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happens to agree with the calculated value of Clementit
to almost eight significant figures. However, no theo-
retical values were available for comparison with the
results on the two-open-shell and three-open-shell ex-
cited states.
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An exact calculation of the atomic photoelectric effect is made. The expressions for the differential and
total cross sections are developed explicitly for the K and L shells, for a pure Coulomb potential. The final
electron is described by a partial-wave decomposition, and the interaction with the radiation field is treated
in lowest order perturbation theory. The cross sections are evaluated numerically, and the contribution of
the L shell is found to be non-negligible when compared with the K shell. The results for the K shell are
compared with previous work, and agreement is obtained. The new results for the L subshells are presented

and compared with the available experimental work.

I. INTRODUCTION

NVESTIGATIONS of the atomic photoelectric effect
have been concerned primarily with the K shell.
This is because about 809, of the total atomic effect
is due to the K shell; and because the simplest picture
possible, that of just a pure Coulomb potential due
to a nucleus of charge Ze, is most nearly approximated
by the K shell, away from threshold.! The assumption
of any more general type of potential necessitates a
numerical solution of the Dirac equation for the initial
and final electron states, and such a solution was
essentially impossible before the development of
modern fast computers. Thus the L and higher shells
have usually been neglected on the basis that the effects
of screening are appreciable, so that calculations based
on a pure Coulomb potential would have questionable
significance.

In the original period of investigation the theoretical
work was primarily nonrelativistic, except for the
papers of Sauter,?2 Hall® and Hulme ef al.* Since the
revival of interest, several years ago, all of the work

* This work was supported in part by the U. S. Atomic Energy
Commission.

1 Based in part on a doctoral dissertation submitted by one of us
(W.R.A.) to the Department of Physics, the University of
Notre Dame.

1; g(;:)e, for example, B. Nagel and P. Olsson, Arkiv Fysik 18, 29
O Sauter, Ann. Physik 11, 454 (1931).

3 H. Hall, Rev. Mod. Phys. 8, 358 (1936). This article contains a

comprehensive review of all of the work done up to 1936.

+H. R. Hulme, J. McDougall, R. A. Buckingham, and R. H.
Fowler, Proc. Roy. Soc. (London) A149, 131 (1935).

has been relativistic. K-shell differential and total cross
sections have been obtained in the form of analytical
expressions, approximate in «Z, where « is the fine-
structure constant and approximately 1/137. Some of
these are valid for a general energy,5® and some have
been obtained for the high- or low-energy limit.9—1!
Additionally, there have been numerical evaluations
in the various energy limits.”>=** The most recent and
most extensive numerical work is that of Pratt ef al.,'5
giving differential and total K-shell cross sections for a
number of Z’s and for photon energies from 0.2 to 2
MeV.

5 In succeeding footnotes, the symbols (HE) and (GE) indicate
high energy and general energy, respectively.

6D. Moroi and C. J. Mullin (to be published) (GE). It has
been shown here that for any initial s state, characterized by
principal quantum number %, the corresponding differential and
total cross sections can be written as 1/#® times that for the K
shell, to the neglect of relative order «?Z2. This result was pre-
viously obtained by R. H. Pratt, Ref. 16. This affords an easy way
of determining approximate differential and total cross sections
for s states of higher shells.

7 B. Nagel, Arkiv Fysik 18, 1 (1960) (GE).

8 M. Gavrila, Phys. Rev. 113, 514 (1959) (GE).

9 F. G. Negasaka, Ph. D. thesis, University of Notre Dame,
1955 (unpublished) (HE).

10 H. Banerjee, Nuovo Cimento 10, 863 (1958) (HE).

(Hl;g A. Weber and C. J. Mullin, Phys. Rev. 126, 615 (1962)

12 R. H. Pratt, Phys. Rev. 117, 1017 (1960) (HE).

13 B. Nagel, Arkiv Fysik 24, 151 (1963) (HE).

¥ W. R. Alling and C. J. Mullin (to be published) (HE).

