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Recently, Lebowitz and Rubin, and Rdsibois and Davis, showed that the Fokker-Planck equation for
the distribution function of a Brownian particle (B particle) of mass 3E, in a fluid of particles of mass m,
may be derived directly from the Liouville equation for the joint distribution of Quid and B particle. It is
the lowest order term in a (ve/3f )'~' expansion of the effect of the Quid on the distribution of the B particle.
These authors studied in particular the steady-state distribution function of B particles acted on by a small
constant external Geld E, which results from a balance between the effects of the driving force and those of the
Quid. In this paper we extend these studies to the case where the B particle is acted on by a time-dependent
Geld E e'"'. We Gnd that the effect of the Quid on the distribution function of the B particle is again given, to
lowest order in (m/3I)'~', by a Fokker-Planck term, albeit one with a frequency-dependent friction constant,
Ml (a&)~J'e (ff(0) ff(t)) e'"'dt. Here ff is the microscopic, N-body force acting on a stationary B particle and
the average is over the equilibrium distribution function of the Quid in the presence of this fixed B particle.
We further show that Mf(—ca)Ve e'"' is equal to the force acting on a B particle moving through the fluid
with a prescribed small velocity V& e'"'. Under appropriate circumstances this latter force may be computed
from kinetic theory or from hydrodynamics. We thus have complete agreement between our microscopic
theory and that obtained from stochastic considerations. We also clarify the relation between the different
formalisms used by Lebowitz and Rubin and by Resibois and Davis.

I. INTRODUCTION

HE theory of Brownian motion was developed
initially by Einstein and Smoluchowsky and later

elaborated by Langevin and others. ' Describing the
effect of the Quid particles of mass m on a Brownian
particle (8 particle) of mass M, M))m, in a schematic
stochastic fashion, their results are summarized in the
Fokker-Planck equation for the distribution function of
the If particle in its position and velocity space f(R,V,t),

Mf'= sp lim
to ~oo

e ""(F(0) 5'(t))dt. (1.2)

equation for f then results after integration over the
variables of the fluid particles, in certain limits involving
the size of the Quid and the time scale. The equation
they arrive at is of the same form as (1.1), to the lowest
order in the mass ratio of fluid and 8 particle, with an
explicit, if unevaluated, molecular expression for t,

Bf(R,V t)/Bt+V Bf/BR+M 'Y Bf/BV-
=f'B/BV $V+(P.M) 'B/BV]f. (1.1)

Here ff'(t) is the total force exerted on the 8 particle at
time t by the molecules in the surrounding fluid. Its time
dependence is determined by the solution of the molecu-
lar equations of motion subject to the condition that the
8 particle is held axed in position. The average is over
an equilibrium ensemble at temperature T.

Lebowitz and Rubin and Resibois and Davis con-
sidered in particular the case where there is a small
constant external force, say an electric 6eld E, acting
on the J3 particle. This force corresponds to the term Y
in (1.1) and has the effect of preventing the 8-particle
distribution f from reaching equilibrium. Instead f
reaches, as t —+~, a stationary nonequilibrium value in
which the "driving" eGect of the external force on the
8 particle is balanced by the dissipative effect of its
interaction with the fluid which is represented to lowest
order in (m/M)'t' by a Fokker-Planck term. Higher
order terms in (m/M)'~' were also computed by these
authors.

In this note we carry further, and show the complete
agreement between, the ideas developed in Refs. 2 and 3.
In Sec. II we derive a "generalized transport" or master

iioi

Here Y is the total external nondissipative force acting
on the 8 particle, f is the friction constant of the 8
particles in the fluid, and P= (hT) ' is the reciprocal
temperature of the Quid. The right side of (1.1) repre-
sents the eBect of the Quid on the B particles, and will

be called the Fokker-Planck term.
Recently Lebowitz and Rubin, ' and Resibois and

Davis' have developed a "microscopic" theory of
Brownian motion. 4 They start with the Liouville equa-
tion for the distribution function p, of the whole system
consisting of the host fluid and B particle. A transport

*Work supported by the U. S. Air Force OfBce of Scientific
Research, Grant No. 508-64.' For details and references see S. Chandrasekhar, Rev. Mod.
Phys. 15, 1 (1943); M. C. Wang and G. E. Uhlenbeck, ibid 17, .
323 (1945).' J. Lebowitz and E. Rubin, Phys. Rev. 131,2381 (1963).' P. Resibois and R. Davis, Physica 30, 1077 (1964).

4 For a "kinetic" derivation seealso M. S. Green, J.Chem. Phys.
19, 1936 (1951); J. Lebowitz, Phys. Rev. 114, 1192 (1959);
R. M. Mazo, J. Chem. Phys. 35, 831 (1961).
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equation for the distribution f of a, 8 particle acted on
by a small oscillatory electric field Ee'"'. The method
used here is simpler than that used previously and we
try to point out along the way the precise nature of the-
limits taken and assumptions made in deriving an
irreversible equation for f.

In Sec. III we consider the steady-state distribution
achieved by f as t —& ~, which represents a balance be-
tween the external oscillatory force and the eGect of the
Quid. We find that the e8ect of the Quid may still be
represented, to lowest order in (m/M)'t', by a, Fokker-
Planck term albeit the friction constant f is, in general,
a function of co,

external potential acting on the 8 particle and p(r, ,) the
interaction between two Quid particles. The whole
system is enclosed in a periodic box of volume Q.

