& T~

In an external magnetic Geld H parallel to an axis s
we may write a Harniltonian for a magnetic system, in
standard notation, as
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between the s components of the spins at sites h and g
in zero field. This longitudinal correlation is also of
direct physical interest in other connections such as
the thermodynamic energy, specific heat and the disuse
magnetic scattering of neutrons.

For temperatures T)T~ the longitudinal and trans-
verse correlations resulting from the Hamiltonian (1.1)
are equal and are thus very easily calculated in the
random-phase Green's function approximation from the
theory of Ref. 1. The calculation of longitudinal cor-
relations for T&T~ (which will not be considered in
the present paper) is somewhat more difFicult to carry
out in the Green's function formalism, but a method has
recently been demonstrated for ferromagnetism by
Tahir-Kheli and Callen. "

Solving Eqs. (3.3) and (3.4) of Ref. 1 for Gix and
Ggx, we readily establish equations for the correlation
(Sg S,+). Writing the average spin per site equal to 5S
for both sublattices, we find: (i) for g and h on the same
sublattice

slnho.
(Sg Sg+) =58- —1 ~e' &'-")

coshn —coshP
(4.4)

where n and P are as defined in Sec. 2, and where K
runs over its allowed values in the first Brillouin zone
of the reciprocal slblattic.

In the limit of zero magnetic field, these equations
reduce to

(i) (S ~ S,)=li (388/2)([( +p) '+( —p) ']

ygix (g—h)) (4 6)

(ii) (S„S,)= li (3hS/2)([( +P) '—( —P) ']
ygiK (g—h)) (4 7)

for all cases g&h. Using the same argument as in Sec.
2 concerning the extension of ( )K to run over all
allowed values in the first Brillouin zone of the reciprocal
lattice (rather than sublattice), we find that, with this
new definition of (. . )K, Eqs. (4.6) and (4.7) take the
identical form

exp[iK (g—h)]
(Sg S,)= lim 35S (4 8)JI~ ~+p I

indicating again that the sublattice description of the
system is not necessary for discussing properties above
the transition temperature. Using Eqs. (2.2), (2.3), and

13R. A. Tahir-Kheli and H. B. Callen, Phys. Rev. 135, A679
(1964).

and (ii) where g and h are on different sublattices

—sinhp
(Sp,-S,+)=88 gix ~ (g—h) (4 5)

coshig —coshP K

(2.10), we obtain the 6nal form

expL&g (g—h)j)(Sg S,)=3kT
Xo '+p K

(4.9)

"W. L. Roth, Phys. Rev. 111,772 (1958).
"W. L. Roth and G. A. Slack, J. Appl. Phys. 31, 352S (1960)."J.Kanamori, Progr. Theoret. Phys. (Kyoto) 17, 177 (1957).
'7 F. Uchida, H. Kondoh, Y. Nakazumi, and T. Nagamiya, J.

Phys. Soc. Japan 15, 466 (1960).

giving a relationship between the spin-correlation
function and the inverse magnetic susceptibility which
is valid for all g&h and for all temperatures T& T~.

Using this equation, together with the results of
Sec. 2 for inverse susceptibility, we may compute these
correlations for any particular case of interest [Eq. (4.9)
being, like Eq. (2.11), valid for all ferromagnetic and
antiferromagnetic structures which can be described by
Hamiltonian (1.1)].As in the earlier sections, we have
singled out the fcc lattice for detailed consideration. The
fcc lattice is particularly interesting in this respect for
the following reason. In the simpler types of antiferro-
magnetic structure, e.g., the simple cubic or body-
centered-cubic lattices (with a single-exchange parame-
ter), the signs of the near-neighbor correlations are
immediately evident from simple physical consider-
ations, and reQect the long-range ordering which sets
in below the Neel point. Thus, for the above examples,
the nearest-neighbor correlation is negative, the next-
nearest one positive, and so on, with the magnitude of
the correlation (for a particular temperature) falling
off monotonically with increasing distance. For the fcc
antiferromagnets the situation is not always so im-
mediately evident. Consider the type-2 order of Fig. 1
for example. As drawn, it appears to have six positive
and six negative nearest-neighbor correlations. Such a
single axis spin arrangement is, however, not a unique
solution for the isotropic Hamiltonian (1.1), even when
the exchange parameters have values favoring the type-
2 spin structure. More specifically, "4 the type-2 order
requires only that all next nearest neighbors are op-
positely oriented in the ordered state. The only re-
striction on nearest-neighbor spins is therefore that
their vectorial sum shall be zero. (In actual salts which
exhibit the fcc type-2 spin arrangement, e.g. , MnO,
n MnS, NiO, FeO, etc. , the single axis order is found to
exist and is stabilized by anisotropy and/or slight
distortion of the lattice from its cubic form. " ") It
is not likely, therefore, that the correlation for T& T~
will reQect the spin pattern of Fig. 1 when we calculate
for the fcc type-2 order and Hamiltonian (1.1). Nor,
we shall see, do the correlations necessarily fall off
monotonically with distance.