1*R. H. Pratt, R. D. Levee, R. L. Pexton, and W. Aron, Phys.
Rev. 134, A898 (1964) Another numerical calculation for inter-
mediate energies has been done by S. Hultberg, B. Nagel, and
P. Olsson, Arkiv Fysik 20, 555 (1961). We shall use HNO to refer
to this latter work.
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The number of calculations for the L shell has been
disproportionately smaller. In the recent period of
interest, there have been four: a high-energy-limit
numerical calculation by Pratt'® of the total cross
sections for the various L subshells; approximate (in
«Z) differential and total cross sections for the subshells
for all energies by Gavrila'” and by Moroi and Mullin'$;
and a high-energy-limit calculation of the differential
cross sections which are exact in the forward direction
and valid to two orders in aZ for all angles by Alling
and Mullin.4

The experimental work has been similarly focused
on the K shell.®2 There have been a few experi-
ments?*?5 giving ratios such as o1/0x or o1/04, where
o stands for the total cross section, and the subscripts
L, K, and 4 indicate the L shell, the K shell, and the
total atom, respectively. Two experimenters, Hultberg?®
and Sujkowski,?” have investigated angular distributions
for the L shell for a uranium target at different energies.
Their results are given in raw form, without corrections
for scattering or geometry, as there are no accurate
computations with which the results may be compared.

Now the L-shell effect is a non-negligible percentage
of the total atomic effect, being about 159, for uranium.
Because of this, and because of the dearth of investi-
gation of the L shell, in this paper we shall calculate
the exact L-shell angular distributions and total cross
sections. This will be done for a pure Coulomb potential,
for arbitrary Z, and for arbitrary photon energy. Even
though screening may be appreciable, use of the pure
Coulomb potential represents the first meaningful
calculation which can be done for the L subshells.
Subsequent computations which include screening will
then allow an estimate of the effects of screening to be
made.

The general formalism is developed in Sec. II. In
Sec. III, general expressions for the cross sections for
an arbitrary shell are determined in terms of the radial
parts of the matrix element, and the radial matrix
elements are evaluated analytically for the K and L
shells. A program has been constructed for Notre
Dame’s Univac-1107 Computer to numerically evaluate

16 R. H. Pratt, Phys. Rev. 119, 1619 (1960).

17 M. Gavrila, Phys. Rev. 124, 1132 (1961).

18 Reference 6. It has also been shown here that, to the neglect
of relative order o222, the differential and total cross sections for
an nPy; and #Py) initial state are equal to 32(n2—1)/3x5 times
the corresponding quantities for the 2Py and 2P states,
respectively. (Previously obtained by Pratt, Ref. 16.)

19 S. Colgate, Phys. Rev. 87, 592 (1952).

20 A, Hedgran and S. Hultberg, Phys. Rev. 94, 498 (1954).

21 S, Hultberg, Arkiv Fysik 9, 245 (1955).

22 G, White Grodstein, Natl. Bur. Std. (U. S.), Circ. No. 583
(1957); also R. T. McGinnies, Natl. Bur. Std. (U. S.), Suppl. to
Circ. No. 583 (1959).

28 S, Hultberg and R. Stockendal, Arkiv Fysik 15, 355 (1959).

24 G. D. Latyshev, Rev. Mod. Phys. 19, 132 (1947).

25 E. P. Grigor’ev and A. V. Zolotavin, Zh. Eksperim. i Teor.
Fiz. 36, 393 (1959) [English transl.: Soviet Phys.—JETP 9,
272 (1959)].

26 S, Hultberg, Arkiv Fysik 15, 307 (1959).

27 7. Sujkowski, Arkiv Fysik 20, 269 (1961).
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the analytical cross sections for the K and L shells, and
for arbitrary Z and energy. Numerical results for a
number of elements and energies are presented and
discussed in Sec. IV, and compared with previous work.

