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The Fermi surfaces of chromium, molybdenum, and tungsten were calculated using linear-variation
functions consisting of 19 augmented plane waves (APW). The muffin-tin potential was constructed from a
superposition of atomic potentials centered on the lattice sites. The atomic orbitals were solutions of the
Hartree-Fock-Slater self-consistent Geld. Constant-energy surfaces throughout the Brillouin zone and the
volume contained by each of the regions were determined. The Fermi surface was selected from these energy
surfaces by the requirement of equal hole and electron volumes. The density of states at the Fermi energy was
determined from the slope of the volume-vs-energy curve. The Fermi surfaces of Mo and W were found
to be almost identical and similar to the model postulated by Lomer for the Cr-group metals. The Fermi
surface of Cr, however, differs from the other two by the disappearance of the hole pockets around X and
a shrinking of the knobs on the electron jack.. A quantitative comparison between experimental results and
the Fermi surface of Mo is presented.

I. INTRODUCTION

A MODEL for the Fermi surface of the chromium-
group metals was proposed in 1962 by Lomer. '

This model was not the result of ab initio electronic-
structure calculations for these elements. It was deduced
from the energy bands for iron which had been deter-
mined theoretically by Wood' using the augmented-
plane-wave (APW) method. Also available for considera-
tion at that time was a tight-binding calculation for Cr
by Asdente and Friede13 in which only the d bands were
considered. Prior to this, there was work. done on W
by Manning and Chodorow' using the cellular method.

The Lomer model has met with varying degrees of
success in comparisons with experimental results. In
the original paper the larger pieces of the surface (holes
at H, electrons at P) were discussed qualitatively, and
the antiferromagnetic state of Cr was considered. In a
brief note two years later, Lomer' corrected the model
such that it was consistent with the requirements im-

*Contribution No. 1674. Work was performed in the Ames
Laboratory of the U. S. Atomic Energy Commission,' W. M. Lomer, Proc. Phys. Soc. (London) 80, 489 (1962).' J.H. Wood, Phys. Rev. 126, 517 (1962).' M. Asdente and J. Friedel, Phys. Rev. 124, 384 (1961).

M. F.Manning and M. I.Chodorow, Phys. Rev. S6, 787 (1939)
'W. M. Lomer, Proc. Phys. Soc. (London) 84, 327 (1964).

posed by crystal symmetry. Here again the qualitative
features of the larger pieces of the surface were discussed.

In 1963 Brandt and Rayne' reported de Haas —van
Alphen data for the three metals. However, these fre-
quencies corresponded to very small pieces of the surface
not well defined in the model (holes at E and either
electrons or hole pockets along PH). Nevertheless, it
was observed that the results for Mo and W were quite
similar to each other and di6erent from those for Cr.
Further low-Geld measurements on W by Sparlin and
Marcus' have been interpreted by these authors as
suggesting that the electron surface at I' has the shape
of a child's jack with knobs at the end of each arm.
Additional de Haas —van Alphen data for W has been
reported by Girvan, ' which lends further support to the
general features of the larger pieces of the Lomer model.
The size-effect experiments by Walsh" have pointed out
the separation of the electron and hole regions along
FH, attributed to spin-orbit coupling.

' G. B. Brandt and J. A. Rayne, Phys. Rev. 132, 1945 (1963).' D. M. Sparlin and J. A. Marcus, Bull. Am. Phys. Soc. 8, 258
(1963).' D. M. Sparlin and J. A. Marcus, Bull. Am. Phys. Soc. 9,
250 (1964).' R. F. Girvan, M.S. thesis, Iowa State University, 1964
(unpublished).' W. M. Walsh, Jr., and C. C. Grimes, Phys. Rev. Letters 13,
523 (1964).
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In light of the general qualitative success of this
model, it was decided to perform ab initio calculations
of the Fermi surfaces for the chromium group, in the
hope of obtaining quantitative information which
could be compared with experiment. In these calcula-
tions no a priori consideration was given to the antifer-
romagnetic state of Cr, nor to the relativsitic effects
which should yield small corrections in W. In all three
metals the Fermi surfaces were computed in the same
manner, using the APW method, These calculations
were programmed such that constant-energy surfaces
could be traced out in the Brillouin zone. The volumes
contained by the various pieces of surface were deter-
mined, and the Fermi energy chosen by the require-
ment of equal hole and electron volumes. A discussion
of the methods employed is given in the following
sections.

