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Perturbation of the Electronic Specif1c Heat Due to Magnetic Impurities*
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The s—d exchange model used successfully by Kondo to explain the resistance minimum in dilute magnetic
alloys is employed to calculate the change in the electronic specific heat. For an unmagnetized system, the
first anomalous eBects, which depend on the sharpness of the Fermi surface, occur in third-order perturbation
theory. The perturbation expansion for the thermodynamic potential is used to calculate the equilibrium
properties of the system. The temperature and impurity-concentration dependence of the anomalous term in
the specific heat is found to be cT lnT. The magnitude of the coefficient of this term is too small to render it
observable in metals.

INTRODUCTION 1. Shift of the Thermodynamic Potential

In this section we calculate the thermodynamic
potential to third order in the coupling constant. The
Hamiltonian we choose is identical with that given by
Kondo. ' The Hamiltonian for noninteracting electrons is

' "X a recent paper, Kondo' has used the interactions
~ - of electrons with magnetic impurities to explain the
resistance minimum found in a number of dilute mag-
netic alloys. Singular Fermi-surface effects first appear
in third-order perturbation for the scattering probability
of the electrons. Kondo chose the s-d exchange model
introduced and used by Zener, ' Kasuya, ' and Yosida, '
and showed that the scattering probability was loga-
rithmically singular as the temperature approached
zero, for electron energies close to the Fermi energy, in
accord with the experimental data.

There are several transport phenomena which will be
affected by the logarithmic singularity in the electron
lifetime. However, there is another class of phenomena
which will be more sensitive to the shift in the electron
density of states at the Fermi surface. Two such ex-

amples are the electronic specific heat and tunneling.
In this paper we calculate the shift of the specific heat
to third order in the s-d exchange integral. No singular
effects due to the sharpness of the Fermi surface arise in

second order. In Sec. 1 we calculate the shift of the ther-
modynamic potential, assuming the temperature to be
high enough so that the system will not be magnetically
ordered, and the spin states to be degenerate.

The second-order correction to the specific heat is
calculated in Sec. 2. Only a small correction to the
density of states occurs in this order. An approximation
to the correct noninteracting distribution function is
made in the Appendix. In Sec. 4, using this simplified
distribution function, we calculate the third-order cor-
rection to the specific heat. The new term which appears
varies as cT InT, where c is the impurity concentration
and T the temperature. The coefficient of this term is

such as to make it unobservable in metals.

Hp ——Q e(k)cg.*cg.,
k, o

where the noninteracting electron spectrum is taken to
be (k=1)

«(k) =k'/2m.

The various magnetic states of the impurities are taken
to be degenerate, when the crystal field splitting etc. is
neglected. The interaction term is

J
H'= ——P e"&" '&'""I (c*j,gc~t —c ~gc~g)~„,

QT n, k, k'

+c*wtc~s~ -+c*~scsr5' ~j. (1 2)

The system has E atoms in it. R„ is the position vector
and S„the spin operator ot the eth impurity atom. 5„+
and S„are the usual spin-raising and lowering operators.

S g=—S„&iS„y.

As Kondo points out, J, the value of the direct exchange
interaction between the localized and conduction elec-
trons, can be either positive or negative.

Bloch and Deoominicis' have shown that the shift
of the thermodynamic potential may be obtained from
the linked diagram expansion for the ground-state
energy. It is obtained by associating the appropriate
unperturbed distribution functions with the particle and
hole lines of the diagrams. The ground-state energy
shift to third order is given by

&0IH'I s&(s IH'10&
AU= (0 I

H'I 0)+Q
'6

jVO*cwork supported in part by a DuPont research grant.
t A portion of this work was completed during the summer of

1964 while the author was at Sell Telephone Laboratories,
Murray Hill, New Jersey.' J. Kondo, Progr. Theoret. Phys. (Kyoto) 32, 37 (1964).' C. Zener, Phys. Rev. 81, 440 (1951).

~ T. Kasuya, Progr. Theoret. Phys. (Kyoto) 16, 45 (1956).
4 K. Yosida, Phys. Rev. 106, 893 (1957); 107, 396 (1957).

«IH'Is)&slH'I i&&J IH'I o&
(1.3)
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~ C. Bloch and C. DeDominicis, Nucl. Phys. 7, 459 {1958).
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where ~0) represents the ground state, a filled Fermi
sea, and Eo is its energy in the presence of the Hamil-
tonian Ho. The kets

~
i) and ~p') are excited-state con-

figurations with E;and F., the energies of those particular
configurations. Since H' has no diagonal matrix elements
in the unmagnetized state, there is no contribution to
the first-order shift in energy.