II. GENERAL FORMALISM

The problem is the determination of the differential
and total photoelectric cross sections for the K and L
shells, for the case that both the initial and final
electrons are considered to be moving in a pure Coulomb
field. This implies that higher order radiative corrections
will be neglected, and the interaction with the radiation
field will be treated in lowest order perturbation theory.
The momentum associated with the bound state can
be appreciable for intermediate and large Z, so that
the relativistic effects become important even for low
energies. Consequently, the treatment will be a com-
pletely relativistic one. With these assumptions the
differential cross section can be written??

do/dQ= (a/2m) W /)5 | M |*, 1)

where (p,ilW)=four momentum of the final electron,
(k,ik) =four momentum of the incident photon, and M
is the matrix element given by

M=/dr¢ﬂa-ée”‘"¢i, (2)

with a= (?,((;)’ the ¢; being 2X 2 Pauli matrices, ¢=unit

vector specifying the polarization direction of the
incident photon. We want to consider the incident-
photon beam to be unpolarized, and we also want to
count all electrons coming out, regardless of their
spins. We shall thus average over polarization directions
and sum over final electron spins. Since we require the
cross section for either the K shell or a certain L
subshell, we shall sum over all electrons in the particular
shell or subshell. In Eq. (1), 3 3 represents the average
over photon polarizations and the sum over initial
and final electrons.

¥, is the wave function for the initial bound electron
and the solution of the Dirac equation for energy
Wg<m. ¢, is the Hermitian adjoint of the final state
¥, which is a continuum solution of Dirac’s equation
for energy W>m and which must have the well-known
asymptotic form of a plane wave plus an incoming
spherical wave. As such it cannot be written in closed
form; instead it occurs as an infinite sum of partial
waves.

The nucleus is considered to be infinitely heavy so
that it can absorb an arbitrary amount of momentum.
However, energy is conserved among the photon and
the initial and final electrons. This is expressed as

o kt+-Wp=W. 3)

28 We shall use natural units with A=c¢=1. A unit vector is
denoted by d=a/|a].
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III. EXACT CROSS SECTIONS FOR
ARBITRARY ENERGY

1. General Expressions for the Cross Sections
for an Arbitrary Energy

Using Egs. (1) and (2), we want to determine the
analytical expressions for the relativistic differential
and total cross sections, for an arbitrary atomic shell.
No restriction will be placed on the energy of the incident
photon beam. However, when the resulting expressions
are to be evaluated numerically, a practical limit must
be imposed. This is owing to the fact that the relative
contributions of successive partial waves decrease less
rapidly for increasing energy, so that more partial
waves must be included as the energy increases. The
method, however, is practical for the beta-spectro-
scopically important region, and this is the very region
where a more exact analysis is needed. The expressions
will be given in terms of the radial parts of the matrix
element, which can be evaluated upon specification of
the atomic shell. Their evaluation will be carried out in
the subsequent section for the K and L shells.

The wave functions in the matrix elements, ¢; and
¥ s representing the initial and final electron states, may

be written as
ingﬂmmz (f)
Yi= .
f P V- (7')

( igwl(i) (P")szu (ﬂ)
Far @ (pr)Qaymy ()

where p is the linear momentum of the final electron,
and S indicates its spin.

P¢1m1 (ﬁ:S) = (Qxlml (ﬁ),?) (S)) )

where v(s) is the large component of the plane-wave
spinor:

and

¢f=47" Z leml(f)as)

:clm

WHm\"? s v )
u=<———> ( ); wly=1, w= v.
2W w W+m

(4m)*

x1m1lm €S

x1ma, L m ma

} T -

€,S,me

W. R. ALLING AND W. R. JOHNSON

The 2.,’s are two-component functions given by
Qem=2_ C(l57;m—u, w) Vi mo(7)X* 4)

and
Q—xmzﬂwm(l i l/) y

where C(l,lul.; mams) is the Clebsch-Gordan coefficient
(referred to hereafter as C coefficient), Y. is the
spherical harmonic of order /, and the X* are two-
component Pauli spinors.?® The quantities 7, /, and '
are obtained from x by

K=|x|, j=K-%, %<0

x>0,

1= -}
= j+3
Gagy fup and go, @, fo @ are the radial parts of the bound
and continuum functions, respectively; the normali-
zation of the latter being chosen to give the proper
asymptotic form.