Using Eqs. (4.9) and (2.14), together with the
results of Sec. 2 [Eq. (2.11)]for susceptibility, we have
computed the near-neighbor correlation functions for
T) Tii and. for values of Jg/Ji which favor the type-2
spin pattern in the ordered state. The results are shown



A 1310 M. E. L I N ES

-0.1R

A
$V)

e

-0.10

«0.08 "

-0,06-

-0,04-

-o.op. -

0—
0

I I

3 4
kT/Jps(s+ 0

3.0

nfl
ae =03=
Q

x:

LIz
I-
(A
t0 -0.2—

Lal

x
I-
X
LLI

X
-O. l—

~ fj)

&v)

F»G. 7. Temperature dependence of nearest-neighbor spin cor-
relations, as calculated for the fcc lattice with antiferromagnetic
nearest- and next-nearest-neighbor exchange interactions J1 and
J2, for temperatures above the Neel point.

0 '

0
I I

kT/J p S (S+1)

Fze. 8. The same as Fig. 7 but for next-nearest neighbors.

in Figs. 7 to 10, in which we plot (Sk S,)/5(5+1)
aga.inst temperature for first, second, third, and fourth
nearest neighbors, respectively. We find, in particular,
that the nearest-neighbor correlations are negative, are
the same for all nearest-neighbor pairs and, in the
temperature range close to the Neel point, are generally
very much smaller in magnitude than the next-nearest-
neighbor correlations. These results are in qualitative
agreement with those of Harris' who studied the fcc
Ising lattice by a Monte Carlo method.

At extremes of high temperature, we may expand
the Green's function equation (4.9) as a power series in
inverse powers of temperature. Using the previously
evaluated power series for Xo ' we may readily calculate
the first few terms in the high-temperature expansion
series for the correlation functions. We find

and, if Sp, and S, are next nearest neighbors, the co-
efficients 8,"""are

~1 J2

g nnn —$J 2
1

Bp~~~= —24Jip(Ji+J2)—3Jpp

(418)

(4.19)

(4.20)

In the limit J» —+ 0, coefficients 8;"""give the result for
simple cubic lattice nearest neighbors with exchange
parameter J2.

We may easily extend. this calculation to more
distant neighbors when we find that B»=0 for all
neighbors beyond the second, i.e., only those neighbors
with a nonzero exchange between them have a term in
1/7. Those correlations which have a leading term in
1/r' are as follows,

third neighbors,

fourth neighbors,
A» ———p,

~p= (u —(u)K)',

(4.11)
fifth neighbors,

(4.12)

Bp= 2Ji(Ji+ Jp);

Bp= JiP+2JpP;

82= 2J»J2,

and eighth neighbors, 82= J2'.

(Sp Sp)/5(5+1)=(exp[2K (g—h)j P A~/r') K(4.10)
s=»

where

(4 21)

(4.22)

(4.23)

(4.24)

(Sy, .S,)/5(5+1) =P B,/r'
i=»

(4.14)

where, if Sk and S, are nearest neighbors, the coefficients
8,." for the first few terms are

and where K runs over the first Brillouin zone of the
reciprocal lattice.

If we consider again the case of the fcc lattice, then
we may use Eq. (2.14) and calculate the expansions
specifically. %e find.

x,= (1/ ) P (S„S,)/5(5+1). (4.25)

Using the fact that (Sk Sk)=S(S+1), and noting that
the numbers of erst, second, third, fourth, 6fth, and,

eighth nearest neighbors in the fcc lattice are, respec-
tively, 12, 6, 24, 12, 24, and 6, we calculate from (4.25)
and the above coefFicients 8 the result

%'e may now carry out a check on these results by
employing Eq. (4.3) which, for temperatures above the
Xeel point, may be written

~» J1)
Bp""=4Ji(Ji+Jp),
BP"=—Ji(21JiP+36JiJp+ 12Jp') +, (4.26)

(4.15)
1 12Ji+6J'2 6(22J'i'+24JiJp+5Jp)

(4.16) Xp =—— +
(4.17)
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-8(~2 g2)1/2-
x= — - coth

[p' —vj'" — 'a'r (5 2)

~ ~

where 8, signifies the Hrillouin function f .1011 ol Spin
p= p~ —p2 with p~, p~, X, as defined in Sec. 2, and

w ere ( )K can be taken over the reciprocal lattice
or sublattice. For type-2 orde (F' 1er ig. we may write

)i=4Ji(cics+cscp+cpci)+4 J (c '+c '+c ' 5 3))

0.02-

O.OI-

0
0 I 2 3 4 5 6

kT/ J S(S+'i)

FIG. 9. The same as Fi . 7g. but for third-nearest neighbors.

which agrees with the susceptibilit calculati

8/S= B,(2S coth 'x), (5.1)