THEORY

Hartree-Fock-Slater Self-Consistent-Field
Calculation

The potential was constructed from a superposition
of atomic potentials centered on the lattice sites. The
atomic potentials were found from Hartree-Fock-Slater
(HFS) self-consistent-field calculations similar to those
described in detail by Herman and Skillman" (HS).
Although the program established for these calculations
was different in some details from the one published by
HS it provided no additional information. This aspect
of the project served only as an independent check of
their results. Agreement was established for the Cr-
group metals out to the fourth figure in all of the
eigen values.

In performing these calculations, however, it was
found to be more convenient to use a logarithmic scale.
Because the distance between radial nodes increases
rapidly for a given orbital, it is necessary to use an
expanding scale of some sort. HS chose to periodically
increase the increment size. This can be avoided by
using x=lnr as the independent variable. By simul-

taneously changing the dependent variable from R
to r'"R, we obtain a radial equation containing no first
derivative. This has been pointed out by Hartree. "

A diferent method for the numerical integration of
the radial equation was used. The method commonly
employed is due to Hartree and consists of comparing
inward and outward integrations of the radial equation
(for a trial eigenvalue) in the region of the outermost
inflection point. This technique assures that the solu-
tions have the proper behavior at the two boundaries.
The trial eigenvalue is adjusted on the basis of the
mismatch in logarithmic derivatives at the joining
point. The method for this is developed from perturba-

"F. Herman and S. Skillman, Atomic Structure Calculations
(Prentice-Hall, Inc. , Englewood Cliffs, New Jersey, j.963)."D.R. Hartree, Culculatioe of Atomic Structures (John Wiley
8z Sons, Inc., New York, 1957).

tion theory and involves an integration over the radial
coordinates. A method is presented in the Appenc]ix
which eliminates the need for this joining point and
hence avoids the problems associated with making the
function continuous at this point. In addition, the
corrections to the eigenvalue are given by an algebraic
expression which can be easily evaluated after each
sweep over the range of the radial coordinate.

The result of the HFS calculations is a tabular record
of the self-consistent potential and the atomic orbitals
with corresponding eigenvalues. In the construction of
the muon-tin potential, the only information needed
is the total electronic charge density which one obtains
from the orbitals.

The crystal potential was constructed by superposing
atomic potentials centered on neighboring lattice sites.
In the Slater free-electron approximation the average
exchange potential is proportional to p'", where p
is the total electronic charge density. This requires
that the superposing be done in two steps. The ordinary
electrostatic potential given by the solution of Poisson's
equation, using the charge density p, is superposed to
give the electrostatic contribution to the crystal
potential. The charge density itself is then independently
superposed to approximate the crystal charge density.
The p'" exchange potential is then computed using this
superposed charge density. The resulting contribution
is added point by point to the crystal electrostatic
potential to yield the total crystal potential.

The method of superposing the radial functions
should be discussed. Starting with the function (it
might be the electrostatic potential or the charge
density) on a particular site, we consider the contribu-
tions from the same function centered on neighboring
sites. It we limit ourselves to constructing a spherically
symmetric potential, then the contributions from
neighboring centers will depend only on the distance
from the origin to the site. There will, in general, be
several equidistant neighbors, and hence these can all
be taken into account simultaneously by an appropriate
factor.

A procedure for determining the contribution from
the function y(r) centered on a lattice site a distance
R„ from the origin was given by Lowdin" and is known
as the alpha summation method. This method is very
general and allows the construction of a nonspherically
symmetric potential. By retaining only the lowest
order term in the spherical-harmonic expansion, the
resulting expression is simply

This gives the spherically symmetric contribution at r
due to the function y (t) centered at R„.Thus the super-

'3 P. O. Lowdin, Advan. Phys. 5, 1 (1956).
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position consists of summing these contributions from
all the lattice sites in the vicinity of the origin.

The resulting potential, it is hoped, will be slowly
varying in the region between atomic sites because of
the overlapping of the functions from adjoining neigh-
bors. Of course, it will not be exactly constant; but in
many cases it is meaningful to spherically average the
potential in this outer region and replace it by a constant
value. This was the procedure followed in these cal-
culations. This constant was then subtracted from the
spherically-symmetric potential inside the Slater sphere
so that the potential in the outer region could be taken
as zero. The resulting potential was used in construct-
ing the APW matrix elements as discussed in the
following section.

