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Derivation of Kinetic Equations for Slow-Neutron Scattering*

J. M. J. VAN LzEuwENt

Departrwent of Chemistry, Cornell University, Ithaca, Sex Pork

AND

SIDNEY YIP

Department of Engineering Physics and Materials Science, Cornell LInieersity, Ithaca, New Fork

(Received 4 December 1964)

It is shown that for moderately dense classical gases Van Hove's correlation functions G(r, t) and G, (r, t)
can be calculated from kinetic equations. The kinetic equations are derived from the cluster expansion of
a one-particle distribution function which describes the propagation of a density-momentum impulse. For
times short compared with the time between collisions, the density series can be used directly. But for longer
times a diRerent treatment is necessary because of the increasing importance of multiple collisions. Con-
sidering only the dominant terms, the series is shown to be the iterated solution of an integral equation. In
lowest order, this equation has the form of a linearized Boltzmann equation in which the collision kernel is
nonlocal because of the finite extent of the particles, and is non-Markofhan if the duration of a collision is
finite. The present approach permits a systematic treatment of coherent as well as incoherent scattering. In
particular, we demonstrate an earlier assertion that the appropriate equations for studying the two kinds of
scattering are, respectively, the linearized Boltzmann equation and the neutron transport equation. The
eRects of statistical correlation are introduced approximately in the kinetic equations in lowest order.

I. INTRODUCTION

N recent years a great deal of interest has been
- generated in the use of slow neutrons as microscopic

probes of molecular dynamics in matter. While this
technique has yielded much useful information on
phonon frequency distributions and dispersion relations
in solids, ' progress in the study of liquids has been more
limited and less well de6ned. In a well known work Van
Hove' has shown that slow-neutron scattering is com-
pletely described by the double Fourier transform of the
space-time functions G(r, t) and G, (r, t). These functions
are dehned as the equilibrium ensemble average of
products of appropriate time-dependent density opera-
tors. %hen treated quantum mechanically they are in
general complex and therefore have no simple physical
meanings. However, when treated classically, G(r, t) is
real and gives the probability of 6nding a particle at
(r,t) given that initially a particle was at the origin;
similarly, G, (r, t) gives the analogous probability in
which both particles are the same. Because in this
special context the functions are obviously time-dis-

p,.aced density correlation functions, the classical limit
of Van Hove's formalism has been widely used in
analyzing liquid data. ' ' Aside from slow-neutron scat-
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'For a recent review, see B. N. Brockhouse, in Phonons and
Phonon Interactions, edited by T. A. Bak (W. A. Benjamin Inc. ,
New York, 1964).' L. Van Hove, Phys. Rev. 95, 249 (1954).' G. H. Vineyard, Phys. Rev. 11Q, 999 (1958).

4 See for example, B.N. Brockhouse, Nuovo Cimento Suppl. 9,
45 (1958);A. Rahman, K. S. Singwi, and A. Sjolander, Phys. Rev.
126, 997 (1962).

~ In this paper we restrict our attention only to classical
systems. The use of classical G (r,t) and G, (r, t) in analyzing neutron

A

tering, G(r, t) or G, (r,t) is known to play a similarly
fundamental role in other dynamical processes such as
Rayleigh scattering of light, ' broadening of Mossbauer
lines, ~ and the scattering of conduction electrons by
lattice oscillations. ' It therefore appears that the be-
havior of these correlation functions are general dy-
namical properties of any interacting system.

It is generally recognized that the nonequilibrium
linear response of a system is closely related to its time-
dependent equilibrium correlation functions. This con-
nection has been useful in obtaining exact formal ex-
pressions for transport coeScients, ' but it is equally well
suited for studying correlation phenomena in terms of
relaxation processes. m In the case of G(r, t), the corre-
sponding dynamical process is that of propagating a
density impulse produced by a microscopic disturbance.
Just as in the kinetic theory of gases where a non-
equilibrium process is characterized by the time scale
involved, so it is appropriate here to characterize the
system relaxation according to the magnitudes of the
wavelength and frequency of the disturbance.

For very rapidly varying disturbances (wavelengths
of the order of the range of molecular forces and fre-
quencies greater than or comparable to the reciprocal of
a, collision duration) the relaxation is strongly dependent
upon the initial conditions. In any description the

scattering has been discussed by R. Aamodt, K. M. Case, M.
Rosenbaum, and P. F. Zweifel, Phys. Rev. 126, 1165 (1962); see
also M. Rosenbaum, dissertation, University of Michigan, 1963
(unpublished).

e R. Pecora, J. Chem. Phys. 40, 1604 (1964).' M. Nelkin and D. E. Parks, Phys. Rev. 119, 1060 (1960);
K. S. Singwi and A. Sjolander, ibid. 120, 1093 (1960).' G. Baym, Phys. Rev. 135, A1691 (1964).

See for example, J. M. Luttinger, Phys. Rev. 135, A1505
(1964)."L.KadanoR and P. C. Martin, Ann. Phys. (N. Y.) 24, 419
(1963).This paper deals with the slow space and time variation of
the correlation functions.
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collisions should. be treated as frequency-dependent
processes since such events are likely to be incomplete.
On such a short time scale one can also consider a time
expansion in which the expansion coefIicients are just
the frequency moments of the excitation spectrum (or
equivalently in scattering terms the ene'rgy-transfer mo-
ments). "The first few moments have been. used to show
a narrowing of the spectrum at certain wavelengths, "
an effect due to equilibrium spatial correlations.

At the opposite extreme of very slowly varying dis-
turbances the response is completely described by the
spatial relaxation of macroscopic variables. This is the
familiar region where the system is effectively in local
thermodynamic equilibrium, and it is only here that
phenomenological equations' " are known to be appli-
cable. Since the hydrodynamical behavior of density-
correlation functions are well known, measurements
carried out in the long-wavelength region should be
relatively simple to interpret.

In slow-neutron measurements typical wavelengths
are of the order of 10 ' cm, so it appears that the space-
time scales of interest are neither those characteristic of
the initial regime nor those of the hydrodynamical
regime. One is then concerned with the so-called kinetic
regime, where wavelengths and frequencies are of the
order of mean free paths and the reciprocal of mean free
times. Thus in contrast to the analysis of Rayleigh
scattering or the calculations of transport coeKcients
where the assumption of long wavelengths or zero fre-
quency is valid, a more general study of the propagation
of a microscopic density disturbance is required. From
the general standpoint of irreversible processes in fluids,
this problem is of interest since it provides a basis for
studying the extension of existing molecular theories of
transport.