S. SUBLATTICE MAGNETIZATION FOROR T&T~

In this final sal section, we shall investigate the zero-field
su attice magnetization as a f t
in t e ordered state. This is of particular int t f

of salts oss
ype- antiferromagnetic order becaus bause anum er

found to hav
a s possessing this spin arrangement h ben ave een

o ave sublattice magnetizations which deviate
very significantly as functions of T/T~ from the results
of molecular field theory'4"" 0 'b

is deviation has been suggested by Rodbell et OL' to
be the inadequacy of Hamiltonian (1.1) to describe the
substances in question. They point out that th

o iquadratic exchange terms helps to brin
ou at tein-

the molecular-field theory into d ho accor with experiment.
Qn the other hand, Harris' concl d fnc u es, rom an analysis
o an cc Ising lattice using a Monte Carlo meth d,
that the eGRect may possibly be due almost entirely to

rome o,
the crudeness of molecular-field theor . H'eory. is work

1.1 wou
gges s t at amore accurate treatment of I 1

molecular field Brillouin curves.

fl 0
We shall again use the GGreen s function expressions

rom Ref. 1 and compute them for thor e particular case

the a
o e cc type-2 order. Sublattice magnetizatio S,

'

absence of an external magnetic field is iv n
lOIl ) lIl

the random- h ' ' '
a ion-p ase Green s function approximation, b

Eqs. (2.23) and (2.24) of Ref. 1. They are

Ja/J, - +&

lL0
ISx
Q

z
I-

K
Ljz

0

+
V)

Vl

40

In

0.20—

0.15—

0.10—

05—

P—) =4Ji(el''2+~2~2+~P1)+4J2(s '+~ '+s ' 5 4)

where ci, c2, cs, are defined in (2.15), and where

si ——sin(E,a), s2 ——sin(K„a), sp
——sin(E, u) . (5.5)

The averages are taken for each component of wave
vector running independently between —2r/ d—7I Q an 7r 8)

is valueave computed 8 for the case S= 2. Th'
is the one applicable to MnO which is th
most w'mos widely discussed of the salts with the fcc type-

Harris.
aue consi ere y

The results o to& t"e computation are shown in I'ig. 11,
where we plot 8 as a function of kT J fo '

2 or temperatures

th
etween absolute zero and the N' 1ee point. We observe

T=O are b
hat the Neel temperature T d th 1~ an e va ue of 8 at

are both dependent on the parameter J J d
thus differ very markedly from the molecular-6 ld

e el 2 y all

results which are
ecu ar- e

82 P
——S=-,', kT~/J2=2$(S+1) =17.5. (5.6

The sha pe of the curves, however, when plotted in, the
reduced form S/Sr p again t T T, f e

'
s ~, is ound tobe

t sser, and E. 0. Wollan, Ph . R'8 C. G. Shull, W. A. Strau

II, and M, Tinkhain, Phys. Rev. 129, 1566' A. I. Sievers, III and M.

0
i
2 3 4 5

kT/J~ s (s+ &)

FIG. 10. The same as I'i .'g. 7 but for fourth-nearest neighbors.
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almost completely insensitive to Js/J& and, moreover,
is described very well indeed by the molecular-field
Brillouin function for S= 2. It is precisely this latter
property, viz. , shape of the reduced curves, which is
found to be anomalous in MnO, the measured sub-
lattice magnetization having a much slower "roll-off"
than the associated Brillouin curve. We are therefore
in disagreement with Harris and find that the observed
sublattice magnetization curve cannot be explained by
a Hamiltonian of form (1.1).The fault with the Monte
Carlo method as described by Harris' is that it calcu-

FiG. 11. Average spin per site as a function of temperature
(between absolute zero and Noel point) for the type-2 antiferro-
magnetic order in the fcc lattice and the case 5=—',.

lates a quantity (1/1V)g;~S,'~, where the summation is
over all lattice sites. This quantity is not the sublattice
spin per site S. It does not, as Harris notes, go to zero
at T~, and it will take values which are larger than the
true sublattice magnetization at all temperatures. This
lack of sensitivity of reduced magnetization curves to
the ratio of exchange parameters in simple Heisenberg
exchange problems has also been noted recently by
Callen and Callen" for the case of fcc ferromagnets by
using a two-particle duster approximati. on.

A satisfactory solution of the MnO problem seems
likely, therefore, to depend on the modification of
Hamiltonian (1.1). In Part II, the magnetic properties
of MnO will be discussed in detail, and we shall show
that the anomalous temperature dependence of sub-
lattice magnetization is due almost entirely to effects
produced by the small distortion of the lattice from
cubic form, which occurs at temperatures below the
Keel point. The importance of this distortion in aGecting
the magnetic properties of MnO was first pointed out
by Kanamori, "and was later discussed in more detail
by Rodbell and Owen" using a molecular-field theory.
To obtain a quantitative agreement between theory
and experiment, however, we shall find that it is neces-
sary to use theories which are more accurate than the
molecular field.
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