Consider now a situation where at time t =0 we turn
on an external- electric field' equal to the real part of
Ee'"'. This field acts only on the 8 particle which has a
unit charge. The joint distribution function of the whole
system p, will obey the I,iouville equation, for t&0,

Bu(x,y, t)/Bt= —(ti,H) —ye' 'E Bp/Bv

—= —P [v; Bu/Br,—P Bq(r;,)/Br, Bu"/Bv;

Mf ((o) =-',P lim
$0~oo

0

e 'I"e ' '(5(0) P(t))dt (1.3)
au—(r R—)/ar ati"/av;]

—y[v Bti/BR Bx—/BR Bti/Bv+F Bti/gv]

reducing to (1.2) when co=0.
In Sec. IV it is shown that the friction constant f(a&)

is precisely the same as one would obtain by considering
the force Fv(ce) acting on a 8 particle moving through
the fiuid with an externally imposed small velocity
Voe' ' PmVo2&C1,

Also,

x=(R,v), y=(ri, ~ r„,vi, v.). (2.3)

where (tJ„H) is the Poisson bracket between p and H and
we have set m= 1, M=y ', V=yv,

Fv(&o) = —Mi (&u) Voe'"'. (1 4) F= —8U/BR = —P; Bu(r;—R)/BR (2.4)
In this latter case the 8 particle does not have any
degrees of freedom but acts merely as a source of
external potential for the fiuid. The relation (1.4) is, of
course, the one generally used in the macroscopic'
theories of Brownian motion for defining the friction
constant f (for co= 0). Our result thus shows a complete
agreement between the dynamical and stochastic
theories of Brownian motion. The evaluation of t'(co)

from the appropriate kinetic theory (e.g. , the Boltz-
mann equation for a dilute gas) or from hydrodynamics
is also discussed in this section.

In Sec. V we show the complete agreement (despite
different appearances) between the transport equation
for f derived here (which coincides in form with that of
Ref. 2) and that obtained from the general Prigogine-
Resibois theory (which coincides with that of Ref. 3).

is the microscopic force acting on the 8 particle. Equa-
tion (2.2) is to be solved subject to some initial condition

(pixy, )0.

The terms in the 6rst square bracket on the right side
of (2.2) may be written in the form,

where
(p,H, (y; R))=inst,

H, (y; R) =Hi(y)+U(y; R)

(2.5)

(2.6)

is the Hamiltonian of the Quid in the presence of a 8
particle fixed at R, i.e., R is a parameter in H2, not a
dynamic variable and I. operates only on the Quid
variables y. The second and third bracket on the right
side of (2.2) may be writen in the form

v(t »i)+vF ~t /»=is~a, (2.7)

II. GENERAL FORMULATION
ye'"'E Bts/Bv=i Bp (2.8)

The Hamiltonian of our system, consisting of host
Quid and 8 particle will have the form, '

N

'+x(R)]+LE l "+2 ( ')]

with the Poisson bracket in (2.7) taken with respect to R
and v. Equation (2.2) may now be written symbolically,

imp/R= (I+yJ+ B)p= (Z+ 8)ts. —(2.9)

The distribution of the 8 particle as a function of v
and R, normalized to unity, is given by

+[+ u(r; —R)]=Hi+Hi+U, (2.1)
I f(x,t) = u(x, y, t)dy (2.10)

where r; and v; are the position and velocity of the ith
Quid particle. Here H& and H& are, respectively, the
Hamiltonians of the isolated 8 particle and the isolated
fluid and U is the interaction between them: x(R) is an

I. Prigogine and P. Resibois, Physica 27, 629 (1961}.

5

The equilibrium distributions iri the absence of the

' The problem of introducing a spacially uniform electric field
in a system with periodic boundary conditions is discussed in
Appendix A of the paper by W. Kohn and J.I.uttinger, Phys. Rev.
108, 590 (1957}.
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Under these conditions the first term on the right side of
(2.24) vanishes and upon substitution of the remainder
into (2.21) we are led to the following equation for f'
&f'(x, t)/ctt+y(f', Xi) Pp—e'"'E vfp

=iy(&/Bv) dye expL —it'(1 —(P)2j

fo independent of R, in which case p(v, t) is just the
velocity distribution of the J3 particles. f will satisfy
the same equation as f', Eq. (2.26), with fo replaced
by pp.

We shall now assume, what appears physically as
obvious, that P considered as a function of t and N,
P(t,N), will approach a definite limit as N —& ~, N/II = rt

fixed,

X(1—~p) ZP, f'(t —t')dt'
lim It (t,N) =It (t), (2.29)

dye exp{ it'fl+y(1 (5')J)—P',P
p — 8V

X — v ' t—t' dt'

X(t',N, y)f'(t —t')dt', (2.26)

and

tPiL,(".)= —Z, dy(a„( ))=0

where we have used the easily verifiable relations:

and similarly for the operator X defined in (2.26),

lim X(t,N, q) = X(t,y), (2.30)

x(t',q)p(x, t—t')Ct'. (2.31)

where the limit N ~~ of X(t,N, y) is to be taken after
the integration over y, in the definition of X, Eq. (2.26)
has been performed.