Following Hulme,® we expand the retardation factor
as

V=2j—1.

ek r=4n 3 i (k) V1 m* (B)V 1 m(?),

im

where the j;(kr) are spherical Bessel functions of order /.
Inserting this and the expressions for the wave functions
into the matrix element (2), defining the radial parts of
the matrix element as

Inlm:il‘/ r2d1'g’1(i)*(Pr)f12(7')jl (kf) )
0

] )
T oyizg= il/ mdyfxl(i)*@")gw(’)jl(k?’) )

0

and the angular parts by

%
€mi—m—mg A +xymiImFxome

= /dﬂrﬂizmﬂf(f)ﬂ" &% zpmy(P) Vi,m(7)

we obtain

Z Z Z P:‘vlﬁl(ﬁ:S)anT(IsyS) Yl,m*('ie) Yi,ﬁ(}%)frn1~m~m2*fﬁ1—ﬁ—mz

(6)

>< (A a:1mllm7:t2m2]:tllzz_ A—zlmllmxzmzja:;lxg) (A :in?zll'ﬁAzgszahixz*_A—:Ep‘r‘uiﬁzzmzj:tlixz*) .

€*mi—m-my Tepresents the complex conjugate of the components of & in a spherical basis. The components are

€= (’“ 1/@) (ex+i5v) )

and similarly,

o= (=1/V2)(e,+i0y),

€)= €z,

€_1= (1/\/2_) (Ez“ iey) )

co=0,, o-1=(1/V2)(c.—10,).

29 The angular-momentum coupling coefficients and the spherical harmonics used are those as defined in M. E. Rose, Elementary
Theory of Angular Momenium (John Wiley & Sons, Inc., New York, 1957).

3 H. R. Hulme, Proc. Roy. Soc. (London) A133, 381 (1931).
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Integrating over the solid angle dQ, and using the Wigner-Eckart theorem?® gives
A zymitm—zame= B[/ 4r L )VC (LU C (1% ; ug, mi—m—ms)C (g j1; mt-ma—tha, my—m—matus)
N X C (1oL jo; mo— s, us)C (U1 ; ma— 1o, m),
A zimyimazzme= A eymyim—zama (I — W'y 1" — 1g) ,
where [a]=2a+1 and C(lulpl:) =C (lalsle; 00). The sum over final electron spins gives
%: P1iir(P,S) Paymy (5,S) =Qayiny! (P)Qaymy (P) (7

For the sum over polarizations we use

3 evten=00n— (4r/3) V¥ (B) V1 3(B) =6n— (— ) z (4r/[L)Y2C(1L)C AL —\N) V52 (B)
€ L=0

employing the coupling rule for spherical harmonics.® We wish to carry out the sums over the projection numbers
ma, My, M1, m, . This task is simplified considerably if we choose k=2. Then
YViu* (k)= ((11/47)28m0  Vim(k)= ([1]/47)" %670,

where 8;; is the Kronecker symbol, and two of the sums are eliminated. With # and 7 both zero, a third sum is
eliminated by virtue of the sum over polarizations,

Z €m1—7n—7n2*€ﬁ1—7ﬁ—m2= Z 6mx~m2*€ﬁl_m2=5mlﬁl{1— (—')"”_"” Z C(llL)C(llL, Mo—m1, ml—nn)} , (8)
L

€ €

leaving only sums over m, and m;. This still appears to be a sizeable problem since, for example, 4 zymji—zyms
contains four C coefficients which depend on ., so that a total of eight are implied in the square of the matrix
element. This number can be reduced by using the relations between C and Racah coefficients,® and the symmetry
relations for C coefficients.?* For #=0, 4 4,m,1—zm, has the form

A pymyt—zymy= QL") /4a[1])2C (1'1h) 3 C(315 ; ug, mi—mo)C(Uxg fr; Ma—tha, ma—maot-1t2)
u2
X C(lz’%jﬁ me— Us, Mz)C(lz’lll; Mo— U, 0) .