The diagrams corresponding to the four terms of the
second-order shift in energy are shown in Fig. 1.
Figure 1(d) shows the time-reversed diagram of Fig.
1(c). By applying the designation time reversal to a
diagram, we mean that the direction of the arrows on
the lines are reversed, interchanging particles and holes.
In writing the single-particle distribution functions in
the expressions for the shift of the thermodynamic
potential, we will not distinguish between the spin up f~
and the spin down fq distribution functions. In the un-
magnetized state, both distribution functions are identi-
cal. The second-order shift in the thermodynamic
potential is

(1 f)f—
A)2 nkvd

&& 52M„'+ (5+M~)(5—M„+1)

+(S—M )(S+M +1)7. (1.4)

The primes on the distribution functions and single-
particle energies indicate to which momentum they
refer: f= f(k), f'=—f—(k'), etc. , M„ is the s component of
the spin of the Ith atom, and S is its maximum value.

The first term in the bracket is the contribution of
Figs. 1(a) and (b), the second term is that of 1(c) and
the last comes from 1(d).

There are 16 diagrams which contribute to the third-
order shift in energy. Eight of these are shown in Fig. 2.
The other eight are the time-reversed diagrams of those
shown in Fig. 2. We have not included some of those
terms which vanish in the unmagnetized state, i.e.,
terms which involve impurities at diferent sites. The
contribution of each of the diagrams can be written
down quite directly. The only point which perhaps
should be mentioned is the sign of the product of matrix
elements which arises when contractions are made in the
matrix elements. Because of the contractions made, all
the terms shown in Fig. 2 have the same positive sign.
We illustrate by extracting the combination of electron
operators which leads to Fig. 2(a).

(0~~~t*~~ t~~"t*~j t~~~*~e~o)= ft(1—ft')(1—f~").
In contrast, all the time-reversed diagrams have matrix
elements which lead to a negative sign when the electron
contractions are made. As an example, let us consider
the time-reversed diagram to Fig. 2(a). The electron
operators enter the matrix element as

(o
~

~~"t*~~t~~ ~*~~"t~~t'~~ t
~
o)= (1 ft) ft—'f~".—

Since one of the contractions must be made by bringing
an electron operator past another single electron opera-
tor with which it anticommutes, the result is always
negative. The third-order shift in thermodynamic po-
tential is

XLM ' —(M +1)(5 M)(5+M„+1—)+M„(5 M„)(5+M„+1—)+M„(5 M„)(5+M„+—1)

+(M„—1)(5+M„)(5 M+1) M' M(—S+M )(S—M„—+1) M„(5+M—„)(5—M„—+1)7. (1.5)

The first of the two terms in the first bracket is the
contribution of the diagrams shown in Fig. 2, the second
is of the contribution of the time-reversed diagrams.
The diagrams of Fig. 2 are given in an order which
corresponds to that of the terms in (1.5). The total 0 up
to third order is the sum of (1.4) and (1.5) added to the
contribution of the unperturbed term

J2 (1—f')f
0= Q&"—2 5(5+1)Q +2 S(5+1)

e' —e lV'

We do not retain those terms which vanish in the un-
magnetized state, i.e., those proportional to an odd
power of 3f„.

5= BQ/BT—
The specific heat is then

(2.1)

C= T(BS/BT) = —T(B'0/BT'). (2.2)

Since several of the integrals as written in (1.6) are
divergent, we should mention some salient points about
the coupling function J. The exchange integrals which
occur are actually functions of the momenta summed
over. For example, in the second-order term of (1.6) we
should have P'(k, k'). As Kasuya' points out, J can be
approximated as a function of the magnitude of the
vector difference ~k —k'~, by a function which is con-

2. Second-Order Correction to the SpeciQc Heat

The second-order shift in the specific heat can be
calculated directly from (1.6), since the entropy is
given by
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FIG. 1. Second-order diagrams for the normal-state energy.
The values of the momentum and spin are indicated alongside the
particle and hole lines.