Combining Eqs. (2.26) and (2.30) we finally obtain
the following equation for f
ag(x, t)+y(g, xi) yPe—'"'E vpo(x)

p(x, t) = II'f(x, t) =po(x)+tP(x, t), (2.27)

p (x)= (2m/P)
—' ' exp —Pfi'/2+x(R)+w(R)g. (2.28)

0' will be proportional to Q when the 8 particles are not
confined to a limited region of space by their effective
potential x+w, and will equal II in a uniform system,

Equation (2.26) is to be solved subject to some initial
condition f (x,O), and we have indicated explicitly that
X depends on the size of the Quid, E=eQ, and on the
square root of the mass ratio y.

It should be emphasized here that the derivation of
(2.26) for the 8-particle distribution function from the
Liouville equation (2.2) for p, linearized with respect to E,
is exact subject to the assumed initial condition (2.25) .In
particular, if E is set equal to zero in (2.26) then (2.26)
will be an exact equation for f subject to p satisfying the
initial condition (2.25). Thus the fact that we want to
deal with a macroscopic size Quid, which might be
expected to show dissipative-type behavior, or that we
shall be interested in y(& 1 has not been introduced yet.
Indeed, if E=O (or if Ee'"' is present for all t, but
linearization is still meaningful), (2.26) is equally valid
for t&0 or t&0.

Before considering the transition to the limit of an
inQnite size Quid, N —+~, N/Q=N fixed we must ensure
that the density of 8 particles remains finite in this limit.
We shall therefore renormalize f by multiplying it
through by the constant term, O'= J'e e'&+ 'dR:

Equation (2.31) is a non-Markoffian irreversible equa-
tion which describes the evolution of the 8-particle
distribution, linearized with respect to E, towards its
stationary value.

III. STEADY-STATE DISTRIBUTION FUNCTION

De6ning now,

C(x,t) =e '"'P(x, t),

C will obey the equation

BC (x,t)
+i(uC +7(4,Ki)—PvE. Vpo

(3.1)

Ct'X(t', q)e-'-'C (t—t') . (3.2)

00

lim — e 't"C(t)dt—= lim C(to) = C,
gg-+ac t0 0

go-+co

exists. C(to) will satisfy the equation

(3.3)

C (x,0) 1
+ —+' 4(to)+ (4(t,),X)—P E p,

to -to
=Z'(to, —a, y) 4 (to), (3.4)

We shall now make the physical assumption that C (x,t)
approaches a limiting value as t ~~. The validity of
this assumption might be expected to depend on the
nature of the potentials p(r@) and N(r; —R). This
assumption can be weakened by requiring only the
existence of the limit of the "Laplace average" of 4, i.e.,
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where C(x,p) =P(x,p), and

K(fp, —a), y)= e 'I"e '"'x(t,y)dt. (3.5)

Assuming now also the existence of

lim K(tp, (v,y) =K(~,y), (3 6)

we obtain finally the following equation for C

i C(x,y)+y$v 84/BR —(8(x+w)/BR) A/avj
p~E'-po=K( , v)c-(*,~), (3 7)

where we have indicated explicitly the y dependence
of C.

Exyansion in Powers of y

We consider now the case where y=M 't'(&1, and
treat the variables y; and v as quantities of O(1), i.e., we

assume that the velocity of the Bparticle V=yv O(y)
is much smaller (in the range of interest), than the
velocities of the Quid particles. We then formally expand OWE'/Bt+ ttWsr', Hs(y'; R(f)))=0. (4.2)

distribution functions. However, the explicit evaluation
of f' depends on the stationary state which is attained
by the one-body Quid distribution function Wt(r, v, t)
in the presence of a moving 8 particle; this problem
requires the derivation of a transport equation for
Wr(rt, vt) and is much more complicated. "As such an
analysis falls outside the general scope of this paper, we
shall merely illustrate it here for the case of a dilute
gas where 8 & is assumed to obey a Boltzmann equation.

Consider aB particle moving in a fluidwith a prescribed
velocity equal to the real part of Vse'"', for t)0. If we
call the Quid coordinates y'= (rt', ~ r&', vt', ~ ~ vsI'), the
Quid will now be characterized by the time-dependent
Hamiltonian Hs(y', R(t)) given in (2.6),

Hs(y'; R(f))
=H&(y')+Q N(r R,—Vs—(e'"' 1)/—i~), (4.1)

where Rs is the position of the B particle at t=p and
we have set m= 1.The E-particle distribution function
of the Quid (normalized to unity) W~'(y', t) will evolve
according to the Liouville equation,

We now make the transformation of variables, y' —+

K(—co y) =P '((a&):(8/civ)+v+8/Bv]+O(ys), (3.8)

with the "friction tensor" f(&o) given by
r, = r —R(t), v;= v —Vse'"'. (4.3)

((&o) =Pcs lim lim
Eo ~co

0

The distribution function WN(y, f) will now obey the
equation,

$fc &I &os iro& —FP(——f)Poly . (3.9)
r)Wv (y, t)/Bt = (Hs(y), WN)