The relations between Racah and C coefficients allow us to write
CQly; mo—us, 0)C (143 j1; Mma— o, my—matus) =3 (LWL f DWW (Ul j13 5 L f)
f
XC(Uf71; 0m)C(1"S [ ma— g, mi—matus)

where W (abcd; ef) is the Racah coefficient. The resultant sum over %, involves a product of three C coefficients and
can be done. Applying the symmetry relation

C(lllgla; mﬂnz) = (— )ll'HZ—laC (l2l1[3; mﬂ}h)

to all three, the product can be summed directly to give
A pymat—zgma= {3/ 2m) [ L7 2 CE ) Z (LI DYWL jag s LW (13 £l 3 72)
7

XC(fj1; 0my)C(f2lf; me, mi—ms). (9)
If we define

ay (o, b, — )= (O DVC (U)W Q1 o5 L)W (15115 352)
ay (_ X1, l, x2) = af(xl’ l’ _x2) llz’ — 2

=i

31 Reference 29, p. 85.

32 Reference 29, p. 61.

3 Reference 29, p. 110.

3 Reference 29, pp. 38-39.
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and use (7), (8), and (9), then
3 2 | M[2=48x> 3 3 [0 IT D 2 my (B)Qaymy (B){as (w1, 1, — x2)as (Fa, I, —22) Layraa] 2yias™

€S,m2 x:;; i
Ul om

+af(_x1, l x2)a;(_“jl; Z; x2)-]111x2]51i:v2*'" 2a; (xl» L _x2)a—f.(_izl) Z: x‘l) Re]lex2]ilizz*}
X221 — (=)mmme 37 CALL)C (AL s ma—ma, my—ms) yC (G2l f 5 ma, my—ms)
me L
XC(]21f: e, ml_m?)c(lf]l, 0m1)C(Zf]_1, Uml) .

The sum over . therefore gives rise to sums over products of two and three C coefficients. The former yields just
the orthogonality relation for C coefficients,35 and the latter can be carried out in a manner similar to that for u,.

To carry out the sum over m;, the product (7) must be expanded using (4). Employing the orthogonality of the
Pauli spinors and the coupling rule spherical harmonics, the sums in (7) can be performed to give

Qami’ (B)Qeymy (P) = [(— )2/ 4 J([ 52 L7 LA ILL D) Y2 Zx CULINW (j171hln; N3)Pa(cosO)C(FriN; —mymy),

where Py (cosf) is the Legendre polynomial of order . The sum over m; will involve products of three and four
C coefficients and can be performed in a manner similar to the previous sums. If we then sum over L, we obtain the
differential cross section for the atomic photoeffect for any shell,

do/d2= (1/4m)3" A\P(cosh),
=0

where
A=a(pW/k)24x 2 3 L7170 UL AL D ECUI N W (G1gubals; M) {as (s, 1, —x2)as (@, [, —x2)
211
i
Xlnlzz[:'uixz*_'_af(_xl, Zy x2)af(—fl—;1, Zy xZ)j:cllzz].ilizi*—zdf(xl, l, "“xQ)
Xaf(_jl, z, x2) Re}zlla:g-]:hlxz*} T::;i]li)\h/'r,
and

Tayzun™ 7= (=) WD~ f1(38,,0CINW (1l M)+ (=) CUIDLIIW (f7:21; 1f)Zt LW tjrgn; M)

XW(l7:2f; fOCUN)C(U2)} .
The total cross section is obtained by integrating over d©, with the result

o=2A,.

2. Radial Matrix Elements: K and L Shells

The radial parts, 7,15, and J,,1,, of the matrix element are written in terms of unspecified radial functions for
the bound and continuum states. The large and small components of the latter may be given as

W-m\'* [T (ye—1v)]
N Lo LRLL . TS
oW T (2yx+1)
o YW=m\"2 T (yx—1v)]
zx(’b)zi e—zﬁ:ﬁ—wrﬂ____,(Zp,;)'yK*l{ }_7
oW T(2yx+1)

where
{ Yo= (vx+iv)e R (yg+14iv, 2yx+1, 2ipr)c.c.