APW Method

The APW method has certainly been established as
an important tool in the calculation of electronic prop-
erties of crystals. In order to avoid listing the impres-
sive array of theoretical results already produced by
this method, only the recent results by Mattheiss" will
be cited. One can easily trace the abundant literature
by starting with this reference. For the most recent
results the reader is referred to the Progress Reports of
the Solid State and Molecular Theory Group at MIT.
All of this work has been motivated by J. C. Slater who
was responsible for the original formulation of the
method in 1937."

The method takes full advantage of the muffiin-tin
form of the potential and constructs a basis function
from plane waves and from atomic orbitals in the
spherically-symmetric potentia, l. The APW for an
electronic state k consists of a plane wave in the outer
region and a summation of atomic orbitals inside the
Slater sphere. The coefficients in the atomic-orbital
expansion are chosen such that the functions in each
region are continuous on the Slater sphere. The result-
ing APW, however, has a kink due to a discontinuity
in the slope. This is taken into account by including
appropriate surface integrals in the matrix elements.
These integrals give the contribution to the kinetic
energy due to the kink in the wave function. The re-
sulting matrix elements are given here for one atom in
the unit cell of volume 0:

4~Zs j,(~k,—k, ~Z)
(a—Z);,= (k,'k,—Z)

~
3,,—

n [k,—k[
4~R' ~

+ P (2l+1)P&(k; k;)j &(k;E)
0

&&j,(kP) P„'(Z,J:)(„,(ZP) j; (2)

R is the radius of the Slater sphere and can be any

'4 L. F. Mattheiss, Phys. Rev. 134, A970 (1964)."J.C. Slater, Phys. Rev. Sl, 846 (1937).

TABLE I. Some parameters and results
of APW calculation.

Lattice constant
Slater-sphere radius
Fermi energy
Density of states G(Ii)
Electronic-specific-heat

coefficient (cal/mole'K')

5.4512
2.34
0.647
0.0895

Mo

5.9468
2.46
0.542
0.0695

5.9810
2.46
0.548
0.0673

3.00 (—4) 3.04 (—4) 2.98(—4)

The standard method for calculating these functions is
to start with two arbitrary values jc(Z) and jr, (Z)
where L, is large enough that jI,(Z) is in the asymptotic
region. After determining the functions j&(Z) from
/=L down to I,=o with the recurrence relation, the
normalization can be fixed by computing any of the
lower order functions explicitly. This method avoids
the loss in accuracy resulting from repeatedly subtract-
ing numbers which are almost equal. Finally, the
logarithmic derivatives of the radial functions can be
determined from outward integrations of the radial
equation, using finite-diBerence approximations similar
to those described in Appendix A.

The secular determinant resulting from the linear
variation function using APW's gives the dispersion
relation E(k) for the conduction electrons. It should be
noticed that the energy appears both explicitly and
implicitly in these matrix elements. Hence the eigen-
value problem necessarily involves finding the roots of
the secular equation numerically. Having speci6ed the
quantum numbers of the crystalline state (k), it is
necessary to examine the determinant as a function of
energy and find the roots. For a given value of energy
it is necessary to perform an outward integration of the
radial equation for each value of l. This requires ex-
tensive computing, and so in this work it was decided
to fix the energy parameter and solve the resulting
eigenvalue problem for the constant-energy surfaces.
In this way the integrations could be performed once
and for all, and only the algebra associated with the
other terms in the ma, trix elements had to be repeated
each time. This does not represent a great saving of
computer. time, but it does yield important information

value (less than half of the interatomic spacing) such
that the potential in the region outside the sphere is
nearly constant. The radii used in this calculation are
listed in Table I. The l summation was truncated at
/=10. The Legendre polynominals P~(Z) were cal-
culated from the recurrence relation

EP((Z) = (2/ —1)ZP( g(Z) —(/ —1)Pg s(Z), (l&2) (3)

starting with Pp(Z) =1 and Pt(Z) =Z. The spherical
Bessel functions were computed from the recurrence
relation

2(l—s)
j~(Z) = —j~-~(Z) —j~-p(Z) .

z
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FIG. 1. Brillouin zone for body-centered
cubic-crystal lattice.

about the energy surfaces near the Fermi surface. Of
course one does not know the Fermi energy a priori.
However, the requirement that electron and hole
volumes be equal is sufhcient to determine the Fermi
energy. This aspect of the calculations will be discussed
in more detail later in the paper. It might be mentioned
for the sake of completeness that the secular deter-
minants were solved by the method of triangularzation.
This amounts to getting zeros under the main diagonal

by adding and subtracting multiples of the rows.
A few systematic attempts at this will lead one to the
expression

+p'bazp
D„„=d„,

where I is the minimum value of v or p, . This gives the
rule for transforming the original matrix elements d„„
into the triangularized form. The value of the deter-
minant is then mD;;.