Here,

r( t) = e "zs'(y,—R)— (3.10)
+icoVpe'"'(Q 8/Bv )Wsr (4.4)

is the microscopic fluctuating force, (5:=F—(F)s),
acting on the 8 particle at —t, when the state of the
fluid at t =0 is speci6ed by the point y in its own phase
space and the B particle is kept axed at its positioN E.
When the fiuid is isotropic (our "fluid" can actually be
a crystal. Cf. Appendix E, Ref. 2), ((~) is diagonal

((~)=f(ru)1 and (3.11) becomes equal to the Fokker-
Planck operator on the right-hand side of (1.1) albeit
with a frequency-dependent friction constant. The
higher order terms in K(ce,y) can also be evaluated
readily and are discussed extensively for the case of a
spacially uniform system and co=0, in Ref. 2.

IV. CONNECTION WITH MACROSCOPIC
THEORY

In order to prove the equivalence of our microscopic
approach and the usual stochastic theory, we need a
demonstration of the equivalence between the de6ni-
tions (13) and (1.4) for the friction coeQicient.

As will be shown presently, this property is easily
demonstrated in a very general way, and does not
require a detailed analysis of the behavior of the Quid

~
—PH2(y'; Rp) o P&s(w', Ro)dy-' (4 5)

and that Vp is small compared to the molecular ve-
locities, PVss«1. We may then write

WN(y, f) =Ps(rt, " r~, vt+Voe'"', ~, v~+Vpe'"')
+I"b',f) =~ob) pVoc'"'(Z v;)I'o+—I", (46)

rs The general transport equation for W&(r&,v&) can easily be
obtained using the techniques of I. Progogine and co-workers
Lfor a similar case, see R. Balescu, Physics 27, 693 (1961); P.
Resibois, J.Chem. Phys. 41, 2979 (1964)g. In particular, the Boltz-
mann equation (4.18) may be rigorously proved for a dilute gas,
provided that the momentum transfer due to the 8 force during
a collision is small with respect to the exchange of momentum
between the two particles LP. Resibois (unpublished) j.

i.e., Wrr(y, t) evolves under the action of the time-
independent Hamiltonian Hs(y) and a time-dependent
"force"-koVee'"' acting on each Quid particle.

We shall now assume that the fluid was in equilibrium
at t=0,

W~'(y', 0)=P,(y'; R,)
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where P' is linear in V, , and satisfies the equation

BP'(y, t)/Bt =—iLP'+P Vpe'"'i J.(Q v;Pp)
= —iL,P' —PV,e'-'FP, . (4 7)

The operator L and F are defined in (2.5) and (2.7),
F being the force on the moving 8 particle. Equation
(4.7) is to be solved with the initial condition P (y,0) =0.
This gives

P'(y, t) =— e—'i'—'&cPVpe'"' FPpdt'
0

According to (4.6) and (4.8), Wl may be written for
small Vp in the form

Wl(rl vl t) Wl (rl vl)
—Voe'"'LPv W '(r, v)+p (r», t)j (4 14)

where 8'l is the equilibrium one-particle distribution
of the fluid in the presence of an external one-body
potential n(r) and

t

pal
——pl'V dr p d vii dt'

=—PV e'"' e-"~e—'"'FI'o«'
)& fexpL —i(I+pi)t']) FPp(y). (4.15)

=Pv'(y, pp, t)e'"' (4 8)

Computing now the macroscopic force on the moving
8 particle at time t gives

(F)= FW~(y, t) dy

= —PVpe'" dt'e '' FF(-—t')Ppdy
0

=F (v pti, N). (4.9)

e '"'Fv(pi)=lim lim e '"'F (v&,pt, A')= Mf(pi)Vp (—4.10)
taboo N~&e

in agreement with (1.4): assuming that these limits
exist. If the limit t —+~ does not exist we have to intro-
duce the convergence factor e 't" as in (3.9).

We have thus shown the complete equivalence be-
tween the friction constant appearing in the Fokker. —

Plank equation for an unconstrained heavy 8 particle
and the "friction" constant appearing in the force acting
on a 8 particle moving with a small prescribed velocity.
In the latter case the mass of the 8 particle does not,
of course, enter the analysis.

Evaluation of (:Kinetic Theory

In order to actually compute f we note that Eq. (4.9)
may also be written in the form

where

(P)= F1W1(rl vl, t)dildvi,

N

Fl ——8/Briu(ri); F= P Fl(r;),

(4.11)

(412)

and Wl(rivi, t) is the one-particle distribution function,
of the Quid,

Upon taking the limit E—+, and t —&~ we finally
obtain

It is now clear that if lVl obeys any transport equa-
tion in the presence of an external potential N(ri) and
a small oscillating external force, —ipiVpe'"' (in the
proper thermodynamic limit and time scale), then Fv
and thus f can be computed from the stationary solution
of thi. s transport equation subject to the boundary
conditions,

llm Wl(rl, vl) = Wi (ri, VI+ Vpe )
I &Il

ll 1 (rl vi)L1 —pVpe'"'vi] (4.16)

linearized with respect to Vp, PVp'&(1. Thus, for the
case where the Quid is a dilute gas the appropriate
transport equation would be the Boltzmann equation
(see footnote, Ref. 10)