8oy =n—vyxm/24argl (yg—1iv), vr=(K*—a?Z})'?, K=|x],
yr+iv x1+1v’ aZW my

e 2= = y= , v

= , =
— x4y YK—1V P W

35 Reference 29, p. 34.
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I'(e) is the gamma function, and F(a,b,Z) is the confluent hypergeometric function.?® The photoeffect for any
atomic shell can then be studied, by merely specifying the appropriate g., and f., and carrying out the evaluation
of the radial integrals. We want to consider the K and L shells, and therefore we shall give the appropriate bound-
state radial functions.

K shell:
I+y1\ 12 I—yn\12
g (50) Cx@yen, fa=() ex@vyrier,
Cx=[(N¥TQ2vi+1DT"2, A=maZ, vi=(1—a2Z%)'2,

L1 shell:

2\or 2\

gur= (1+N2/2)1/2C1,,e“)‘”(2)\27)7‘_1{Nz——N } For= (1—N2/2)1/2CL,e—W(2>\2r)w—1{N2+2—N 1},
2= 0

No=242y)"?, Cr;=[2A2(Ng—1)/NoI 2y:1+1)]2, Xe=\/N,.
L1x shell:

Loy= (1-|-N2/2)1/2CL”6—*2T(2>\2r)71‘1{Z\72— 2—

2\or
No+1
Cry=[(No+1)/ (N2~ 1) J1C,.
gur= 1472/ PCry e BN, fay= (1= 7o/ 2) P Crpyye P (Nr) 72
vo= (4—a2Z9)V2 | Crpp=[N/2T (2vo+1) ]2,

These discrete radial functions have the same 7 structure, i.e., 7%" (§, ¢ arbitrary), so that the resulting radial
integrals may be written in terms of one general integral. If we set

Ny=[(W-m)/2W g5 r=t0waT (ye—iv) /T 2y +-1),

2)\27
} , fm <1—Nz/zwcmew<2m>w1[Nz— } ,
No+1

L shell :

(W—m)7
1’\‘7.]=i|: Z\'V[, a1=')/K+1+iV, ag='y1{+iv,
(W+m)

we have
I 2125 (K) = —[(1=71)/2]2CxN i{ (— 21410 ) K (N 1,71, D)+ (v — iv) K (N 02,v1,1)}
lelxz(K) = [(1+’YI)/2]1/2CKNJ{ (—x1+iVI)K()\)a1771)1) - (’YK""iV)K(A,a%'Yl,l)} )

N

1/2
Imn(a)=—<l—§) cL,NI{<Nz+2>[<—xl+iv'>1<<xz,alm,1>+<7K—iu>1<<x2,azm,1)1

_N 1[(“001+’L.V’)K(>\2,dl,’yl,0)+ (’YK_'L.V)K()\?;‘Z%’YI)O)]
2—
N,

1/2
J:cllxz(LI> = (1+“§") CLINJ{ZV?I:(_xI—I_iV’)K ()‘27‘11)71)1)'— (7K_iV)K()\27a2y7171)]

L(—=x14iv) K (A3,01,71,0) — (v —1v) K (A\3,a2,71,0) ]

No—1
N\
I:llz;: (LII) =— (1——2—) CL”]VI =;‘7\72[(—x1+il),)K(>\2,01,71,1)+ ('YK—iV)K O‘Zya%'Yl)l)]

[(—a144v") K (\5,a1,71,0)+ ('YK"“iV)K()‘Q;a%'YIyO)]}
¥ Ny+1

A2
J oyt (L11) = (H";) CryuNs { (No=2)[(— 21437 ) K (N\3,01,71,1) — (Y — 1) K (A2,02,71,1) ]

[(—=®1+iv) K (N2,01,71,0) — (vg — iV)K(M,dz,’Yl,O)]}
No+1

36 See, for example, Higher Transcendental Functions, Bateman Manuscript Project, edited by A. Erdelyi (McGraw-Hill Book
Company, Inc., New York, 1953), Vol. 1, Chaps. I and VL.
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Y2\ M2
T atag(L111) = — <1 "‘2‘) CriV i{ (—2141v) K(\/2,01,v2,1)+ (v —iv) K (\/2,a2,72,1)}
Y2\ /2
J o1ty (L11D) = (H’;) CrinN r{ (— 214+ ) K (N/2,01,72,1) — (e —iv) K (N/2,2,72,1)} .
The general integral, in terms of which these are written, is