Recently, it has been proposed that molecular de-
scriptions of G (r,t) and G, (r, t) can be formulated using
single-particle kinetic equations. ' "The basic assump-
tion was tha, t the correlation functions can be expressed
as momentum integrals of the appropriate one-particle
distribution functions (or conditional probability den-
sities). These descriptions have been applied only to
dilute fluids; consequently, the results do not take into
account of the effects of statistical correlation. In an
earlier work, Vineyard'7 has derived kinetic equations
for two-time molecular distributions, thus far the pro-
cedure has yielded only formal results. More recently a
kinetic equation suitable for the study of G, (r, t) has
been derived by Nossal. "This description is presumably

"G. Placzek, Phys. Rev. 86, 377 (1952); see also D. Rahman,
K. S. Singwi, and A. Sjolander, ibid. 126, 986 (1962).

' P. G. DeGennes, Physica 25, 825 (1959); also in IneLastic
Scattering of Xeutronsin SoLids and Liquids (International Atomic
Energy Agency, Vienna 1961),p. 239.

"Th. W. Ruijgrok, Physica 29, 617 (1963).
"M. Nelkin and A. Ghatak, Phys. Rev. 135, A4 i1964l."S. Yip and M. Nelkin, Phys. Rev. 135, A1241 (1964)."A. Gibbs and J. H. Ferziger, Phys. Rev. 138, A701 (1965)."G. H. Vineyard, Phys. Fluids 3, 339 (1960)."R.Nossal, Phys. Rev. 135, A1579 (1964).

more realistic at short times, but further clarification of
the validity of this approach seems necessary.

The aim of this paper is to supply a theoretical basis
for the ea,rlier calculations"" and to show in what
directions the equations should be modified to take into
account time-dependent collision effects and effects of
statistical correlation. The present method uses a
cluster expansion for the correlation functions similar to
those used by Mazo and Zemach. "Such an expansion is
restricted to times sma. ll compa, red to the mean free
time. Sy considering only the dominant terms for large
times, the expansion can be effectively extended to the
whole time domain by a summation of the dominant
terms. This technique is the same as that used in recent
transport theory" ";however, the equations in this case
are more involved since one has to retain the informa-
tion for short times as well. In the following description
only binary collisions and pairwise statistical correlation
are considered. The approach is therefore limited only
by the density of the system.

In Sec. II the definition of G(r, t) is generalized to a
correlation function f in phase space to emphasize the
symmetry in configuration and momentum coordinates.
On the basis of dynamical and statistical considerations

f is decomposed into two parts, one of which f6 vanishes
if statistical effects are completely ignored. An Ursell
series is developed for the more fundamental part f„
and a convolution relation connecting f, and fq is
derived in the approximation of only pairwise spatial
correlations. In order to treat the divergent terms in the
series at long times the concept of dominant terms is
introduced in Sec. III. Graphical representation is dis-
cussed, and it is shown that the dominant terms
correspond to a set of convected graphs with no cycles
known as Cayley trees. The formal derivation of a
kinetic equation for f, in. the Cayley tree approximation
is carried out in Sec. IV. The validity of this equation
for both short and long times is discussed. The deriva-
tion establishes unambiguously the relationship be-
tween the density-correlation functions and the various
kinetic equations, and also clarifies the basic difference
in the calculation of G(r, t) and G, (r,I). Finally in Sec.
VI some concluding remarks are given.

II. PROPAGATION OF A DENSITY-
MOMENTUM IMPULSE

%e consider a one-component system of iV monatomic
particles which is characterized by the Hamiltonian
function

H (x")= g —-+ Q 4 ((g.;,.),

where x~= (xi xz) is a vector in I' space specifying

"R. M. Mazo and A. C. Zemach, Phys. kev. 109, 1564 (1958).
~0 R. Zwanzig, Phys. Rev. 129, 486 (1963).
' R. Dorfman (private communication).
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the phase coordinates of the 1V particles, x,= (q;,p~) is a
vector in p space specifying the position q, and mo-
mentum p; of the ith particle, m is the particle mass, and
4 is the pair potential which depends only on the rela-
tive displacement q;; =

~ q;—q; ~. For simplicity we con-
sider no external potentials, in particular, the wall po-
tential will have no effect since ultimately we take N
and V, the volume of the system, to be in6nite. Once the
system is specified at some initial time, its trajectory in
F space is formally determined by applying Koopman's
time displacement operator exp(tLII). The Liouville
operator I.z is given by

e(pp', t) =( p b(p,—p)a(p, (t) —p'))

d'qd'q' f (xx', t) . (2.9)

The normalization valid for all times is

dx'f(xx'; t) = V(p B(x,—x))=]Vtt (p), (2.10)

One also has the momentum correlation function,

aH a a+ a ')t

L~=L(1" ]V)= P
ap, aq, aq; apt)

where

(tt(p) = (p/23rtrt)3{' exp( —pp'/2r)3), (2.11)
=Lo(1" A')+ P L'(3j),

v N y; 8
L'(1 .~V) = P L'(3) =P—

i=1 Spy Bqi

(2.2)

(2.3)

and p= (ksTp) ', with k]t the Boltzmann constant and
Tp the equilibrium temperature.

Similarly, corresponding to the self-correlation func-
tion

G, (r, t) = 33 '(p 8(q;—q)8(q, (t)—q')), (2.12)

(a a'] a
L'(3j)=

I

—
I

-q'(q* ).
&ap; ap,) aq,

(2.4) we can define

Thus if f(x~) is any function of the phase coordinates of
the system, at a time t later it will have the value

f, (xx', t) = 33 '(P a(x;—x)8(x, (t)—x')), (2.13)

f(x"(t))= exp(tL) f(x"). (2.5) e.(pp'; t) =(p a(p,—p)8(p, (t)—p')), (2.14)

The time-dependent density correlation function is
defined by with normalization

G(r, t) =~ '( 2 a(q.—q)a(q (t)—q')), (2 6) dx'f, (xx'; t) =y(p). (2.15)

where 23 is the density, ( ) denotes an ensemble average
over an X-particle equilibrium distribution (assumed
henceforth to be the canonical distribution), and the
system is assumed to be homogeneous and isotropic so
that G depends only the relative separation r =

~ q —q'
~

.
Since we will be concerned with the evolution of the
system in phase space, there is no need to restrict our
attention to an impulse only in configuration space. We
can therefore consider the more general correlation
function

N

f(xx', t) =33 '( p 8(x,—x)a(x, (t)—x')). (2.7)

It is obvious that f(xx', t) describes the propaga, tion of
a density-momentum impulse from x to x' during time t.
Once it is determined, G(r, t) follows immediately upon
integrations,

G(r, t) = d'p d'p'f(xx', t).