Lattices

The crystal structure for the chromium group metals
is bodycentered cubic. The lattice constants" are
listed in Table I.'~ This structure and the associated

Fro. 2. 1/48 zone showing coordinate systems used
in tracing energy contours.

"Intr ection'/ Tables for X-ruy Crystallography (Kynoch
Press, Birmingham, England, 1962), Pol. III."Units are such that e'= 2, ta =$ and h =2e. Thus energies are
in rydbergs and distances in Borh radii.

reciprocal lattice are reviewed by Jones. 's The Brillouin
zone is shown in Fig. 1. The 1/48 zone is outlined by
the points of high symmetry I'PÃH. The coordinates
of these points are indicated on the figure in units of
2sr/d. In this calculation the set of 19 reciprocal lattice
vectors nearest the origin were used for all points
throughout the zone. This is a slight disadvantage to the
points near the P, E, and H. By increasing the basis set
to 26 lattice vectors, one can include all those vectors
for which (Ic+K~ &4sr/d with Jc anywhere in the 1/48
zone. This probably would have been better, but the
calculations were much too extensive to repeat for this
reason alone.

In the Lomer model the Fermi surface is located
along the I'H axis and at the point E.Anticipating this,
two coordinate systems for tracing out the energy
contours were established: cylindrical coordinates with
I'H as the azimuthal axis and angles measured from
the I'EH, and spherical coordinates centered at E with
3lP as the azimuthal axis and angles measured from
the plane ÃI'P. These coordinate systems in the 1/48
zone are shown in Fig. 2.

Constant-Energy Contours

The procedure for tracing out the constant-energy
surfaces will be discussed. Along I'H for instance, the
polar angle between the planes I'PH and I'EH was
divided into four equal intervals. Then for a particular
plane the s coordinate was specified, and the secular
determinant was examined as a function of the radial
coordinate to determine the roots. These roots were
located by searching for a change of sign and then using
repeated linear interpolations. The roots represent the
intersection of the energy surface with the plane. A
similar procedure was carried out at the symmetry
point S where the azimuthal angle between the planes
gPI' and ÃI'H was also divided into four intervals.

RESULTS AND DISCUSSION

Fermi Energy and Density of States

The volume contained by each of the pieces of surface
for a particular value of the energy were numerically
determined from the tabular data. The assignment of
electrons and holes to the various regions was deter-
mined on the basis of whether the volume increased or
decreased with an increase in the energy. In Fig. 3
these volumes are plotted as a function of the energy
for the three metals. The Fermi energy is determined by
the requirement of equal hole and electron volumes. The
results are given in Table I.

The density of states at the Fermi energy can be
determined from Fig. 3. The dehnition of the density of

"H. Jones, The Theory of Brsllolsl Zortes artd Electrortsc States
il Crystals (Interscience Publishers, Inc. , New York, 1960).
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FIG. 3. Hole and electron
volumes contained by en-
ergy surfaces.
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states is
G(E) = (1/4w')8 Vs/dE,

where G(E)dE is the number of electrons per unit
volume of the crystal (the factor of 2 for spin degeneracy
is already included) with energy in the range E to
E+dE. dVs is the volume in reciprocal space between
the constant energy surfaces E and E+dE. dV&/dE
is therefore the slope of the volume-versus-energy
curve. Thus

d Vk/dE=48t„(dv. /dE) (des/dE) j.— (7)

The v corresponds to volume in the 1/48 zone; subscripts
refer to electrons and holes. The minus sign is needed
because an increase in energy results in a decrease in
the hole volume. The values of G(E) determined from
Fig. 3 are given in Table I. The low-temperature
electronic-specific-heat coefficient is related to this by

V = (~'/3) (&'/I )G(E), (8)

where k is the Boltzmann constant and p is molar
density. The predicted specific-heat coefhcients are
listed in Table I.

the qualitative features of the Lomer model (see Fig. 7).
Cr divers from these by the absence of the hole pockets
at E and by a reduction in the size of the knobs on the
electron jack. The pockets along FH are found to con-
tain electrons. A quantitative comparison between
these surfaces and experimental results will now be
considered. Because Cr is complicated by the magnetic
state and % is heavy enough for relativistic effects to
be important, the characteristics of the Fermi surface
of Mo will be emphasized.

