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T. R. KoEHLER

IBM Research Laboratory, San Jose, CaIifornia

(Received 24 March 1965}

A two-parameter many-body correlated Gaussian wave function is used to calculate the expectation
value of the Hamiltonian for & one-dimensional particles interacting through the one-dimensional analog
of an atomic potential. Using a potential equal to four times the Slater-Kirkwood He-He potential, we cal-
culate the optimum average interparticle separation, the ground-state energy, and the velocity of sound of
the system as a function of particle mass. It is found that the correlated Gaussian always gives an improve-
ment in energy compared with an uncorrelated Gaussian.

I. INTRODUCTION
' ' 'INCORRELATED Gaussian orbitals have been

used by Bernardes and Primakoff' for the con-
struction of a Heitler-London type trial wave function
in a calculation of the ground-state properties of solid
He', and recently by Nosanow' and Mullin' as factors
in a Jastrow-type wave function for calculations on
solid He' and solid Ne, respectively. In this paper we
wish to present a many-body calculation using a
correlated Gaussian wave function. This calculation is
intended to be a particularly straightforward application
of a more general approach to the construction of trial
wave functions appropriate to structured systems.

The general approach consists of using a wave func-
tion which is an appropriately syrnmetrized sum of all
coordinate permutations of a function %(xr,xs, .

,x)v)
which has the property I'("+I'(&)4'(+2, where E"' and
I'(&' denote different permutations. The speci6c calcu-
lation will be that of the ground-state energy of a
system of particles, confined to a ring, which interact
with the one-dimensional analog of an atomic potential.

In the analysis, a two-parameter, S-particle wave
function —the ground-state eigenfunction of the coupled-
harmonic-oscillator Hamiltonian —will be used. One
parameter b determines the average interparticle
spacing; the other n essentially determines how strongly
the particles resist overlapping each other. The circum-
ference of the ring will be I.=Eh so that periodic
boundary conditions can be applied and end effects
eliminated.

The expectation value E(b,cr) of a Hamiltonian

will be minimized with respect to b and a for various
values of ns. If the potential has a suKciently strong
attractive part, the minimum Es——E(bs,(rs) will be
negative and will occur at a finite value of b. This

' N. Bernardes and H. PrimakoB, Phys. Rev. 119, 968 (1960}'L. H. Nosanow, Phys. Rev. Letters 13, 270 (1964}; the g
function used in this reference is not really a Gaussian, but can
be analytically approximated by a Gaussian over a certain range
of the variable.

s W. J. Mullin, Phys. Rev. 134, A1249 (1964).

corresponds, except for end effects, to the calculated
equilibrium density of the solid into which the X
particles would condense at absolute zero if placed on a
ring whose circumference were greater than 2Vbo.

A comparison will be made between the results of
this calculation of a calculation using uncorrelated
Gaussian orbitals. It will be shown that the correlated
function always yields a lower energy.

II. GENERAL CONSIDERATIONS

Consider the wave function

C =g ~(xr,xs, ,x)v),

where g P means the appropriately symmetrized
sum over all permutations of the variables. Suppose
that 4' has the property that (P(')%)(p("0')/4'=0,
where the superscripts denote different permutations,
and that +(x„„x„„x„„)is only large when x„,+,
=x„,+b Then. .

2V/2

=i'(T I+I' P f(x; »)dx —+'dx, (3)
i=2

where the most convenient ordering of coordinates has
been chosen, and where cross terms between different
perlnutations have been dropped. 4 It has also been
tacitly assumed that periodic boundary conditions will
be applied so that xi'+&= x)+1..

Equation (3) is most easily justified when

x(+ I
P(' *'+'%)/(e Ie)«1

with

(@I
p(i, i+a)@)~(@

I

p(i i+1)@)n.

mrs(@
I
p ($ $/r $i s)@)/ (@I @)«$

where the superscript on P denotes the cycles into which

'Notational conveniences which will be followed in the re-
mainder of the paper have been introduced: +~% (x~,x2,x3, - ~,x~},
i.e., all of the coordinates listed in order; 0'(x „x „,x „) will
mean that the n variables given explicitly are in that order while
all the rest are in the same order as in +; and, dx —dx~dx2 ~ ~ fgx~.
Symmetrized wave functions will always be denoted. by 4 and
unsymmetrized wave functions by 4'.
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in constructing 4 out of +~, the coordinate indices are
peimuted, but the numbers which are coe%cients of b

and arguments of g are not. Since Eq. (3) allows us to
work with one particular permutation, we have merely
chosen the most convenient one in the expression just
given.

Further development is straightforward. Using H
as defined in Eq. (1), a,nd noting that
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FIG. 2. Values of optimum kinetic energy, potential energy,
total energy, particle separation and s.no/Q8 as a function of
particle mass.

where L(b,n) = (C
~

H
~
4)/(C

~
C'), the transformation

—,
' (ms+sr) =X, x&—xr ——y has been made,

Since the kinetic-energy term is proportional to 0.' and
the width of the Gaussian to (1/rr) it is clear that there
must be an optimum value of n for which P does not
overlap the hard core very strongly and the kinetic
energy is not too large.

f'(y) = @is(y,X,xs, ,xg)dXdxs, , dry, (11)

and it has been assumed that V(2b)«V(b). ' From the
form of Eq. (10) it is clear that if all the coordinates
but two are integrated out, the argument of the ex-
ponent will be a quadratic form in the remaining two
coordinates. Furthermore, the center-of-mass depend-
ence on these two coordinates should vanish beca.use
the two particles are no longer constrained to be at any
particula, r point on the ring. Thus we can take