&&exp[tL(1. .j—1, j+1 j'—1, j'+1 ]V)7

+ (2.16)

U (1)= t, tL(1) = e tL3(1)

U (12) etL(12) etL3(12)

(2.17)

(2.18)

U (123) gtL(123) et[L(12)+Lt(3)] et[L(13)+Lt{2)]

g t[L(23)+Lt(1)]+2g tIP(123) (2 19)

The prime over the summation sign indicates that the
summation indices must not equal j and that they must

In order to obtain density expansions for f and f, we
make use of the Ursell expansion of Koopman's time-
displacement operator,

exp[tL(1 .V)]
= U, (j) exp[tL(1 j 1,j+1 . ,'V)]+—P' U, (jj')
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not equal to each other. Thus in (2.7) one can write

~(x;(t)—x') =LUj(j)+Z' U((ii ')

where
m(1 m)=(t(" (t m"g(q" q ) (2.25a)

and obtain

+2 Q' Up(jj'j")+ ]5(x;—x') (2.20) jj g(q" ' 'q~)

1V (&V 1)—(jV—m+1)

with
f(xx', t) =f.(xx'; t)+ f,(xx', t), (2.22)

Z
—P&(a&)

f.(xx';t)= V Q dx~y,

N 00 ].
f(xx', t)= V g (I(x,—x) U, (j)+P—

i, j=l m=1 m~

xx' U, (jj, j ) 5(x —x')). (221)

The factor m t is inserted to avoid double counting. The
first term in the square bracket corresponds to a de-
velopment in the speci&ed time interval t with particle j
streaming freely. Each term in the m sum describes the
phase-space trajectory of particle j resulting from
dynamical interactions with only those particles in the
set {j }=(jq.. j ). In other words, the particles

j, j&, ~ ~ ~, j form a dynamically independent cluster so
that their trajectories are entirely determined by their
mutual interactions. If we speak of particles as being
dynamically correlated if they appear in the argument
of the U& operator, then clearly unless i is equal to j or
is contained in {j } there is no way for the particle at
x to be dynamically correlated. with the particle at x' at
a time t later. This observation suggests a decomposition
of f(xx'; t) in the form of

X d'q~~r d'qx expL —PU(q~)] (2.25b)

is the usual m-particle density function in the equi-
librium theory of distribution functions. Equation
(2.24) shows that in f, the particles at x and x'(t) are
not only dynamically correlated but also statistically
correlated through the distribution function g(q&. q ).

The second term in (2.22) represents the contribu-
tions in which the particles at x and x'(t) are not
correlated by dynamical interactions. This term consists
of all the terms in (2.21) for which index i is not among

j, j1, , j . In a similar way it can be written as

1
f(,(xx'; t)=e ' P — dx~+'(I(x„+g —x)n(1 m+1)

m=1 m!,
m

X U, (1 m) P (I(x,—x') . (2.26)
j=l

Because x and x' are dynamically independent the de-
pendence on y is always Maxwellian. To give a more
explicit interpretation of f (, let us take

f(,(xx'; t) = jtj(P) f(,(qx', t), (2.27)

and after a few manipulations one has

XP(xj—x)+ P S(x,,—x)]
i=1

f&(qx', t)=Ze '(expL —P g 4 (~q —q, ~)]

X—P' U&(jj & j )5(xj—x'), (2.23)
m~ ~im~

Qj( = dq~ exp) —PU(q~) j,
U(q") = 2 C'(q' )

Since (2.23) is symmetric in the indices j, j~, ~, j we
can label particle j as particle 1, particle j& as particle 2,

, particle j as particle m+1. Moreover, since there
are (1V—1) ways of choosing j&, , (N m) ways of-
choosing j, the sum over {j } produces merely a
factor of (1V—1) (1V—2) (1V—m). The integrations
over the phases of particles m+2, , 1V can be carried
out and one 6nds

1
f.(xx'; t) =I &g — dx"n-(1 m)

X P 5(x, (t) —x')). (2.28)

Here Z= (1V+1)Qz/Qj((+& is the activity. Equation
(2.28) can be veri6ed by making a density expansion
and comparing with (2.26). According to (2.28) the
system is initially in equilibrium with an extraneous
particle fixed at q, and that upon the removal of this
particle at 1=0 the system develops in time with the
expected number of particles at x' at time t being given
by f(, At t=0, .

f~(qx'; 0)=&(P')g(qq') (2 2~)

On the other han. d, from (2.21)

f,(xx'; 0)+fb(xx', 0)
=4 (P)~(x—x')+W(P)4 (P')g(qq') (2 30)

Therefore one has the relationship

'Im 'In

X P 8(x;—x) Ug(1. m) Q t((x,—x'), (2.24)
i=1 j=l

f (,(qx'; 0) =e dx"g (qq")f.(x"x', 0) . (2.31)
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We now give an argument that (2.31) is approxi-
mately valid for all times. Going back to (2.26) we
write

n (1 .m+1)

=n(1 . m)y +i[n+nP G(q„~i—q;)+ ], (2.32)
i=1

where G(q—q ) is the equilibrium pair-correlation func-
tion. By keeping only the terms shown in (2.32) we a,re
considering the case in which the particle m+1 is either
not correlated at all with the complex of particles
(1.. .m) or correlated in the weakest possible way, i.e.,
via two-particle correlation only. Inserting this into
(2.26) leads to

fz(qx', t)

00 m

dx"n(1 m)Ui(1 . m) P 8(x,—x')
m=1 ~1

00 ]
+ d'q "G(q—q") g — dx"'n(1 nz)

correlation functions can be calculated, in particular the
Van Hove density correlation function G(r, t) is just
given by the double momentum integral of f(xx'; t). In
this section we shall investigate the asymptotic temporal
behavior of the Ursell series. Because each term in the
series represents all possible interactions among the
fixed number of particles, a large number of collision
sequences will have to be examined. These collision
sequences will be analyzed by the so called binary ex-
pansion method. Although this is a formal technique
applicable, in principle, to all situations, it becomes
particularly effective when the duration of a collision is
small compared to the time between two successive
events.

We shall be primarily concerned with a discussion of
the Ursell series for f,(xx'; t) Wh.en only pairwise
statistical effects are considered this function is the
fundamental quantity in the present description, and a
knowledge of it is suRicient to determine G(r, t). Writing
out the first two terms in (2.24) more explicitly we have

f.(xx', t) = dx&5(x& —x)p(p, ) exp[tl. '(1)]6(x&—x')

tn

&& P 5(q,—q")U, (1 m)8(x, —x')

=(P ti(x;(t) —x'))+n dx"G(q q")f.(x—"x'; t)

or

fz(qx'; t) ~(p')=n dx"G(q —q")f.(x"x', t). (2.33)

Since

g(qq') =1+G(q—q'), (2.34)

(2.33) is just the extension of (2.31) to all times. The
terms ignored in (2.32) describe higher order sta, tistical
correlations. We shall see below that at long times these
effects will be relatively unimportant compared to the
terms already retained.