The de Haas —van Alphen frequencies can be predicted
from extremal areas of the Fermi surface using the On-
sager relation f =Ebs where E=ch/27re=374. 1(6).
This gives f in 6 with As measured in atomic units.
The various extremal orbits are shown in Figs. 8 and 9.
The corresponding de Haas —van Alphen frequencies

MOLYBDENUM

Fermi Surfaces

The energy surfaces calculated for the middle set of
points in each of the curves in Fig. 3 are shown in
Figs. 4, 5, and 6. One notices immediately that the
surfaces for Mo and % are quite similar and exhibit FIG. 5. Intersection of molybdenum Fermi

surface with 1/48 zone faces

CHROMIUM
TUNGSTEN

Fzo. 4. Intersection of chromium Fermi surface
with 1/48 zone faces.

'H

FIG. 6. Intersection of tungsten Fermi
surface with 1/48 zone faces.



Y. L. I OU C KS

Fio. 7. Lomer model for chromium-group metals.

are listed in Table II. Without detailed angular de-
pendence of these frequencies it is dificult to compare
all of them vrith experiment. For instance, the holes at
E and the electron pockets along FH should have com-
plicated angular dependence because of the diferent
possible orientations of each in the Brillouin zone. There
are the equivalent of 6 hole pockets and 6 electron
pockets in the first zone (Fig. 1).However, Brandt and
Rayne' have reported a large number of frequencies for
Mo ranging from 5.03 to 8.00(6) G. Most of these can
apparently be associated with the small electron pockets
along I'II. The larger frequencies reported approach the
magnitude predicted for the Ji(100) orbit around the
necks of the jack. They also report two frequencies
at 24.2 and 25.8(6) G for the (110) direction. These
fall in the range of frequencies predicted for the holes
at E. In fact, the extremal area of the hole pockets in
the plane NPH Lwhich corresponds to one of the (110)
frequencies7 yields the frequency 24.1(6) G. For
completeness, the NPI' cross section yields 30.6(6)
and I'NH yields 16.5(6) G.

A further comparison can be made with the de

Haas —van Alphen measurements on Mo communicated
by Girvan. " In the (111) direction he has preliminary
results which indicate frequencies at 5.7, 25.5, 31.6,
37.2, 91 and 110(6) G. The first of these could be
assigned to the electron pockets along FH. The next
three are in the range predicted for the holes at E.
Of course, the frequencies from orbits on the knobs of
the jack (orbit J3) are expected to be about 35(6) G.
Thus, the higher frequencies from the holes at E and
the ones from the knobs are the of same magnitude.
Considering the two larger frequencies, the value 91(6)
G could be associated with either the orbit Ji(111)
or J&(111).The latter was not determined exactly, but
is probably a little larger than Ji(111) which yields a
frequency of 72.3(6) G. The experiments. l value 110(6)
G agrees closely with the theoretical value for the hole
orbit H(111).

Girvan also reports the following possible frequencies
in the (100) direction: 5.43, 10.8, 24.0, 33.3, and 165 (6)
G. The smallest value is gain attributed to the elec-

FIG. 9. Orbits on molybdenum hole
octahedron. H-H (100); I-H (110);
I-H (111).

tron pockets along I'H. The next frequency 10.8(6) G
is either a harmonic or might be associated with the
neck orbit J2(100). The intermediate values are of the
same order of magnitude as the predicted frequencies
for the holes at N or for the knob orbit Js(100). The
largest frequency agrees closely with the predicted
value 168(6) G for the holes at H.