FIG. 2. Fourth-order diagrams for the normal-state energy. The
values next to the wavy lines indicate the z component of the
impurity spin in the intermediate states.

approximation will certainly give Fermi-surface eGects
correctly, but contributions which depend on regions far
from the Fermi surface will be only roughly approxi-
mated. The second-order shift in entropy is

stant out to the first reciprocal lattice vector and then
drops rapidly to zero. Since we are interested only in the
Fermi-surface eBects which may give rise to logarithmic
singularities, we will take J(k,k') to be a constant for
energies c(k) and p(k') less than an energy M greater
than the Fermi energy. That is,

ASI2& = —cI AQ& "/c/ T
J2 1 Bf= 2—cS(S+1)P-
N &,&' 6 —t. BT

(2 4)
J(k,k') =J for 0& p(k) &M+/1 o, 0 & p(k') &M+/io

=0 other ise 2.w ) ( 3)
where c is the impurity concentration. We convert the

where /ip is the Fermi energy at zero temperature. This sums in (2.4) to principal value integrals.

&(22/2)»2V&2 M+.o gf M+~2
1/2 P

»&'p pBT k 47I / p BT p

(&(0)V)' +"'

Pp

Bf
(So pl/2 2(/ip+M)1/2 pl/2 ln

BT-

ol/2+(/1 +M)1/2

pl/2 (~ +M)l/2
(2 5)

We have introduced the energy density of states for electrons of one spin at the Fermi surface

X(0)= (22/2) 2/2/ioi/2/(22r) 2. (2 6)

We can see from (2.5) that there are no singular effects in second order from the sharpness of the Fermi surface.
The derivative of the Fermi function f will put p at the Fermi surface. The integrand is then perfectly regular.
We may use the usual techniques to obtain the leading term of the specific heat, keeping only the terms of (2.5)
linear in the temperature. In calculating c/0/c/T, the chemical potential is held fixed. In fact, it is unnecessary to
retain the temperature-dependent terms of the chemical potential which appear in the Fermi function. When
we define a new variable of integration in (2.5)

x= (p —/io)/kT,

the integral becomes

1 r/f (X(0)V)2 M/kr 8 f (/Ip+M)'"+ (/ip+kTx)'/'
k dx x(/1 +kTx)"' 2(/1—-/I-M)"' (/1 ykTx)'" ln ——

6 BT pp pp/IcT' I9X (/1 p+M)1/2 —(/ip+k Tx) '/2

—(F(0)V)' M —
/ip (/ip+M)'/2+/ip'/2 Bf ( kT 2)

k2T (/io+M)1/2 —
/1

/2 ln dx x2—+lgi
3/2 M (/io+M)"' —/ipp" „c/x & /ip )

= —2r 2(1V(0)V)2k2TI2/3/1 p, (2.7)
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where we have denoted the constant

/2p
——(1/2 2&)2(31r p) / (2.9)

is used in (2.8) to eliminate the number density of
electrons

p=slV/V. (2.10)

3. Third-Order Correction to the Specific Heat

In the following calculation of third-order e6ects, we
will only be interested in those leading terms involving
logarithmic singularities. We will not retain those terms
which only shift the linear term of the specific heat. The
third-order shift in the thermodynamic potential is
included in (1.6).

=
J' f 2ff'+f'f"—

AQ "&=2 cS(S+1)P, (3.1)
g2

M)'" M —
/2 (/t2 +M)'/2+/2 '/'

12= —
I
1+—

(
+ln

/2p) M (Pp+M)'/2 —Ppr/2

For a cuto6 M taken of the order of magnitude of the
Fermi energy, a is of the order of magnitude of one. The
second-order shift in specific heat is obtained by using
(2.2), (2.4), (2.7):
AC" & = —(22r2/3) (J'/1V) «S(S+1)P(A (0) V)'//2 jk'T

or equivalently

d C &'&/C p AC/'&/ '——2rpl&'/(0) V-k'T

= —;y/„,)«.S(S+1), (2.S)

where Co is the free-electron contribution to the specific
heat. The expression for the chemical potential at zero
temperature

where we have summed over the impurity sites. To find
which of the terms of (3.1) can give singular effects we

can take the zero-temperature limit. In this case

f(«) = 1: «(/2p

=0. 6O pp.

Both the first and the third terms can be seen to have
finite principal-value integrals. The only end points of
those integrals where the denominator vanishes is at
zero energy. The zero phase space available there
eliminates that as a possible singular contribution. Only
the second term of (3.1) gives rise to a singular effect.

