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Electrostatic Instabilities in a Plasma with Anisotropic Velocity Distribution

Lawrence Radiatzon Laboratory, University of California, Livermore, California

An anisotropic magnetized plasma, in which the distribution of particle velocities is a bi-Maxwellian
characterized by the temperatures T and Ty, is considered in order to delimit as much as possible the loca-
tion of possibly unstable roots to the dispersion equation. We find that marginally unstable roots of the
dispersion equation can occur only if both [I+41/2]<w<[I+1— (Tu/T1)] and w<(Ty—Tu)/Tn, where
is an integer and w is the real part of the frequency in units of the cyclotron frequency. Thus, in particular,

the system is stable if T\ <2T.

N this paper we wish to extend previous work! to
delimit as much as possible the location of possibly
unstable roots to the dispersion equation for electro-
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where

1 m 1l21 T|| x2
A=~-) ——>0 and g(x)=xexp{ — ).

2\u/ N T, 4u

static waves in an infinite plasma situated in a constant
magnetic field.

The dispersion equation may be written in the form

1+Z ij29j——2Fj=0 s
i

where F; is given in Ref. 1 for the bi-Maxwellian dis-
tribution function.

The theorems given in the previous article, which
were based on an examination of Im(F;), are here ex-
tended to show that marginally unstable solutions
[Im(w)=0%] of the dispersion equation can occur only
if both

I+i<w<iH1—T,/T. and w<T./Ti—1, (1)

where [ is an integer. Hence, in particular, the system
is stable if T'/T,> 3.

Following the same arguments as in Ref. 1, it is
sufficient to show that Im(F) is non-negative in the
regime of interest located in the first quadrant of the
complex w plane, where

)

F=n,12Fc+nl2FB=/ dx (n,2x+n,? sinx)

0

Xexp[iwr—pua?—\(1—cosx) |

and Im(F5)>0. When w=1I[4 € is real, 0< e<1,

ImF)=Ae> S glb+)e(\),

k=—0c0
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Thus, since 7;—1(A)> 111 (M) >0 for &, I>0,
Im(F¢)
>AeMg()l(N)+ k2= Le(k+e)—g(k— ) Mrra(N)} -

When x>a>0, notice that g(x)—g(x—a) is positive
for x>ux,, and negative thereafter. Therefore, because
I, (M) is a positive, decreasing function of %, there is an
m >0 such that, for all £,

Lg(k+€)—glk— L kr-1(N) =Ty (\)]=0.

Therefore,

Im(F¢)
> AeMg (L () + z Co(kt O —g(k— I ia(\)}

> Ae M (V) ki ¢kt

=—00

d o (k4w)?
= —2;;Ae"‘lm+1——{ > expl:—— J} .
k=—0w0 4#

dw

The infinite sum is just
180 (— e/, €198) = ()20 a7

where 63(z,q) is a theta function.? Moreover, one can
show?

((Z/dZ)[h’l@g (qu):]z —B (27(1) Sin(zz) ’

where B(z,q) is positive if z, ¢>0.
In our case, s=ww, ¢g=e*"# and 6; is positive.

2E. T. Whittaker and G. N. Watson, A Course of Modern
Analysis (Cambridge University Press, Cambridge, England,
1950), 4th ed., pp. 464 and 474.

¢ Reference 2, p. 489.
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F16. 1. Regions of stability (shaded).

Therefore,

Im(F¢)>D sin(2rw), D>0, 2)

which is non-negative whenever I<w<I/+3.

Now, it was shown in Ref. 1 that Im(F¢)>0 when
w=1+10, and, by a completely analogous argument, it
is also easy to show that Im (F¢)>0 when w=1I1+%1+1o.
Therefore, by Cauchy’s theorem, Im(F¢)>0 whenever
ISRe(w)<I+3.

In order to complete the proof of (1), we write (for
real w)

~
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Im(F)=K—
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Jnov,

and restrict our attention to the case T,/ T:<1, since
Im(F) is obviously positive otherwise. Let [+] denote
the largest integer contained in x. Thus, if

n=lo(1—=Ty/T)™],
then w= (1—7T7",/Ty) (n+8), where 0<§<1. Hence,

T,
Im(F)>K<——1
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and so
Im(F)>0 if »(TwW/T)>6(1—T./T.).
Rewriting, this becomes
[w(1—T,/T)']>w, stable. 3)
Now if

w=I+e¢,

AT T\
[w(l——-—) ]2[1(1——) ]—}—121—|—1>w,
T T

so that we have stability if
l+ (1—Tn/T1)<w<l+1 .

then for 1—7,/T.<e<1,

Moreover,

o<[:G) J<l0-5) ]

et L) T

[o(Ty/Ty—1)7]21,

so that when

inequality (3) is satisfied, which completes the proof
of (1).

In summary, if we refer to Fig. 1, no roots to the dis-
persion equation can be found for w lying in the shaded
portion of the complex w plane. In addition, the condi-
tion of marginal instability [Im(w)=0%] is possible
only if both I—i<w<I—T,/T, and w< (T./T;;)—1.

It may be mentioned that both inequality (2) and
the condition that Im(F¢)>0 when w=I+isc or
w=1+3410, ¢>0, which have been proved explicitly
for the case of a bi-Maxwellian distribution of particle

velocities,
mu; 12

S o) ( m)
Vy1,01) ~expl — -
o T, 2T:

also hold when the distribution of parallel velocities is
Lorentzian, viz.,

P ) ( my 2\ ! mo,?
vi,v)~| 14 > exp(—— )
o %uT, 2T,