From the above discussion it is concluded that the
large orbits on the electron jack and the hole octahedron
are easily identified and agree quantitatively with the
experimental results of Girvan. Also it is likely that the
smaller frequencies reported by Brandt and Rayne are
due to orbits on the electron pockets along FH. The
frequencies of the orbits on the hole pockets at Ã
range from about 16 to 32(6) G, but the frequencies
from the knobs on the jack should overlap the upper
portion of this range. Only the availability of the

FIG. 8. Orbits on molybdenum electron jack. (A)-J& (111);
(8)-Jy(110) (C)-A(100); (D)-J2(100), (E)-J8(100); (F)-J'4(110);
(G)-Jg (111).

'QR. F. Girvan (private communication). I am grateful to
Mr. Girvan for informing me of these results prior to publication.
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TABLE II. Predicted de Haas-van Alphen
frequencies (G).

TABLE IV. Electron specific heat coe%cient
y(10 4 cal/mole'K').

Electron jack

Hole octahedron

Holes at N

Electron pockets FH

Orbit

J& (100)
J (100)
I (100)
J&(110)
Z (110)
Z (ii 1)
X (111)

II (111)
II (110)
a(10O)

All directions

Frequency

227. X10'
11.3
33.6

154.
64.7 —+ 76.4
72.3

Not measured

108
130
168

16.5 ~ 32.3

Present work
Manning and Chodorow

(Ref. 4)
Horowitz and Daunt

(Ref. 22)
Gupta, Cheng, and Beck

(Ref. 23)
White and Woods

(Ref. 24)
Kirillin, Sheindlin, and

Chekhovskoi (Ref. 25)
Shimizu, Takahashi, and

Katsuki (Ref. 26)
Clusius and Franzosini

(Ref. 27)

Cr

3.00 3.04

5.1 ~0.4

3.76

3.60 5.24

3.6

3.7 —3.8 5.05—5.25

2.98

1.8 ~0.7

2.88

10.1

1.8 -5.0

Not calculated —Same order of
magnitude as Js(100).

experimentally determined angular dependence of the
frequencies would clarify this assignment of orbits.

The size-effect data of %alsh et al. ,"on S' provide a
further comparison with the theoretical results. The
extremal dimensions of the jack and the octahedron
are listed in Table III."Since Mo and W have essentially
the same Fermi surfaces if relativistic effects are
neglected, one can presumably see from this table the
changes in the surface caused by these effects. As
Walsh' has pointed out, the jack and octahedron must
be split apart along I'Il by the spin-orbit coupling.

Another experimental result which can be predicted
is the low temperature electronic-specific-heat coe%cient
y. This was discussed in a previous section of the paper.

The theoretical values are presented in Table IV with
a variety of experimental results. " '

As a 6nal comparison with experiment, those prop-
erties which depend on the surface area of the Fermi
surface were predicted for Mo. The surface area of the
jack was determined in a rather crude fashion. There-
fore all values are quoted to only two signi6cant figures.
The results are given in Table V. Fawcett and Griffiths28

have experimentally examined the anomalous skin
effect for the Cr-group metals. The quantity measured
is (1/Z) where Z is the surface conductance. By using
(1/Z) ' for (Z') they were able to calculate the surface
area S using

S= (6V3vr'(u'h/e') (Z)'.

The above approximation in the averaging procedure
is known to underestimate S for anisotropic surfaces.
The experimentally determined value for Mo is 1.74
a.u. as compared to our value of 6.7 a.u. Using the

TABLE III. k vectors of Fermi surface. TABLE V. Surface area of Mo and related parameters.

W (expt)' W (theory)b Mo (hteory)'

Electron jack
(100)
(110)
(111)

Hole octahedron
(100)
(110)
(111)

Holes at N
along NP
along NF
along I'II

0.587
~ ~ ~

0.219

0.411
0.316
0.265

0.613
0.270
0.248

0.428
0.317
0.264

0.608
0.257
0.232

0.445
0.332
0.282

0.195
0.141
0.100

& Walsh et al.
b Matheiss (Ref. 21) APW calculation.
o Present work.

"W. M. Walsh, Jr., and C. C. Grimes, Phys. Rev. Letters 13,
523 (1964)."L.F. Mattheiss and R. E. Watson, Phys. Rev. Letters 13,
526 (1964).

Electron jack
Hole octahedron
Electron pockets (6)
Holes at X (6)

3.2
1.6
0.4
1.5

Total surface area
(1/s) '
~/if)

6.7 atomic units (s.. u.)
'I.6X10' cm/sec
7.4X10'4 esu

22 M. Horowitz and J. G. Daunt, Phys. Rev. 91, 1099 (1953)."K. P. Gupta, C. H. Cheng, and P. A. Beck, J. Phys. Radium
23, 721 (1962).