J3 I

~n/»= 4—cs(S+1)P . (3.2)
Ã'

At zero temperature the singularity arises since the
denominator vanishes when both c and e' are at their
Fermi-energy end points. In (3.2) the integration over
c" will be restricted by the coupling function J. The
resulting value of the integral will depend explicitly on
the functional dependence of J on e". Since the actual
behavior of J is not well known we will, for simplicity,
choose the model given in (2.3).The result we will obtain
could then vary by as much as an order of magnitude
for different models. The singular term of (3.2) will

depend on the behavior of the Fermi function near the
Fermi energy. Replacing the Fermi function by an
approximate single-particle distribution function will

not alter our limit of accuracy at this stage. However,
it will have the advantage of affording an analytic
rather than numerical evaluation. In the Appendix we

obtain the distribution function we will use in calcu-
lating (3.2).

The integral over k" is identical with that performed
in (2.5)

h(«) =Q(«"—«) '= V(0) U/1

M+pp

d«" «"'/'(«" —«)
—'

= 21V(0) U/1p "' (/2p+3f)'"
«1/2 (/1 +gf )1/2+ «1/2

ln
(/1 +1)II)1/2 «1/2

(3.3)

Using (A14) we may perform the integral over k'

g(«)=Z f'(' «) '—
1 6 I 1 «1/2 ( «1/2+ (/2 + f/2)1/2

= —21V(0) V ——+ — ln(«'/'+ (pp —$/2)'/2)+ —— ——« ln
-2jtlo 2 po ""+(p p 5/2)"'—
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The integral in (3.2) can now be expressed as

I=P — =1V(0)V/io-'/2
C 6 C E

dp p'/2f (p)g(p) h(p)

=1V(0)V/ip "' d p p"'g(p) h(c)+
+X) 1

dp p'/2 ——— g(p)h(p) .
2

(3 3)

The part of I arising from the sharpness of the Fermi surface may be extracted by rewriting (3.5) as

I=X(0)V/ip "' 0

dp pi/'g(p)h(p)— dp p'/2 -+- g(p)h(p)+
2

1 ~™

dp p'/' —— g(p)h(p)
2

(3.6)

We may take the limit of $ or the temperature going to
zero in the first term of (3.6) without obtaining any
singular term.

p ) 1/2

lim g(p) = iV(0) V 2—2 —
)

ln(p'/'+/2 '/')
)~p j

p ) 1/2

+ —1»(p—
/ o)

Poj

ln the other two terms of (3.6) we make the change of
variables x=p/$. When we expand the integrand for
small P/pp the singular term comes from g

g =—&(0)VL2 (~t// o)»(/ o/5)+»(/ 0/5) 7

The most singular term of the integral is

I=+'(»(0)V—)'b(('/ )/»( //5)

+Ot:(e/ o')»( o/k)j, (37)

where we have defined

(~ +~)1/2y~ 1/2

b=ln
(~ +~)1/2 ~ 1/2

—l( —( p/~))( +(~// p))'" ( )

The value of b depends on the model we have chosen for
J. For the cuto6 M equal to po, b is of the order of
magnitude of one. Using (A9), (2.6), (2.9), (2.10), (3,2),
and (3.7), we obtain the shift of the thermodynamic
potential

DO&2~ = —(Si/16)(J//1 )'zpcS(S+1)
X$(0)Vbh'T' ln(/ip/6h T) . (3.9)

The most singular contribution to the third-order shift
in entropy is

~S"'=+(g1/g)(I// )'s'cS(S+1)
XX(0)Ubh'T ln(/ip/6kT) . (3.10)

The corresponding singular part of the specific heat may
be compared to the specific heat of the free electrons
(A11)

/1C ~2&/Co = (27/16) (I//1 p) pspc

XS(S+1)b ln(/ip/6hT) . (3.11)

Although the temperature dependence of (3.11), lnT, is
very interesting, there is little hope of observing the
effect experimentally in those metals which show a
resistance minimum. In this case perturbation theory
works too well. The coefficient of the log term is of the
order of

(I//io)pc= (0.02)'(10 ') = 10 '.
We use the concentration c=10 ' because when im-

purity concentrations are much greater than this, mag-
netic ordering has started at the temperatures of the
resistance minimum. ' Since there is a very large con-
tribution to the specific heat from the magnetic ordering
itself, the contribution (3.11)will be overwhelmed before
we get to temperatures at which these electron-scatter-
ing effects can give rise to a shift of as much as one part
in a million.