BWI(ri, vi, t)/iit+ vl BWI/Br i Fi c1—WI/cj vi
—ipiVpe' ' BWI/c1vl ——J(WI,WI), (4.17)

where J is the Boltzmann collision operator. Linearizing
Wl in the form (4.14) we obtain the following equation
for pl,

ipiV11+iiV11/Bt+(Vi &/cjrl —Fi. c1/&Vi) pii —pFIWi"
=J(WI",q 1)+J(PI,Wl"), (4.18)

where 5 l' is now given by

Wl'(rl, vl) =n(21r/P) '"e ~'*""+"&'~'j, (4.19)

where n is the particle density far from the source of
the external potential. The stationary state achieved by
pi as t ~~ from which Fv and i may be computed can
be found from (4.18) by setting Dpi/Bt=0 there and
solving the resulting time-independent equation with
the boundary condition &pi —+0 as ~ri~ —&~.

Evaluation of (:Hydrodynamics

It is seen from (4.11) that-if we, are only interested in
computing (F), it is not necessary to know the complete
IVI(ri, vi, t). Rather it is suflicient to know the one-
particle fluid density

Wl(ri, vi, t)=iV Wiv(y, t)drp . dr~dvp dvigu. (4.13) 1'i(rl)t) = Wl(rl, vl, t)dvl, (4.20)
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since

(F)= Fi(ri)N(ri, i)dri. (4.21)

For obtaining Fv(a&) and f(co) only the steady-state
value of e is necessary.

The density zz(r, t) satis6es the continuity equation"

cadiz(r, t)/cit+ 8 rzu(r, t)/clr =0, (4.22)

where u(r, i) (not to be confused with the ext.ernal po-
tential N(r)] is the local velocity

u(r, t) = Ll(r, t)j—' viWr(r vi i)dvi. (4.23)

p(r i) = vlvill 1(r,vi, i)dvl . (4 23)

Equation (4.24) may also be used to compute (F). The
result is especially simple for ~=0, when we obtain for
the stationary value of (F),

Fy ——— p d (4.26)

where the integration is over any surface enclosing the
origin but sufficiently far from it that Fi(r) vanishes
outside this surface.

Equations (4.22) and (4.24) are not closed as they
stand since they contain in addition to e and u also p.
It is only when p is expressible as a functional of m and u
(or of rz, u, and some other variables for which new
equations are supplied" ) that there will exist a closed
set of hydrodynamic equations, e.g. , the Navier-Stokes
equations, for the Quid. When such a set of equations
exists for our system, i.e., for the Quid in the presence
of an external potential N(r) and a small oscillating
external force iioVpe'"—' then Fv(co) and f(os) may be
computed from the stationary solution of these equa-
tions (linearized with respect to Vp) subject to the
appropriate boundary conditions at infinity.

An investigation of the conditions necessary to ensure
the validity of the hydrodynamic equations for the
description of the steady state is outside the range of
this paper. Intuitively, the requirement would seem to
be that the length and time scale associated with N(ri)
and co ' should be large compared to the microscopic
length and time scales associated with the fluid. For a

' See, e.g. , H. S. Green, molecular Theory of Elands {Xorth-
Hoiland Publishing Company, Amsterdam, 1952).

The momentum density nu obeys in turn the dynamical
equation, appropriate to the present problem,

ci(rzu)/Bi+8 p(r t)/Br+rzFr(r)+iooVpe'"'rz=0, (4.24)

where p is the stress tensor of the Quid which will be
some functional of 8'& whenever B/"j obeys a transport
equation. In particular, for a dhllte gas,

dilute gas these latter are, respectively, the mean free
path and mean free time between collisions. "

The hydrodynamic equations and hence t(co) will

depend explicitly on the parameters of the Quid, such
as its viscosity g, as well as on the nature of the
"external" potential N(r). In some cases the effect of
zc(r) may be represented by appropriate boundary con-
ditions. Thus, if zs(r) represents a rigid-sphere type of
interaction

zz(r) = ~, ~r~ (-',a,
=0, )rJ )-,'a, (4.27)

V. AN ALTERNATIVE FORMULATION

Let us now return to the general time-dependent
equation (2.31),

clif(x, t)/cii+y(if, Hi) yPe'"'E vpp(x)—

X(i—i', q)P(x, i')d&', (5.1)

"H. Grad, Lncyclopedia of Physics, editecl by S. Fliigge
(Springer-Verlag, Berlin, 1958), Vol. XII, p. 205.

"G. Grad (private communication) believes that this can be
shown rigorously for the case of a dilute gas satisfying the Boltz-
mann equation.

's H. Lamb, FFydrodynamics (Dover Publications, Inc., New
York, 1945), 6th ed. , Art. 337, p. 602."J.I.. Lebowitz, Phys. Rev. 114, 1192 (1959), and references
cited there.