IV. NUMERICAL RESULTS

A. Results with Correlated Wave Function

The numerical work involved in minimizing E with
respect fIrst to o. and then to b ha, s been accomplished
by means of an IBM-7094 computer program. It was
found that, for particles of atomic weight 4, a bound
system would not result if a one-dimensional analog
of the Slater-Kirkwood" He-He potential were used;
an interaction equal to four times this potential was
arbitrarily chosen and this gave binding. The exact
potential used was

P (y) =exp L
—2crr'(y —b)'). (12)

It can be found that c=m'/16 by noting that
(0',

t
—,'0 P (q;+t—q;)'

~
%s) is well known from the

problem of the coupled harmonic oscillators so that the
value of the second integral in Eq. (10), which depends
on c, is known and c can be determined. Equation (10)
then becomes V(y) = 1925 exp( —4.6y) —3.725/y'

where the units are eV and A.
The singularity in the potential at y=0 was avoided

by simply starting the numerical integration at 1 A.
The ratio of the value of

~
V(y)P(y)

~

at this point to
the value a,t the potential minimum was typically 10 4.

Thus the value of the integral would be unaffected by
any assumed nonsingular behavior for y(1 A.

A graph of this potential and of the minimum value
of E/E for various values of b are given by the solid-
line curves of Fig. 1 for particles of various atomic
weights. The graph has not been extended to values of
b much greater than the optimum value bo, in this
region the wave function C forces an unstable configura-
tion upon the system and becomes a poorer trial wave

(14)

E(b,n) h'rr' n s. '"
+——

X 2m 2 2

—~'n'(y —b)'
dy. (13)X V(y) exp—

The neglect of all but nearest-neighbor interactions is not
really necessary and is primarily made to simplify the form of
Eq. (10). The most distant interactions may be included by
adding to Eq. (10) the terms

y.2(y.) v(y.)zy. ii.'(y.)&y-

where
Xn= I'(al+&n+s) yn=&neer &1

and

+ ~xn~&2 ' ' d&n+l~&n+32—
'0 J. C. Slater and J. G. Kirkwood, Phys. Rev. 37, 682 (1931).
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FIG. 3. Classical and calculated quantum-mechanical
velocity of sound as a function of particle mass.

function since, as b increases, the average potential
which a particle sees looks less and less like a harmonic
potential. This latter point is illustrated by the fact
that E became positive for sufficiently large values of
b in all systems for which binding was obtained. It
should be noted that for b) 3.26 A the second derivative
of the potential is negative so that the particles will

on the average reside on a local potential maximum.
In order to show the effect of particle mass, a plot

of plQp/+8, bp Ep, and the kinetic- and potential-energy
contributions to Eo for various values of particle mass
is given in Fig. 2. Thus the fact is demonstrated that a
particle can be more sharply localized for the same
expenditure of kinetic energy as its ma, ss increases.

It is a straightforward rnatter to obtain the compressi-
bility and from this the long-wavelength limit of the
velocity of sound as a function of particle mass from
the numerical results presented in Fig. 1. The results
of such a calculation are shown in Fig. 3 together with
the velocity of sound c=ypLV" (yp)/mj'~' of the corre-
sponding classical system in which the equilibrium
separation of the particles is yo and the potential
minimum is P (yp).

B. Comyarison with Uncorrelated Gaussian

It is a straightforward calculation to show that if,
instead of C~,

@s——exp{—(«/8)' Q q„')

had been chosen originally, Eq. (13) would have been

E'( nb)/E= (s'/8)(Err(b, n)/E)+Ep(b, n)/cV,

where Err (b,n)+Ev (b,rr) =E(b,n) and Err and E~ have
their most obvious meaning. Thus, for any value of b,
the optimum 9'& will always give a lower energy than

the optimum 0 2. This improvement will be greatest in
loosely bound systems where the kinetic and potential
energies are almost equal.

The minimum values of E'/1V for various values of b

are shown by the dashed curves of Fig. 1.

V. DISCUSSlON

An inspection of +~ shows that

eqP&' '+'hI' =exp' («b)'/83+ '

so that +~ sa, tisfies the first of the criteria given in
Sec. II only when X(&exp/(«b)'/8]. Using a typical
value of n from Fig. 2, one obtains E((10".For the
purposes of this paper, it will simply be assumed that
a large but finite system is being treated, i.e., 1((E
«10", and that, since it would be very odd if a calcu-
lation diverged at %=10", the results are probably
valid in the limit E—+ 00.

AVe intend to treat the permutation problem in
greater detail in a subsequent publication and to give
a, systematic method by which contributions from

permutation terms can be assessed. The resolution of
this problem is necessary if one wishes to explore a
more interesting system —one in which the particles
are penetrable —using this one-dimensional model. As
pointed out by Lieb and Liniger, " a system of one-
dimensional penetrable particles is the closest one-
dimensional analogy to a three-dimensional, inter-
mediate density system. In addition, the effects of
statistics will be apparent only when O'PC' terms are
retained.

The numerical results obtained in this paper are
probably not very accurate —at least for the lower
mass systems. The reason for this is that the Gaussian
does not cutoff rapidly enough when the hard cores
of the particles begin to overlap; the width of the
optimum Gaussian is then too narrow and the kinetic
energy is too high. The main purpose of this paper is to
show that the right correlated Gaussian function can
be easily handled in a many-body calculation, and that
such a function leads to an improvement in the energy
over a calculation using an uncorrelated function. Thus
it is possible that an improved Jastrow-type trial wave
function could be constructed using a three-dimensional
correlated Gaussian as a factor. We intend to investi-
gate this possibility in the future.
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