~4 G. K. White and S.B.Woods, Phil. Trans. Roy. Soc. London
21.5A, 35 (1959).

25 V. A. Kirillin, A. E. Sheindlin and V. Va. Chekhovskoi,
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APPENDIX

An algorithm for the numerical of the radial Schrod-
inger equation is discussed in this Appendix. This
equation takes the form

Y"(x) =g(x) Y(x) (A1)

theoretical values for 5 and p, two additional physical
quantities can be calculated":

o/(l) = (e'S)/(6n-'h), (10)

(1/w)= (6h'r)/(h'5). (11)

o is the dc conductivity, (l) is the electron mean free
path, and v is the electron velocity at the Fermi surface.
These results are also listed in Table V although they
are not readily compared with experiment.

D, = —(ZP/12)e'*(e'~Y;+i*+10Y,*+e '~Y; i*). (A9)

We assume a solution in the form

BY;=E,5F;~i+F;9+G;.
Repeated. substitution into (AS) yields

E,= —A;/R, ,

F;= —(D,+C,F,-,)/R;,
G'= (Q~ C~G—~ i)/~-~,

(A10)

(A11)

Q; is called the residual; it will approach zero as V
and Y;* approach the correct solution. Using (AS)
and (A6) it is not difficult to show that (A7) becomes

A, 8F;+i+B,8Yg+C;8Y; i+D, Q =Qg,
where

where V=r'~'E. and x=lnr. Here
with

E;=B,+C,E, , (A12)

where
A, Y,'i+B,Y,+C,Y, i=0, (A4)

a( ) = '*L'+Y( *)l+(l+l)' (A2)

with X= —E. By writing the Taylor series expansion
at r, it is easy to show that

Y"i—2F;+F; i= dPY;"+ (6'/12) Y,". (A3)

Differentiating this twice and dropping the highest
order term, the fourth derivative can be expressed in
terms of second derivatives at neighboring points.
Using the original differential equation to eliminate
the second derivative we find

The solution at each stage of the iteration then
follows after the boundary conditions are specified.
The inner boundary condition at x~ —~ allows us
to set

Ei=e~~', Fi——0 and Gi ——Yi*—EiY&*. (A13)

From repeated application of (A11) we can then deter-
mine Eg,F~ and Gg corresponding to a grid point in the
outer tail region of the wave function. In this region the
%KB approximation is valid, and it is not difficult
to show from a comparison of (A10) and the asymptotic
form of the wave function that

a, =1—(a2/12)G,„,
B,= —2—(5S2/12)G;,

C, =1—(6'/12)G, i.
(A5) where

Q.=(Yg i* Gg i ag)/—(Fg i —brag), (A1—4)

a~= Y~* exp(Dv g')
b g ——~ exp( 2xg)/—(2+gg).

The differential equation is thus replaced by a
tridiagonal system of linear equations with coefficients
which depend on the eigenvalue and the potential. We
approach the solution of this set of equations by taking

X+Xb=h*,

Y,+5Y,= Y,*. (A6)

The philosophy is to assume that the true solution )
and F; differ from a, trial solution (indicated by a star)
only by the small quantities Q and bV, . This neces-
sitates a reasonable initial guess for the wave function
and eigenvalue. Since in general X~ and I;* will not
satisfy the difference equation, we write

~~*Y'+i*+B~*Y~*+C~*Y~-i'=QJ (A&)

"A. B. Pippard, Rept. Progr. Phys. 23, 176 (19%).

Here J corresponds to the grid point at the outer
boundary and xg is the value of x at that point. Having
determined 5X from (A14), we set 8Y'=0 in order to
specify the normalization. Then repeated application
of (A10) yields the corrections to the trial wave function.

This algorithm has been found to converge after only
a few iterations in most instances. However, it is usually
necessary to do some preliminary calculations before
using this method. It should be obvious that the trial
function must have the same number of nodes desired
for a particular orbital. Hence, the same procedure sug-
gested by Hartree and used by HS for counting nodes
and getting an approximate eigenfunction and eigen-
value is recommended. This is particularly important
for the higher orbitals where the eigenvalues get very
close together.