III. ASYMPTOTIC TEMPORAL BEHAVIOR
OF THE URSELL SERIES

The function f(xx', t) was introduced in the preceding
section to describe the correlation of particles (or the
same particle) at two time-displaced phase points. By
expressing the ensemble average as an Ursell series the
many-body calculation is formally transformed to a.

consideration of dynamical and statistical correla. tions
in clusters of particles of definite size. The number of
particles in a cluster depends on the number of particles
involved in the dynamical operator U, (1 . nz). If the
particle initially localized also belongs to this cluster
then f(xx; t) is given by (2.24). Otherwise a, ditferent
function, f&(xx', t), given by (2.28) must also be con-
sidered. On the basis of this approach a number of

+ dxldx2$ (pl)$ (p2)g (qlq2)

&& P (x,—x)+&(x,—x)jU, (12)

XP(x,—x)+S(x,—x)j+ . (3.1)

The zeroth-order term in this expression is independent
of the density, and is just the free-particle contribution

f'(»'; t) =4(p)~(p —p')~(q —q' —vt), (3 '-)

with v=p/m. The first-order terms, proportional to n,
have implicit density dependence in g(q&qz). They
represent the contribution due to all possible collision
sequences involving two particles, and to the lowest
order in the density they are linear in the density.
Similarly, the jth-order terms account for the dynamical
and statistical eRects of a (j+1)-particle cluster, and to
the lowest order in e they are proportional to e'.

The operator Ui(12) given in (2.18) is the difference
of two propa, gators with and without dynamical inter-
a,ction. The a,symptotic time dependence of this operator
at long times is perhaps best described in terms of the
rela, tive spa, tial configurations of particles 1 and 2 which
will lead to a 12 collision. Since U&(12) vanishes unless
the particles collide during time interva. l t, the releva, nt
configurations must either lie within the interaction
sphere or in a collision cylinder with length

~
vz —

vz~ t.
The interaction sphere contains all the configurations in
which the particles collide a,t t= 0, and the cylinder con-
tains all those which lead to a, collision within time t.
The important point is th i.t the volume of these con-
figurati. ons increases linearly with t; hence the first—
order terms in (3.1) will vary asymptotically like t a.t
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long times. This conclusion tacitly assumes that the
range of the pair potential C ((I») is finite, a requirement
consistent with the assumption of the existence of a
mean free time. The asymptotic behavior of the higher
order terms are more difficult to visualize in the same
way, but qualitative arguments show that among the
jth-order terms the most singular contribution varies
asymptotically as t'."

Since the Ursell series diverges asymptotically like a
power series in t, it is clear that any description of the
correlation functions derived from a truncated series
will not be suitable at long times. As already emphasized
b Z anzig this property implies that a straightforward

ffi-density expansion in the calculation of transport coe
cients does not exist."Stated simply it means that the
dominant effects at long times are those due to multiple
collisions, and that to derive an acceptable description
valid for all times the Ursell series must be appro-
priately summed to all orders. On the other hand, one
can expect a truncated series to be useful for those times
during which the particles either have not collided at all
or have collided only a few times. Simple dimensional
consideration suggests that this should be the case
whenever t is smaller than the mean free time.

In order to deal with the higher order terms in the
Ursell series we introduce the concept of dominant
terms. We have already remarked that the most singular
contribution from the jth-order terms behave at long
times like t&. In the Laplace transform

f '(xx' s)= dte *'f r(xx' t—) (3.3)

there will appear singularities of the type 1/s'+' for
small s and one can then expect a Maclaurin series in s
for f,'(xx'; s) to start with the power 1/s&'+'. The
dominant terms in (2.24) are just these leading terms
from each Maclaurin series. To the lowest order in the
density, these terms are therefore characterized by a
dependence of the type (zz/s) rs '.

To illustrate more explicitly how the set of dominant
terms arises from the Ursell series we consider further
expansions of the operators U, (1 j) and the sta-
tistical factors N(1 j). Using the Lee and Yang's
binary collision expansion, we have"

FIG. 1. A typical 4-graph with 4
collision blocks.

t—
3

expL(4 —t,)L'(k)], and which are connected to each
other by collision blocks (crossed squares in Fig. 1)
representing the binary kernels B((mzz). The latter are
defined by

B,(mrz)=e'~( ")L'(mzz). (3.5)

A typical graph for j=4 is shown in Fig. 1. This graph
has three intermediate time levels, t~, t~, t3. To each
block corresponds a factor Bi„z,(mzz) in the product,
where m and e are the connected particle lines and t„
a,nd t, (zz&~ r&s&0) are the time levels which define the
extent of the block. To each segment of the particle line
k corresponds a factor expL(t), —t,)1.'(k)], where again
t), and t, (zz&~Iz)i)0) are the levels which define the
extent of the segment. The contribution of the particu-
lar graph shown can now be written down by inspection,

& t3) t2) tI)0
dt, dt, dtzdx, . dx4$(p, ) $(p4)

(12)B (34)e((z—&i)io(()e(&—&i)ro(4)

( t tz) [Lo(1)+La (2) )e—( t (2) r 0 ( z) (—3 t))X $3—$2/ J~

=G(qi)[, (qz q )+ 2 G(qi —q.)
s=2

As indicated in the figure the blocks may not overlap on
any particle line, nor can two consecutive blocks occur
between the same pair of lines. Also there must be at
least one block extending to the top time level 0, an d
there must be no block extending to the bottom level t.

In the j-particle function zz(1 j) an Ursell type of
expansion is made for g(qi q, )

a(q q)

t&tg&" )t~&0
dt~ dt„ Xa(q "q.-q.+ q)+ . .+G(qi . q), (3.'t)

o where the correla, tion functions G(qi q;) are definedXQ e~L(t, —t,)1-'(&)]B,„„(m~), (3.4)

where the sum runs over all connected j graphs and the
product runs over all elements of the graph under con-
sideration. A j graph consists of j vertical (par-
ticle) lines which represent the streaming operators

''-M. S. Green, J. Chem. Phys. 25, 836 (1956)."T.D. Lee and C. N. Yang, Phys. Rev. 113, 1165 (1959);
A. J. F. Siegert and E. Teramoto, ibid. 110, 1232 (1958).