CONCLUSIONS AND DISCUSSION

The mechanism through which magnetic impurities
give rise to observable anomalies in transport properties
may also be used to calculate anomalous equilibrium
properties. In transport properties the s-d exchange
interaction perturbs the electron lifetime in a singular
way. This mechanism leads to the same type of singular
behavior of the electron density of states close to the
Fermi surface. In order to obtain singular effects on
either property, the impurity spin states must be de-
generate and the Fermi surface sharp. Magnetic fields

quench the singular behavior. When the splitting of the
spin states is of the order of the temperature times
Boltzmann's constant, a logarithmic behavior is com-
pletely quenched.

The perturbation of the electron's equilibrium prop-
erties due to magnetic impurities is too small to be ob-
servable. It is simple to understand why a perturbation
can observably aGect transport properties and leave
equilibrium properties essentially unaltered. As the
temperature goes to zero, the major mechanism for
high temperature resistivity, scattering from phonons,
vanishes rapidly and a small temperature-independent
residual resistance from impurities combines with a
small but effective term which varies logarithmically

' M. P. Saraehik, Phys. Rev. 131, A659 (1965).
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with the temperature. In the case of equilibrium prop-
erties such as the specific heat, the perturbation is of
the density of states at the Fermi surface which does
not vanish at zero temperature. The fact that we are
doing perturbation theory in a very small quantity
J/lip makes the third-order singular term unobservable
in the case of metals. Stated in another way, for trans-
port coefficients we are perturbing from zero, for equi-
librium properties we are perturbing from one.

Although this calculation does not predict an ob-
servable specific-heat excess due to magnetic impurities
above their ordering temperature, such an excess is in
fact observed. Experiments by Frank, Manchester, and
Martin~ on dilute systems of Cu-Fe show that although
the excess resistivity can be well described by a ln T
term down to about 5'K indicating negligible internal
magnetic fields, there is an excess specific heat of the
same order of magnitude as the electronic specific heat.
The excess is fitted quite accurately by a function of
the form

AC~ cT ln'T

down to about 1'K. The order of magnitude of the
effect shows that one will have to go outside the realm
of perturbation theory in order to explain this interest-
ing anomaly.

In recent papers, Suhl' and Kondo' have shown that
an infinite summation of terms replaces the logarithmic
singularity in the scattering probability by a resonant
scattering away from the Fermi surface. When

~

J'/p~

&&in(ir/kT)«1, the lowest order logarithmic term oc-
curring in perturbation theory gives the dominant be-
havior of the resistivity. The temperatures at which the
anomalous behavior in the specific heat. occur are
sufficiently high for perturbation theory to be an ade-
quate representation of the infinite summation. How-
ever, as we have shown the s-d exchange used as a
perturbation does not explain the experimental results.

be extremely difficult. We will use a much simpler form
for the distribution, which has the same general prop-
erties as the true one and can be expected to give the
Fermi-surface effects correctly. The functional form we
choose for the distribution function is

f(e) =1: 0(e(rr( —$,

C

=Q——: (r)—$(e(Q$, (A1)

=0 (re( e.

The form chosen in (A1) is similar to the choice made
by Koppe" and Wolfarth" in calculations of the effect
of exchange on the specific heat with Coulomb inter-
actions present.

First we determine the condition on n which ensures
the constancy of the number of electrons

(2m)'"
sN=Q f= V—des'"f(e)

k, e

+2k' P $f lnf +(1—f„) ln(1 —f„)j. (A4)

= L(2') P t'/2n'] V(ri()»s

&&(8—s(&/~&)+ r's(k/~k)'+ j (A2)

We may solve (A2) iteratively for rsvp, using (2.9)
and (2.10).

rsvp = &+ 2 5 (1/4g) (5'/Is p)+0(k'/up') (A3)

Since the width of the Fermi surface ( is proportional to
kT, we neglect terms of order $($/pp)' in (A3).