"A very interesting derivation of Stokes law which expresses
p in the form (1.2) but with W representing a "hydrodynamic
force" has been given recently by R. Zwanzig, J. Res. Natl.
Bur. Std. 688, 143 (1964).

then rz(r) will be zero for
~
r~ (sa. The hydrodynamic

equations will then have to be solved" subject to the
conditions that the normal component of u(r) as well as
the tangential components of the stress p vanish at

~

r
~

=-', a. A solution of the Navier-Stokes equations with
these boundary conditions is given by Lamb, "for the
case co=0, and yields

Fy(0) = —4zrsiaVp= —3ff(0)Vp. (4.28)

As mentioned before the validity of the Navier-Stokes
equations for this problem requires that a be very large
compared to the mean free path in the Quid. Hence the
value of t (0) given in (4.28) does not conflict with the
value of i (0) computed for a heavy sphere moving in an
ideal gas" where the mean free path is infinite.

Finally we might mention that it is not clear to us
whether there exists any potential N(r) which leads to
Navier-Stokes equations with a boundary condition
that the Quid velocity, both normal and tangential,
vanish at the "surface" of the 8 particle. It is this
boundary condition which leads to Stokes' law

Fv = —6zrsiaVp, commonly used for 8 particles. "
Perhaps such a boundary condition arises when one
considers a "composite 8 particle" with internal struc-
ture. A Quid particle can then be "absorbed" by the
8 particle and re-emitted with zero average velocity.
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where we have replaced, for a Quid K& by H&. A re-
markable feature of this equation 'is that, except for the
trivial Qow terms, the complete and exact dynamics of
the problem has been incorporated in the collision opera-
tor X(t,y). This result seems at first sight in contradic-
tion with the general theory of approach to equilibrium
developed by Prigogine and one of us' (P.R.). Indeed
it is expected in general that the transport equation for
f should have the following form:

BP(x,t) t

+y(P, IIi) yPe'"'E—.v pp+ dt'Sp(t —t', y) pp
83 0

= X)o(t,y)P(x,0)+ G(t —t', y)P(x, t')dt'. (5.2)

Here G(t,y) is a generalized collision operator, to
be defined below; the so-called "destruction term"
X)p(t,y)P(x, 0) represents the effect of the initial spatial
correlations while the last term on the left side describes
the acceleration of the particle due to the external Beld
during a collision process; these two latter terms are not
present in (5.1). A similar paradox was found in the
stationary situation discussed in Ref. 3.

We shall now show that it is possible indeed to write
down an alternative transport equation for P(x,t) which
has precisely the structure (5.2); this equation is the
exact analog of the general kinetic equation of Prigogine-
Resibois, as applied to the present problem. However,
the operators X)0 and G are not independent of X: they
are connected in such a way that the solutions of the
two equations (5.1) and (5.2) are identical for all times.
In order to avoid long calculations in the main text,
some proofs are left for the Appendix.

Let us start again with the Liouville equation (2.9),
linearized in the external 6eld:

and introduce the abbreviation:

I'(x,y, t) = (1—I)p, '(x,y, t) . (5.8)

iBI'(x,y, t) po'({v))
(1 I)Pp gfp= {L+p(1 I)J) f(x t)

8$ nN

+(L+7(1—I)J)I'(x,y, t) (5 1o)

The similarity between (5.9), (5.10), and (2.21), (2.22)
is striking; the formal manipulations followed here will
thus be the same as in Sec. II: one writes the formal
solution of (5.10), which is then inserted into (5.9). The
limit process E—&~, (E/Q)=n finite is applied as
before; assuming that this limit exists, we immediately
obtain Eq. (5.2) with the following definitions:

8
S (t,y) = —y— dy F(exp{—iLL+y(1 —I)J)t})

Bv

&&(1—I)P,(x,y), (5.11)

8
G(t,y) = —iy— dy F(exp( —iLL+y(1—I)J)t))

Bv

X[L+y(1 I)J]IPp(x, y—), (5.12)

where we have used the identity:

We now apply the operators I and (1—I) to the
Liouville equation (5.3); we get, respectively,

8f'(x, t)
+y(f', II,(x)) ale'—"E vf,

8
dyFr(x, y, t), (5.9)

88

i' /Bt SPpfp= (I+yJ)p (5.3)
IPo(x,y) = '((v))/~l (5.13)

and let us assume again the initial condition (2.25).
We define a projection operator I by

p,&((v})I(. . )= dy( )
gN

IL=0,
f'(R»t) = {po'(( ))/~l") 'Ip'(*,y, t),

(5.6)

(5 &)

where ppt({ v)) is the fluid equilibrium velocity (distribu-
tion function):

po'((v)) =(2~/0) '""
PL—0 r, ' ''/ ) ( )

As will be seen later (Appendix A) the motivation for
introducing the operator I is that it is closely related
to the so-called "irreducibility condition" in Fourier
space, which plays a very important role in the calcula-
tion of Ref. 3. We then notice the two useful identities:

P(x,s) = expList)P(x, t)dt, (5.14)

—1
f(x,t) = dz exp) —ist)g(x, z), (5.15)

27ri

where the contour C is parallel to the real axis above the

The formal device of introducing I has thus allowed
us to express $0 and G in a closed form; this provides
us with an explicit transport equation for P(x,t) which
has exactly the same structure as the Prigogine-Resibois
transport equation. More precisely, it may be shown
that Eq. (5.2) together with (5.11)and (5.12) is identical
to this equation, when this latter is specialized to our
particular Brownian problem. This result is discussed in
Appendix A for the stationary solution of (5.2).