G(q) =g(q) =1,
(3.8)

G(q —q') =g(qq') —a(q) a(q'), «c
The functions G(qi q, ) are still implicit functions of
the density but have a nonvanishing zero-density limit.
They can be included in the graphical representation by
a,dding bonds (represented by horizontal lines ending
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Since the ensemble average is independent of the time
variation of the phase points, one has

R(C2) =

dt's

dx2dxaii(23)R(x2, x3, t, t2), (3.14)

which proves the theorem. We can graphically represent
R (C~) by the sum of two graphs shown in Figs. 4(a) and
4(b). These graphs correspond to

B3 d4d t,d t4dx, dx2dx, p (p,)g (p2) p (p,)
&& &4& tg& $2&0

X8(xi—x)e "~'"'Bi, i, (12)Bi, „(23)
Xe"—"&~'&'&5 (x2—x'), (3.15)

0 X

I' drest, dI,dx,dx,dx,@(p,)y(p, )y(p, )

X$ (xi x)G(q2q3) p tmLO(1) e( ts t2) I 0(3—i

XBi, &, (12)Bi, i, (23)e&' "i~'"'8(xi—x'), (3.16)

respectively. We observe that the factor

expl (t3—tm)10(3)j
is omitted. in the first expression Land similarly the
corresponding line segment in Fig. 4(a)j because this
factor can be removed by a coordinate transformation

qa ——expt (t3—I2)1.'(3)fq3. This simplification will be
carried out wherever applicable in all subsequent
graphs. In subsequent sections, reference is made only
to graphs of the reduced form as shown in Figs. 4 and. 5.

It has been mentioned that the most singular graphs
corresponding to a j-particle cluster behave like 1/s'.
Such graphs may be identi6ed from the series of graphs
generated. by applying the expansions (3.4) and (3.8) to
each term in (2.24). Given j-particle lines the minimum
number of collision blocks that any j graph can have is

j—1.As will be shown later these graphs behave indeed
like 1/si for s smalL For j graphs with more than j—1

blocks, the additional blocks must necessarily involve
lines which already appear in other blocks. As a conse-
quence. of the restriction of the available phase space,
each additional block introduces a factor of s. For
example, a 3-graph with 2 blocks has a dependence of

X X X X

Fra. 5. Four distinct 3-particle Cayley trees. Prom these one can
generate a total of 24 3-graphs with 2 collision blocks.

1/s' whereas the same graph with 3 blocks has a de-

pendence of 1/s. The presence of statistical factors like

G(q; q ) also inRuences the over-all z dependence of a
graph. Thisisbecause the cluster property of G(q; q )
completely suppresses the growth of the conhgurations
of particles i, - . , nz with time. Roughly speaking, each
factor of G(qi q ) introduces a factor of s™l.

As far as the set of dominant terms is concerned we
have thus to investigate all j graphs (j=2, 3. . )
which contain j—1 blocks and no statistical bonds.
Following the terminology used in equilibrium theory,
we shall call these graphs Cayley trees to denote the
class of connected graphs without cycles. '4 Four Cayley
trees which would arise in the binary collision expansion
of U&(123) are shown in Fig. 5. These are the only
distinct 3-particle Cayley trees in the sense that all
others can be obtained from these four by permutation
of the particle lines.

IV. DERIVATION OF KINETIC EQUATIONS

Having developed an Ursell series for f,(xx', t) and
discussed the asymptotic temporal behavior of the most
singular contributions we are now in a position to derive
a kinetic equation for this correlation function. The
kinetic equation is valid. for all times and is obtained by
the use of an inversion technique which is equivalent to
the summation of an appropriate class of graphs. It will

be convenient to work with the transform of f (xx', I) in
wavelength and frequency space. Thus we consider

00

f, (pp', ks) =— dte " d'qd'q'
V

Xe'" «'-~' f.( xxI) . (4.1)

Furthermore we introduce k-space representation of a
j-particle dynamical operator

(k, ' k IO(1 j) Ik, .k;)

t4

t-- ——————
X

t—4
t-----

X

d3q . . .d3n .g
—i(kl'ql+ ~ +k&'.qp')

V2

Xo(] j)g'~~~ a~+" +~' ~ & (4.2)

where 0(1 j) acts in both the configuration and mo-
mentum space of the j particles. Some properties of the
binary collision operator in this form have been noted.

FIG. 4. 3-graphs corresponding to Fig. 3 after application of
Theorem 2. Sum of (a) and (b) is equivalent to the graph in
Flg. 3.

24 G. E. Uhlenbeck and G. W. Ford in Studies in Statistical
Mechanics, edited by J. deBoer and G. E. Uhlenbeck (North-
Holland Publishing Company, Amsterdam, 1962), Vol. i.



J. M. J. V&N LEE U% EN A i% D S. YI P

recently by Zwa, nzig. "-' The Ursell series for f, (xx'; t)
now becomes

where

f.(py', ks) =y (p)h. (Pp', ks),

h. (pp', kz) =h.'(py', ks)+ P—
)

~

&& d'p"Z &(Py",ks) k.'(P"y', k:.), (4.3)

the zero-density distribution h, is

l's, '(yy', ks) =8(y—y')I s—ik v]—'

and the kernels E&(yy",ks) are given by

(4.5)

&'(PP",k )= d'p d'p; 5(y —P)4(p)".0(p;+)(k0" 0la(q " q+)B (1" j+1)lk0".0)

&&~(pi—y")+(ko oIg(qi" q+i)B;(1" j+1)I0k0" 0)5(ps—p")+"
+(ko" Ol~(q, " q,+,)B,(1 "j+1)lo" ok)5(p,+,—p-). (4.6)

The operator B,(1 j) is defined as

As we have emphasized the series expansion (4.3) of
h, in terms of h,o is only Ineaningful for short times
(large s). The essential point in the present derivation is
that if (4.3) is inverted to give an explicit expression of
h,' in terms of h, the result becomes also valid for long
times (small s). The inverse of (4.3) is

n1
fi'(pp', ks) =&.(pp', ks)+ Z-

; ~&'r

d'p"M&(PP", ks) h. (y"y',ks), (4.8)

where the kernels M'(yy', ks) are related to Z'(yy', ks)
by the recurrence relations:

~'(PP') = &'(Py'),

(4 9)
~'(PP') = &-'(Py') —2 d'p "&'(Py")&'(P"P') «c.