K(&avm)= / rdr ji(kr)e= &HP(2pr) K (28r)7F (a,b,2ipr)
0

where b= 2yx-+1. To integrate this, we use the exact asymptotic representation for 7;(%r)%

= jlHgmikr c.c.,
T T Ay @y

where (8,m)=08(-+1)---(6+m—1), and (5,0)=1. In addition, we replace the confluent hypergeometric function
with the integral representations®
T(b) 1
F(ab2ipr)=—————— | wot(1—u)rateivridy.
T(a)T(b—a) Jo

If we substitute this and the expression for 7;(%7) into X, we have

F(b) ! (_l; 1”)(1+l; 771) * L
- ;m{ilﬂ / Py (2pr) 1K1 (2r) v (2hr)—m-te- Erintibyr
T'(a)T(b—a) m=0 (1,m) 0

0

1
X/ ua——l(l_%) b—a~162'iprudu_i~l—1f err(Zpr)“/K_l (257’)7—‘7’(— 2kr>~m—16—(5+ip~ik)r
[ 0
1
X/ ua—l (1 —’I/t> b—u—leZz‘p'rud% .
0 .

The 7 integrand goes to zero at the upper limit if Imu>—£/2p. At the lower limit, the integral is obviously con-
vergent for all but one of the values which it assumes for each shell. For this one value, a term can be added and
subtracted from the integrand to give rise to two valid representations of the gamma function. Therefore, we can
interchange orders of integration and obtain, by transforming the 7 integrals,

I'(b) Lo(=lLm) (A4l m) ot i (2p) & (28) 7 (2k)
= bm/ duua~—1 (1 —_ M) b—a—1 {
I'(a)T(b—a) m=o (1,m) 0 (E+ip—-ik— 2ipu)vEtrtizrm
rH(Zp)vK—I<2e>w<—2k>~m~1} -
—_ diyEty—n—mg—t
(&+ip—ik— 2ipu) vEFrii—nrm /o

The ¢ integral gives just the gamma function, and after some reworking we can write

K_P(b)I‘(’Y‘l"YK‘l‘l"??) L (=lLm)(1+l,m) 1

gim (Hn—7—7K)

I'(a)l'(b—a) m=0 (1,m) (n—v—x, m) 8pk*

X {x‘YKz‘Y—‘ﬂyl—m(l — xu)—(7+7x—1r-7n)—1_ xviyll—mzlv—ne—hr(l-Fm) (1 —xu)” (’y+‘yK~11—m)—1} ,

1
/ duns(1—y)b-o1
0

where
x=2P/(i’+k'—if), y=kx/?: Z=£x/ﬁ7 xl:x(_k)’ y1=y(_k); 21=Z("“k).

374P.5 M. Moorse and H. Feshback, Methods of Theoretical Physics (McGraw-Hill Book Company, Inc., New York, 1953), Part II,
p. 1465.

38 W. Magnus and F. Oberhettinger, Formulas and Theorems for the Functions of Mathematical Physics (Chelsea Publishing Company,
New York, 1954), p. 88.
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The integrals over du are just integral representations for the hypergeometric function.?® Therefore X becomes

I (y+vx+1—9) !
K= 727 7

(=1, m)(1+1, m)

23 (7/2) (Hn—v—vK)
8pk?

{xyxzy—ﬂyl_mF(‘Y'{"YK“*_l—n_m: a, by x)

m=0 (1,m) (n—y—k, m)

—xl”/Kzl“/_"yll""e‘“(Hm)F(’Y+’YK+1"71_7”: a, b: xl)} .

We can analytically continue the second hypergeometric function® to obtain finally

T 1— .
K(taym)= x"Kyz‘f—’l_(_’yiMei(«/z) (H—7—7K)
8pk?

