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Electrostatic Instabilities in a Plasma with Anisotxoyic Velocity Distribution
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An anisotropic magnetized plasma, in which the distribution of particle velocities is a bi-Maxwellian
characterized by the temperatures T~ and Tfl, is considered in order to delimit as much as possible the loca-
tion of possibly unstable roots to the dispersion equation. We And that marginally unstable roots of the
dispersion equation can occur only if both t'1+1/2)&co& D+1—(Ttt/Ti)g and ra& (Ti—Ttt)/Ttt, where l
is an integer and eo is the real part of the frequency in units of the cyclotron frequency. Thus, in particular,
the system is stable if T&(2T1[.

'N this paper we wish to extend previous work' to
delimit as much as possible the location of possibly

unstable roots to the dispersion equation for electro-
static waves in an infinite plasma situated in a constant
magnetic field.

The dispersion equation may be written in the form

1++ roose'& 'F;=0,

where Ii; is given in Ref. 1 for the bi-Maxwellian dis-
tribution function.

The theorems given in the previous article, which
were based on an examination of Irn(F;), are here ex-
tended to show that marginally unstable solutions
Llm(at) =0+) of the dispersion equation can occur only
if both

where

1 ~l't'1T„ x'
A =- —

~

— &0 and g(x) =x exp~ ——
2tti )iT, 4t

Thus, since Is t(X) &It,+t()t) &0 for k, l&0,

Im(Fc)

&A e "{g(e)It()t)+g Lg(k+e) —g(k —e) jIi+t(X)) .
0=1

When x&a&0, notice that g(x) —g(x—a) is positive
for x&x„and negative thereafter. Therefore, because
It, P, ) is a positive, decreasing function of k, there is an
m&0 such that, for all k,

EC(k+') g(k e)jPt+t()t) I +t(")3&0.

Therefore,

i+a&co &l+1 Ttt/Ts and—(o& Ti/T„1, (1) I,—(F )

where / is an integer. Hence, in particular, the system
is stable if T„/T,& —', .

Following the same arguments as in Ref. 1, it is
sufFicient to show that Im(F) is non-negative in the
regime of interest located in the first quadrant of the
complex ~ plane, where

& Ae "I„„+t()t) g-g (k+ e)

co

2tsAe "I +t P—exp—
dGO

(k+to)'

&Ae '{g(e)I—t(X)+ P Lg(k+e) —g(k —e)jI,„+t()t))
k=1

F=rtt tsFc+rtssFts dx(rt„'x+rtss sinx)

Xexp Liatx —ttx' —X (1—coax)]
The infinite sum is just

e "'t'o8s( ito/4ts, e 't't') =—
(4srtt)—"'—8s(rrto, e '"o)-, —

and Im(Ftr) &0. When co = l+ e is real, 0& e& 1,

Illl(Fc) =Ae " g g(k+to)IA(X),
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where 8s(s, tl) is a, theta function. "' Moreover, one can
show'

(tl/ds) Dn8s(s, tI)j= —8 (s,q) sin(2s),

where B(s,tl) is positive if s, tI&0.
ln our case, s=m-co, q=e 4 '&, and 03 is positive.

2E. T. Whittaker and G. N. Watson, A Cozen, rse of Modern
4rtalysis (Ca.mbridge University Press, Cambridge, Lrn gland,
1950), 4th ed. , pp. 464 and 474.' Reference 2, p. 489.
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and so

Im(F) )0 if r/(T„/T, ) & b(1—T„/T,) .

]/2 3/2~ g —
I i'-I/2

co PLANE

FIG. 1. Regions of stability (shaded).

Rewriting, this becomes

[o~(1—T„/Ti) ']&oi, stable.

Now if

M=t+e, then for 1—T»/Ti& e&1,

T —' ) Ty'
1— & ti 1—

i
+1&t+1&o~,

T, . k Ti

(3)

Therefore,
Im(FG) )D sin(2s.~), D&0, (2)

so that we have stability if

l+ (1 T„/T—i) &oi&3+1.
Moreover,

( T —1-

—[co]& oi~ 1— +1—oi

T,
so that when

which is non-negative whenever I&o~& I+-,'.
Now, it was shown in Ref. 1 that Im(Fo) &0 when

co=l+icr, and, by a completely analogous argument, it
is also easy to show that Im(Fc) &0 when oi=l+ ', +io— . T„T,
Therefore, by Cauchy's theorem, Im(FG) &0 whenever
i&Re(o~) &/+-', .

In order to complete the proof of (1), we write (for
real &v)

Tl ~
t

TI I

Im(F)=Z g oi+u~ 1—

Xexp—
(oi+ k)'-

Ig, (X),

eo (
Iin(F)&X —1 PI~ I, „(Z)

T) ( l=l TT)s1
Xexp — f n+8 1——

TJ, Ti I 4p

T„( T„-' 1—Ii+„(X) exp —l+n —
8~ 1—

T, & T, 4p i '

and restrict our attention to the case T»/Ti&1, since
Im(F) is obviously positive otherwise. Let [x] denote
the largest integer contained in x. Thus, if

~= [~(1—T»IT.) 'I
then oi= (1—T„/Ti) (v+ 6), where 0&6&1. Hence,

[rv ( Ti

' /T„1) ' ])1—,

inequality (3) is satisfied, which completes the proof
of (1).

In summary, if we refer to Fig. 1, no roots to the dis-
persion equation can be found for co lying in the shaded
portion of the complex co plane. In addition, the condi-
tion of marginal instability [Im(sr) =0+7 is possible
only if both / —is&o~&t—T»/T/. and oi& (TL/T&, )—1.

It may be mentioned that both inequality (2) and
the condition that Im(F c))0 when ep =3+soor.
o~=l+-', +io, o)0, which have been proved explicitly
for the case of a bi-Maxwellian distribution of particle
velocities,

ms„' mais)
/(e e)exp(„, ,

2KT( ( 2KTi/

also hold when the distribution of parallel velocities is
Lorentzian, viz. ,

mn ') ' mv, '
f(e e) (1+ „,

~
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