The inversion technique has been used by Zwanzig"
in ending density expansions for transport coeKcients
and implicitly by Kohn and. Luttinger" for the electrical
conductivity. The method is exact but quite formal.
However, a systematic approximation scheme is readily
suggested which, in contrast to (4.3), is not restricted
to small times. By carrying out the inversion to the
lowest order (j=1)we obtain the following equation

h„(pp', ks)

=5(p—y')I:(s—sk v)3 '+«'pid'p~(p —»)&(ps)

be established by comparing the diagram series corre-
sponding to (4.3) and the series generated by iterating
(4.10). For times suKciently short that the first two
terms of (4.3) are adequate to describe h, (yy', ks) it is
obvious that the two descriptions are the same. In
Appendix A we present a comparison of the second-
order terms Lterms proportional to ass in (4.3)].There
it is shown that the corresponding diagrams are the
same if statistical eGects are ignored. When only pairwise
spatial correlation is included a number of approxima-
tions are then necessary to bring the diagrams into
correspondence. To show that (4.10) is appropriate at
long times, we show that the dominant terms to all
orders in the density arising from the iterated series are
just those present in (4.3). For this argument we can
neglect statistical correlation, hence g(qrqs) in (4.10)
will be replaced by unity.

Thus far we have not made explicit any spatial effects
of the collision operators in the diagrams of Sec. III.
The operator B(12) acts on both the relative separation
of the two particles and. their momenta whereas the
matrix element (ki'ks'IB(12) lkrks) is a two-particle
momentum operator. The latter form, however, suggests
that the dynamical process can be interpreted as the
propagation of wave vectors. Because of translational
invariance the condition kt'+ks'=k&+ks must always
be satisfied. Thus in the Cayley tree approximation free
particle streaming is represented by a labeled line seg-
ment as in Fig. 6(a), and collisions are represented by
labeled blocks as in Figs. 6(b) and 6(c). Notice that
because of the absence of cycles the wave vector k can
propagate along only one particle line at any time. The

X I (k0
I g(q, qs)B, (12) I k0)h. (P,y', ks)

+ (ko
I a(qrqs)B. (1'-)

I
0k)&.(psp', »)j (4 1o)

t----k

(a) (c)

The validity of this equation at long and short times can

s"" VV. Kohn and J.M. Luttinger, Phys. Rev. 108, 590 (1957}.

FIG. 6. Elements representing the different ways a wave vector
k can be propagated from t' to t. (a) Free-particle streaming,
expPfk v{t—t')g. (h) Binary collision without transfer of wave
vector, (kO~B«. (k0). {c) Binary collision with wave-vector
transfer, (k0)B~ i )Ok}.
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O---- kX X Xk p,

t----
k

T--—t
X

Fro. 7. Graphical representation of Eq. (4.111.

=b(y —y')e'"'"+~ «' d'prd'psb(pr —y)4(ps)

graph elements shown in Fig. 6 constitute the only basic
elements in all Cayley trees. If we now represent all the
Cayley trees by the graph shown on the left-hand side
of Fig. 7, then symbolically this graph can be decom-
posed into the three components shown on the right-
hand side. The erst graph on the right-hand side
corresponds to free propagation during the entire time
interval. The second and third graphs contain collision
blocks [Figs. 6(b) and 6(c), respectivelyj extending to
time level t. Figure 7 actually corresponds to an integral
equation for h in the Cayley tree approximation since
except for a factor of @(p), h, is the contribution of all
the Cayley trees. The integral equation is

h. (pp', kf)

variables of a binary collision, and p,
' are the momenta

after collision. The difference in the two operators lies in
the way the wave vector k is "scattered" in the collision.
In (4.12) k is associated with 1 throughout the entire
process, whereas, in (4.13) k is originally associated with
1 but is scattered to 2 during the collision. Because the
"transfer" can occur only when the particles are a hard-
core diameter 0 apart, there thus appears a change in
phase by the amount exp(ik o) which is a function of
the impact variables. The presence of the phase factor
accounts for the finite extent of the particles. For long
times (s small) and wavelengths long compared to the
effective range of interaction (h small), one may expect
the hard sphere results to be a good approximation for
other repulsive two-body forces.

Using tive transformations (4.12) and (4.13) and

g(pr)$(ps) =Q(pr')$(ps') we ha, ve from (4.10)

(s ik v—))f.(p,kz)

=$(pr)+I d psvysbdbde

&{a(ps')f (p&'ks) 4'(ps)f (yrk~)+e""'

X[4'(Pt') fa(ys'ke) —4'(Pr) fa(ysks)3, (4.14)

X[(kOiB, (12) ikO)h. (p,p', kf —I')

+ (kOi 8; (12) i
Ok)h. (psp', kf —f') ]. (4.11)

f«(pk') = d'P'f. (py'ks) (4.15)

=V12 dM eb[C (p&'ps') —C(prys) $, (4.12)

(z—ik vr)(kOje e~"'&8 (12) ~Ok)C(p—rps)

mrs dbdebe' " '[C (p&'p. ') —C (y&ps) 1 . (4.13)

where vrs=
~
vr —vs~, (b, e) are the conventional impact

The Laplace transform of this equation is identical to
(4.10) in which g(qrqs) is replaced by unity. Thus the
inversion process electively sums the most dominant
terms in the Ursell series to all orders in the density,

Equation (4.10) gives a binary description of the
Fourier components of f, (xx'; f) that is valid at both
short and long times. This equation is very similar in
structure to the linearized jaoltzmann equation. To
make the connection more explicit we transform the
collision matrix elements. Ke restrict our discussion to
hard spheres and the lowest density approximation to
g(qtqs)(g exp[—PC(qrs)j) because in this case the
arguments are quite straight forward and the results are
rigorous. It is shown in Appendix 8 that if C(y„p,) is
any function of the momenta of particles 1 and 2,

(:—il .v,) (ko~ e-e'~"&8, (12)
~
ko)C(p, y,)

Except for the phase factor this is identical to the
appropriately transformed linearized Boltzmann equa-
tion with the initial condition f,(ryf=O)=8(r)P(P)
That (4.14) has the proper behavior for small h and s is
well known from the theory of transport coefIj.cients in
dilute systems. "Since in the region of slow space and
time variation the kinetic description gives essentially
the same result as that derived from appropriate
hydrodynamic equations, it is then to be expected that
any correlation function calculated using (4.14) will
have a proper hydrodynamic limit. It is also evident
that such a correlation function will exhibit the correct
free-particle limit for large k.