The thermodynamic potential of the noninteracting
system is

n&o&=2+( „—„)f„
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APPENDIX

Approximate Single-Particle Distribution Function

As mentioned in Sec. 3, if we were to use the true
Fermi distribution function in (1.6), the integrals would

7 J. P. Frank, F. D. Manchester, and D. L. Martin, Proc. Roy.
Soc. (London) A263, 494 (1961).

8 H. Suhl, Phys. Rev. 138, A515 (1965).' J. Kondo (to be published).

The distribution function (3.1) depends upon two
parameters. One of them rr was determined in (A3) by
6xing the density of the system. The second $ will be
chosen by minimizing Q"&. The first term of (A4) is the
energy of the noninteracting electrons

U&Pi=2 Q e„f„=sN(0) Vjj,p'-
where we have used the distribution function (A1), the
expansion (A3) for n$ and introduced the density of
states N(0) given in (2.6). The entropy of the system
enters 0&'&,

S=—2k P [f„lnf„+(1 f,) ln(1 —f,)$—
=kN(0) V/+0(p/lip'), (A6)

"H. Koppe, Z. Naturforsch. 2a, 429 (1947)."E.Wolfarth, Phil. Nag. 41, 534 (1950).
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using the distribution function (A1). The thermo-
dynamic potential of the noninteracting system is then

0' l = 45cV(0) Vtso'+, ~, X(0)V(' tsz—X cV—(0)VfkT. (AI)

The minimum Qi" is at that value of $ for which

places m' by 3'. This approximation is certainly sufhcient
for our purposes.

We can rewrite the distribution function (Ai) using

(A3) and the energy variable measured relative to the
Fermi energy:

namely,

The specific heat

c)Biol/ct(= 0,

fo 6k——T.

(AS)

(A9) f(e) =1:
(A13)

C= T(c)S/ciT) (A10) 1 . 1 - 1

may be calculated from the expression (A6) obtained
for the entropy. The result is =0 zk« (A14)

Co/V =6X(0)k'T. (A11)

We now can see the damage done by our choice of the
distribution function. The exact result for the term in
the free-electron specific heat linear in temperature is"

From (A9), (A13), and (A14), we may obtain the de-

pendence of the Fermi energy on temperature for the
noninteracting system

Co/V = —,
' o'rA(r0) k' T. (A12) Once again we may compare with the exact result"

Thus our crude form for the distribution function re-

"F.Seitz, Ref. 12, p, 149.

and find that x' has been replaced by 3'."F. Seitz, 3IIodern Theory of Solids (McGraw-Hill Book
Company, Inc. , New York, 1940), p. 150.

(A16)
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Specific Heat of Alpha-Manganese at Liquid. -Helium Temperaturest
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(Received 25 March 1965)

The heat capacities of two independently prepared specimens of a-Mn have been measured between 175
and 4.2 K. The coe%cient of the contribution linear in T is found to be (30.6~1.5))&10 cal/mole( K)~.
This value is in reasonable agreement with that determined by Booth, Hoare, and Murphy from measure-
ments made in the liquid-hydrogen range.

INTRODUCTION

1 PUBLISHED reports' ' of measurements of the hea, t
capacity of n-manganese at low temperatures have

f Work supported in part by the U. S. 06ce of Naval Research.
Now at the Scientific Laboratory, Ford Motor Company,

Dearborn, Michigan.
' G. L. Booth, F. E. Hoare, and B.T. Murphy, Proc. Phys. Soc.

(London) $68, 830 (1955).
2 L. D. Armstrong and H. Grayson-Smith, Can. J. Phys. A27,

9 (1945).
'R. G. Elson, H. Grayson-Smith, and J. O. Wilhebn, Can. J.

Res. A18, 83 (1940).' N. M. Woolcott, Proceedknt, s of the Conference on Physics of
I-om 2'emperatures, Paris, 1955 (Centre Nationale de la Recherche
Scientifique, and UNESCO, Paris, 1956), p. 286.

5 C. H. Shomate, J. Chem. Phys. 13, 326 (1945).
c K. K. Kelley, I. Am. Chem. Soc. 61, 203 (1939).

yielded convicting values for the electronic heat capacity
and the Debye theta. It now appears that at least some
of the discrepancies are attributable to the contami-
nation of Q.-iVln with other phases. ' The present work7
is a report of the helium-temperature heat capacities of
two separate specimens prepared independently by
diBerent procedures and known to be in the alpha phase.
The two results agree and are consistent with the heat-
capacity data of Booth, Hoare, and Murphy, 'obtained
between 11 and 20'K using Mn specimens of known
crystal structure.

'The data presented here constitute a section of the PhD
thesis of G. L. Guthrie (Carnegie Institute of Technology, 1957).
A preliminary report appeared in abstract form t Phys. Rev. 98,
1181 (1955)].