Let us now show that the solutions of Eqs. (5.1) and
(5.2) are identical. We introduce the Laplace transform
of f:
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singularities of P. Similarly we define K(z,p) Lsee also
(3.5)],G(z,y) alld Dp(s, y). From (5.1), we obtain easily:

—'4(*, )—0( 0)+ (0,H) —(/( + ))PE o( )
=K(z,y) P(x,z), (5.16)

while Eq. (5.2) gives

izP—(x,z) P(x—,0)+y(P,Hi)
—v(/( + ))L1+D (,v)]PE

=Do(,v)0( 0)+G(,Y)4(, ) (5 17)
If we set,

explicit form. In particular, if we study the relaxation
of the 8 particle toward its equilibrium value in absence
of external field (8=0):

P(x,t) =p(x, t) —p (x) 0 as t ~ . (5.25)

In the limit y'((1, one has to take the time scale t —+~
t/y' finite"; in this case both Eqs. (5.1) and (5.2) reduce
to the time-dependent Fokker-Planck equation (1.1)
with |=|(0) given by (3.12).
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iyLo ——y( Hi), (5.18)
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hydrodynamics.

iybL'= —yF. (8/Bv),

and solve (5.16) and (5.17) formally, we get

P(x,z) = P
—iz+iyL p

—K(z,y)]—'
X{P(*,0)+('/( + ))PyE. o( )}, (5.16') APPENDIX A: THE EQUIVALENCE OF

EQS. (5.1) AND (5.2)
g(x,z) = L

—oz+ovLo —G(z,v)] '[1+Do(z,v)]
X{@,0)('i(-+ ))t ~E ".()},

where we have explicitly:

(5 17&) Let us first prove the identity (5.24). Using the
definitions (5.20), (5.21), and (5.22), together with the
obvious identity valid for an arbitrary function A(x,y)

K(z,y) =i dyyt)Lr (1 P)ZP (—x,y), (5.20)
(1—O)Z —s

po'({ }))
(»—~)~(~»)=(& —

l
dx "(*»)

n& )

G(s,y) =i dye bL' (1—I)ZIPo(x, y), (5.21)
(1 I)Z z— —

Do(z,v) =—

=(1—I)Po(x,y) dy~(x, y), (A1)

one obtains by straightforward calculations:

izD.(z,&)y—G(z,&)+i&D.(z,,)L,

Obviously, the solutions of the two transport equa-
tions will be the same provided the following identity
holds:

{ iz+iyLo—K(z,y)}-
= {—' + 'yLo —G(,~)} 'Ll+Do(, ~)], (5.23

while

i gypbL (1 5)ZP„(A—2)
(1 I)Z s-—

which may be written as

G(z,y) isDo(z, y)+ AD�—p(z, y)Lo
= L1+Dp(z,y)]K(z,y) . (5.24)

Using Eqs. (5.20), (5.21), and (5.22), the validity of
(5.24) may be proven by direct algebraic manipulations.
The explicit proof is left to Appendix A.

This establishes the link between the methods used
respectively in Refs. 2 and 3. We just want to add the
following remarks:

(1) The simplicity of (5.1) is related to the veryparticu-
lar choice of an initial condition (2.25); in a more general
case, we would also find in (5.1) a "destruction term"
which keeps trace of the initial correlations in the system
Lsee Eq. (2.24) and Ref. 2, Sec. V].

(2) If one considers the limit of small y, the two
transport equations (5.1) and (5.2) lead to the same

dy~&J~ (1 O')zP, —
(1—I)Z—z

+i dye oLr (1—I)Po
(1 I)Z s——

where

dye(x, y, z) =0, (A4)

1
f(*,y, )= (1 6')Po. —

(1—6')z—..
(A5)

XYL0 dy (1 O)ZP, . (A3)—
(1 I)Z z——

We see thus that (5.24) will be satisfied provided the
second term on the right side of (A3) vanishes. However,
one has
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w write explicitlyndeed, we have

,jp(, y, )=(1-6')&Po

) p dye(x, y s—s5'I' »7' =

[(1 (P)

p to hoth sides of (A6)Apply g th' 'P"""
(A6)

(A7)

d{r)d{v}

(A13)

f h o eratorsi»o»and take the Fourler r
e use for this the com-

~
'

transformo t eop
n (A10) with respect o {
pe. teness relation

A4).
etween

which is precise y
f th equivalenceThis complete roof o

the two meth
h ntact with. o p

used in the text.
iousder to establish th o

'
the case where E

n or
rove th.at » e

f
rk we still have to p

d in the absence o

l

t r in Hilbert sPacee k is the eigenvector in i e
has the spatial represen a

'

(A14)

%e obtain then from A12)
n the limit t —+~:

dv P Oyd v oLr
I
{k'))—

—y E.vp, v) —pPDo(o, p)E vpo(p)

o E . (4.15) of Ref. 3.is identical to q.
Let us consider the co ision

({k'}
I
(1—I)yJPp

I
0)