V. DISCUSSION

Ke have investigated the use of kinetic equations for
the study of certain generalized correlation functions.
The central result of our analysis is an equation de-
scribing the time evolution of the function f, (xx; f).
This equation can be considered as a generalization of
the linear variant of the equation originally proposed by
Boltzmann in two respects. First of all, the collision

26 S. Chapman and T. G. Cowling, The .Vathemutical Theory og
Xorj;Uniform Gases (Cambridge University Press, New York,
1953).
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operator is explicitly time-dependent and therefore it is
possible to treat incomplete collisions. Secondly, spatial
correlation of particles prior to their collision is taken
into account through the equilibrium pair-distribution
function in the collision integral. The inclusion of g(r)
can be compared to Enskog's modi6cation of the
Boltzmann equation for moderately dense gases. "For
short times the effects just mentioned can be signi6cant,
and predictions based on Eq. (4.10) can in principle
differ appreciably from those based on the ordinary
linearized Boltzmann equation. However, no explicit
calculations have been carried through thus far to
enable a comparison.

The formal technique used in our derivation is the
inversion of a truncated series. By ignoring all terms
proportional to n' and higher in the Ursell series (4.3)
we obtain (4.10). Since the latter can be iterated to
produce a series in all orders of e, it is possible to study
the approximations underlying (4.10) by comparing
corresponding terms in the two series. It is obvious that
(4.10) treats correctly the single binary collision events
with or without statistical correlation, but with regard
to successive binary collisions the effect of spatial
correlation is different in (4.3) and (4.10). In (4.3) all
the particles in a cluster are correlated initially through
n(1 j), dynamical correlation is then developed in
time according to the collision operator B,(1 . j). On
the other hand, in the iterated series corresponding to
(4.10) particles are spatially correlated only prior to
their collision, consequently the system evolves as a
result of a series of statistical and dynamical inter-
actions. This difference means that the relevant terms
in the two series will not correspond exactly. In Ap-
pendix A it is remarked that the effect due to this
difference is small for short times. Since it is precisely
for short times that spatial correlation of particles is
important, the use of (4.10) for all times is not an
unreasonable approximation. It should be observed that
the use of Cayley tree approximation in the binary ex-
pansions of B~(1 j) and of g(qi q, ) does not suf5-
ciently reduce the contributions in the Ursell series to
those dealing only with purely binary effects. This is
because the possibility still exists of a particle colliding
with another and yet is spatially correlated to a third.

The inversion technique used to obtain an approxi-
mate equation on the binary level can be equally well

applied to give kinetic equations on the ternary level,
etc. Thus the ternary equation sums at long times the
next to dominant terms, those having one higher power
of the density than the dominant terms with the same
power of s '. The convergence of these successive ap-
proximations is controlled by the density, but nothing is
known about the existence of each step in such a
sequence.

In this paper we have referred to the hard-sphere
interaction as an example. One should realize, however,
that the binary collision method cannot be straight-

forwardly applied to hard spheres since situations in
which the particles are inside the interaction sphere are
not well defined. Our Eq. (4.10) does not suffer from
this difhculty because these unphysical situations are
forbidden by the presence of g(qiqm). The same is true
for the more general Eq. (4.8).

Once a description of f(xx', t) is formulated a number
of correlation functions can be calculated. In particular,
the Van Hove density correlation functions and the
momentum correlation function are just appropriate
momentum and spatial integrals of f(xx'; t). In our
analysis we have concentrated on a description for
f,(xx'; t) which is only one part of f(xx', t). An ex-
pression is given for the remainder, fq(xx', t), but no
equation for it has been derived. However, at the level
of (4.10) this is not necessary since one can use the
convolution relation (2.33).

%hen statistical correlation is ignored the Van Hove
function G(r, t) is given by the momentum integral of
f,(r tp), which is a solution of (4.11). Recently Nelkin
and co-workers proposed to calculate G(r, t) and G.(r, t)
from kinetic models derived from the linearized Boltz-
mann equation. '4 "The theoretical justification for this
work. is now provided by the derivation of (4.11).The
difference in the equations used for G and G, concerns
the collisional invariants of momentum and energy.
This difFerence is readily demonstrated with (4.11) in
which the phase factor is again ignored. It is seen that
the collision terms in (4.11) are properly symmetrized
with respect to the two particles, so that particle
number, momentum, and energy are all conserved. On
the other hand, in the corresponding equation for
f, (rpt), where

G, (r, t) = d'p f., (rp&) = d'pd'p' f, (xx'; t),

the collision terms constitute only the first two terms in
the integrand of (4.11).Therefore, only particle number
is conserved. An important consequence of the difference
in collisional invariants in the two descriptions is that G
and G, will exhibit characteristically different hydro-
dynamical behavior. For long times and long wave-
lengths (4.10) and (4.11) should give essentially the
same results. One can then expect G(r, t) to be charac-
terized by the irreversible processes of thermal diffusion
and damped sound propagation. whereas G, (r, t) is
characterized by simple diffusion.

%ith regard to slow-neutron scattering the present
formulation provides an appropriate calculation of
coherent and incoherent scattering in moderately dense

gases without the use of Uineyard's convolution ap-
proximation or the so-called Gaussian approximation. '
Since this approach explicitly incorporates the effect of
spatial correlation it can be used to understand the
coherent narrowing of the spectrum. It is not known to
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what extent is (4.10) applicable to the study of density Organization for the Advancement of Pure Research
correlations in liquids; nevertheless, it seems worth- which enabled him to stay at Cornell University.
while to pursue further along this line of investigation.
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In this Appendix we compare the terms with three
particle lines in the graphical representation of f, and
the terms following from the second iteration of the
integral Eq. (4.10). The latter are given by (after the
appropriate change from h, to f,)

~(pr —p')
d'prd'pd'ps~(p —p))e(p))e(ps)e(p ) (kOlg(qrqs)B (») lkO) (kolg(qrq )B.(») Iko)

s—ik vr

~(ps —p')
+(kOlg(q)qs)B. (13)lok) +(kOlg(q&qs)B, (12) IOk)

s—ik.vs

&(ps—p') ~(ps —p')
X (kOI g(qsqs)B, (23)

I
k0) + (kOI g(q, q,)B,(23) I

Ok) . (A1)
s—zh. v~ s—ik v,

By setting g(qrqs) = I+G(q& —qs) we obtain from (A1)
16 terms which can be compared to the graphs for

f, (pp', k )sas developed in Sec. III.
It is clear that all the 3-graphs with more than two

blocks are not taken into account in Eq. (A1). Also if
we consider the Ursell expansion for the 3-particle
density distribution function

g (qlqsqs) 1+G (ql qs)+G (ql qs) +G (q2 qs)

+G (ql qs)G (qr —qs)+G (qr —qs) G (qs —qs)

+G(qr —q,)G(qs —qs)+G(qrqsqs), (A2)

the term containing G (qrqsqs) will not be reproduced by
the integral equation. Thus as far as the correspondence
between the Ursell expansion for f. and (4.10) is con-
cerned, the genuine three-particle collisions (three or
more blocks) and. the genuine three-particle statistical
correlations G(qrqsqs) are present in the Ursell expansion
but not in the integral equation. For the remaining
graphs in the Ursell expansion we show 4 typical
examples in Fig. 8 Lthe particle indices are chosen so as
to correspond to the labels in Eq. (A1)j. Each graph
shown can be statistically dressed with any of the erst
seven terms in Eq. (A2), so there are 28 graphs to be
considered.

One observes that there are 12 graphs with statistical

bonds G(q;—q;) between particle lines which are not
connected by a block. These graphs represent contribu-
tions in which two particles interact statistically but not
dynamically, and may be viewed as an interference
between statistical and dynamical correlations. Such
graphs also are not present in Fig. 8. In order to treat
these effects one should consider a coupling between f,
and fs, which is ignored in this paper and. which is
believed to be small.

The remaining 16graphs are reproduced in Fig. 8, the
correspondence for the 8 graphs containing either no
correlation function or G(q;—q;) is exact whereas for the
other 8 the correspondence is only approximate. %e now
discuss a typical case for each group. In Fig. 9(a) we
show a graph having the following contribution to
f.(pp', kt)

d»da&~s4 (p))4 (ps)4 (ps)c '"'"&(pr—p)

XG(q&—qs) d4 dtsB(, (12)

B, , (23)s&'—'s)~ &s)8(p, p )ca~.ss (A3)

The corresponding term from Eq. (Al) is given by

X
' d prd psd spp( l)pf( s)p$(ps) ( t)l pp)

X (kOIG(qr —qs)B (») IOk)(kOIB (23) I«)
X&(ps—p')/(s —ik. vs), (A4)

FIG. 8. Four dis&inc& 3-particle Cayley &rees which correspond and one sees that Eq (A4) is indeed the Laplace trans
to the terms in Fq. (Aj.). ggese graphs are equiva]ent to those an one sees a q. is in ee e ap ace rans-

shown in Fig. 5. form of Eq. (A3). A typical graph in the second group
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KINETIC EQUATIONS FOR SLOW —NEUTRON SCATTERING

where in integrating over relative positions we have chosen the origin at qt and the s axis is directed along the
relative velocity v2 —v&. In using cylindrical coordinates the impact parameter b is the radial coordinate which can
range from zero to 0, the hard-core diameter. The azimuthal angle is denoted as e. The length of the collision
cylinder is v12v, so that the volume element becomes

d f21 &12RMtldTc
p

with r. ranging from zero to infinity. Similarly,

27r 0'

(k0~e ~e«'»B, (12)~0k)= (z ik—vr) 'srs de bdbe's'&s 't C(pr'ys') —C(prys) j,
0 0

where we have used the relation qs ——qr+ (vr —vs) r, (12)+e(b,e), with sr(b, e) being the vector from qr to qs at the
instant of contact.
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Theory of Relaxation in a Group of Weakly Coupled Systems

RQBERT L. PETKRsoN

librational Bureau of Standards, Boulder, Colorado

(Received 25 March 1965)

A general formalism for computing relaxation times characterizing two or more weakly coupled macro-
scopic systems is presented. The physical nature of the systems is arbitrary, although applications to spin
systems are briefly discussed. The main assumptions are that each system is internally in equilibrium with
a well-dered temperature, that the systems are weakly coupled to one another, and that the Hamiltonians
of the systems form a commuting set. No high-temperature approximations are used. The formalism is
presented in an effort to unify in part the approaches which have been developed for many special physical
situations, and to show the form some relaxation times take when the high-temperature approximations
are not used. It is shown that when one of two coupled systems is a "Zeeman" system, the (spin) relaxation
time is proportional to the magnetic adiabatic susceptibility.

INTRODUCTION

~~OR many years there has been considerable interest,
experimentally and theoretically, in relaxation

processes occurring in a group of two or more systems
weakly coupled to one another. References 1—j.2 indicate
some of the work concerned with these phenomena.
Each of these references is concerned in some way with
spin relaxation, and as a rule, treats the spin systems in

' H. B. G. Casimir and F. K. DuPre, Physica 5, 507 (1938).' H. B. G. Casimir, Physics 6, 156 (1939).
C. J. Gorter, Paramagnetic Relaxalion (Elsevier Publishing

Company, Inc., New York, 1947), pp. 89, 90; C. P. Slichter,
Principles of Magnetic Resonance (Harper and Row, Publishers,
New York, 1963), pp. 118—121;A. Abragam, Principles of nuclear
Magnetism(Oxford University .Press, New York, 1961).' M. Yokota, J. Phys. Soc. Japan 10, 762 (1955).' R. T. Schumacher, Phys. Rev. 112, 837 (1958).

6 N. Bloembergen, S. Shapiro, P. S. Pershan, and J. O. Artman,
Phys. Rev. 114, 445 (1959).' P. S. Pershan, Phys. Rev. 117, 109 (1960).

8 R. Orbach, Proc. Roy. Soc. (London) A264, 458, 485 (1961).' B. N. Provotorov, Zh. Eksperim. i Teor. Fiz. 42, 882 (1962)
)English transl. : Soviet Phys. —JETP 15, 611 (1962)j.

'~ S. R. Hartmann and A. G. Anderson, in 3fugnetic end Electric
Resonance and Relaxation, edited by J. Smidt (North-Holland
Publishing Company, Amsterdam, 1963), p. 157."J.Jeener, H. Eisendrath, and R. Van Steenwinkel, Phys. Rev.
133, A478 (1964}."R.L. Peterson, Phys. Rev. 137, A1444 (1965).

a high-temperature approximation (that is, the approxi-
mation in which Curie's law is perfectly obeyed). An
important exception is the work of Orbach. The ap-
proach typically is to postulate certain rate equations
applicable to the physical systems of interest, and from
these to calculate the characteristic relaxation times.
The algebra involved is quite similar in most cases.

One of our purposes in this paper is to present a
uni6ed treatment of relaxation in a group of loosely
coupled systems, the physical nature of which may be
left unspecified. The result is a prescription for calcu-
lating the relaxation times, namely, 6nding the roots of
a "relaxation time matrix. " Of course, general tech-
niques for computing damping constants in electrical
circuits are well known and can be found in texts on
differential equations and circuit theory. However, we
are not aware of any publication containing a prescrip-
tion for computing relaxation times characterizing a
group of macroscopic, thermal systems, and feel that
this presentation 6lls a need.

Perhaps more important is the fact that we have
avoided any high-temperature approximation. %e dis-
cuss in some detail the special cases of two and three
coupled systems. %e show that the relaxation time
characterizing two systems, one of which is a "Zeeman"