QI
L+ (1—I)J—'0

X[L+y(1 I)J]I ( —oyx.X y — P x ). (A9)

oin to the limitcare has to be taken in going
i htit th t'0 indeed at first sig t i sZ p

k"))+({k')I(1—I)»- . I{

x ({k")
I (1 I)vJPo

I 0)

k"))".+({k')
I (1—I)vI—

I {

6( )=i dypbLrIPo(x, y)=0,lim 6 ay =i
z~io x({k'"')I(1—I)vJPol )0 . (A15)

on . However, for finite'', q.s E . (A9)which is obviously wrong. owever,
may be rewritten as

SL,IG(s,y) =i dyyhL

s or o eratorso arbitrary functions p6' b fAI"& and Ii2 depending only on a ni e n
particles

and we have

(1—I)jJ IPp-A10)X

d»» ) I {k))&{k)I(1—I)Pp({v})Po

d{v)P~({v))I {k))

li(n —IPo(x,y) =Pp(x, y) ."I—s
(A11)

Krd{v)(0IPpPp6fkjX &{k)IPpPo —po (A16)

a erturbationas roved in Ref. 3 using a pThis result was prove
p 0
Using (A10) s,nd (A, w

expansion:
=0

k WOd»~({v)) I {k))&{k)IP Po, {

{k)—=0. (A17)

G(i0,y) =i dy( ybLr— mic limit,olds in the thermodynamic
h

f ne li ible ei ht co pF
'

f (1 il ).
I) I'0 ( )—xE
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We get then

G(z0,y)=z df v)(0~ y8I.—r P yJ
~

P, ~O),
L—z0

(A18)

where the prime means that all intermediate states
should correspond to non vanishing wave numbers
(k) 80: Equation (A18) is precisely the complete ex-
pansion of the right side of Eq. (4.15), Ref. 3. The same
calculation may be developed for the left side of (AS).
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Energy Spectrum of a Simple Bose-Einstein Model*
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A soluble model of a Bose-Einstein system is examined, in which the interaction energy between particles
is attractive as the momentum approaches zero. The model is based on one proposed by Bassichis and Foldy.

pm = (ppk'+ & cozkrlV, a/Qm) 't' (3)

where a is the 5-wave scattering length. (6=1). For

*This work was supported in part by National Science Founda-
tion grant No. GP-3706.' N. N. Bogoliubov, J. Phys. (USSR) 11, 23 (1947).' T. D. Lee, K. Huang, and C. N. Yang, Phys. Rev. 106, 1135
(1957).

3 T. T. Wu, Phys. Rev. 115, 1390 (1959).
N. M. Hugenholtz and D. Pines, Phys. Rev. 116, 489 (1959).

I. INTRODUCTION

HE second-quantized form of the Hamiltonian for
a system of Bose-Einstein particles interacting

via a two-body potential is given by

H =Qk ppka„*ak+(1/20)pk, , k, , k, , k4 z ( ~
ki —kp

~ )
X ak, *ak,*akzak, b(k4+k, —kz —ki), (1)

where ul, and ui, * are the annihilation and creation
operators for particles in the state of momentum k, 0 is
the volume occupied by the system, and v(~ k~) is the
Fourier transform of the two-body potential. The
Bogoliubov' approximation consists of assuming that
most of the particles are in the state k =0 and that it is
thus permissible to replace co* and ao by c numbers
equal to +1V, where 1V is the number of particles in the
system. One then retains those portions of the inter-
action which are of order E. This procedure yields an
energy spectrum

E(mk) =Pk„p mk(&ok'+2ppkp(k)1V/D)'i'+E, , (2)

where m& is the number of elementary excitations of
momentum k, and E, is the energy of the ground state.
This result may be improved by using either a pseudo-
potential" or the single-particle Green's function. 4 In
addition, the number of particles in the state k=o is
taken to be Xo rather than Ã, where Eo is the average
value of uo*uo. The energy of an elementary excitation
of momentum k is then modified to

suKciently small momenta this expression is real only
if a is positive. In this case we obtain an acoustic dis-
persion, and hence a zero energy gap between the ground
state and the lowest excited states. However, if u is
positive these low-momenta excitations are unstable
against decay into two or more excitations, which is not
observed in liquid helium II. Unfortunately, a negative
scattering length means a Bose-Einstein system cannot
be dilute, which is an important assumption for the
derivation of the above excitation spectrum. It is thus
of interest to examine a soluble model in which the
interaction energy between particles is attractive in the
limit that the momentum approaches zero. The model
we propose examining is one that was studied by
Bassichis and Foldy' earlier.

II. THE BASSICHIS AND FOLDY MODEL

This model consists of extracting from H of Eq. (1)
only those terms involving three single-particle levels
of momenta k, —k, and zero. Thus, we consider the
Hamiltonian'

k=(uk(nk+n k)

p(k)
+ $np(nk+n k)+ap aka k—+ap ak a k]— —

0

~(0)
+ L2np(nk+n k)+2nkn k+nk' —nk

20
zr(2k)

+n, k
—n k+np' —npj+ nkn k, (4)

0

' W. H. Bassichis and L. L. Foldy, Phys. Rev. 133,A935 (1964).
'In Eq. (4) we could retain the entire kinetic energy term

without it affecting the ensuing discussion. The extra terms merely
separate out.