+ei7r(7+‘yx—-l—-n)<

IV. RESULTS AND DISCUSSION
1. Presentation and Comparison

A program was written for Notre Dame’s UNIVAC-
1107 computer, to evaluate do/d< for an arbitrary target
and photon energy, for the K and L shells. Explicit
numerical evaluation was done for uranium and lead
targets and for incident-photon energies of 0.081, 0.103,
0.279, 0.354, 0.412, 0.662, and 1.332 MeV. At the first
two energies, the cross sections could only be evaluated
for the L subshells, as these energies are below the
K-shell threshold. The energies were chosen primarily
to coincide with the experimental values of Hultberg?®
and of Sujkowski?” for which raw angular distributions
were obtained for the L shell. Some of the correspond-
ing K-shell angular distributions could also be checked
against the numerical work of Pratt ef al.'5

The number of partial waves (x; values) included was
determined by the relative size of the radial matrix
elements. The partial-wave sum was usually terminated
when this relative size was down by four orders of
magnitude. Thus, for example, 11 partial waves were
used for 0.412 MeV, 16 for 0.612 MeV, and 22 for
1.332 MeV. Once the x; values were chosen, all the other
sums were determined by the triangular relations. The
radial matrix elements were evaluated with double
precision. Any error in this evaluation was found to be
in the second word, for all cases. The first word of the

TaBLE I. K-shell total cross sections in barns for uranium:
(1) present work, (2) HNO (Ref. 15), (3) Pratt ef al. (Ref. 15),
(4) Colgate’s absorption measurements (Ref. 19).

Theoretical Experimental
K (MeV) (€)) @ ©)
0.279 154.3 154 155
0.412 59.47 59.5 59.9 58.6+0.2
0.662 20.21 20.2 20.4 19.94:0.1
1.332 4.928 4.93 4.740.1

(=L,m)(A+Lm) 1

m=0 (1,m) (n—y—vx, m) y™

_{F('Y'}"YK'*"]-_’?_W‘) a, b’ IXJ)

j)—[—k——iE r+HYEH—1-m
—————) F(y+vyg+1—9—m,b—a, b, x*)}.

p+ktit

radial integrals was used for combining with the vector-
addition coefficients, and this was always exact. The
programs for determining Racah and C coefficients were
checked against tables® and found to be good in the
first word. Therefore, the main source of error is
truncation and rounding, incurred in the combina-
tion of radial matrix elements with vector-coupling
coefficients.

The total cross sections obtained for the K shell can
be compared with experimental and previous theoretical
results, as a rough verification of the present calcu-
lation. This comparison is given in Table I for a number
of photon energies and a uranium target. The present
results are seen to be in good agreement with the others.
Additionally for a lead target and a photon energy of
0.354 MeV, the total cross section obtained was
0x=54.95 b, which compares well with the value of
54.4 taken from the curve of Hulme et al.* We shall give
a discussion of the accuracy of the calculations and the
checks which have been applied, following presentation
and comparison of results.

Exact total cross sections for the L shell, or the L
subshells, have not been calculated or measured directly.
Thus the cross sections for the L subshells, given in
Table II, cannot be compared explicitly with other
values. Hultberg,?® however, has measured the ratio

TasiLE II. Total cross sections for the L subshells in barns.

Z k (MeV) Ly Lu L

82 0.081 275.2 166.2 170.0
0.103 153.9 81.23 78.29
0.279 12.75 4.367 3.294
0.354 7.086 2.250 1.614

92 0.081 382.4 322.6 297.6
0.103 219.0 162.6 139.4
0.279 19.86 9.710 6.213
0.354 11.26 5.102 3.070
0.412 7.891 3.422 1.98
0.662 2.727 1.055 0.555
1.332 0.6649 0,2365 0.111

3 Reference 38, p. 8.
4 Reference 36, p. 105.

‘L A. Simon, J. H. Vandersluis, L. C. Biedenharn, Oak Ridge
National Laboratory Report No. 1679, 1954 (unpublished).
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TasBLE 111 do/dQ in b/sr for (1) present work, and
(2) Pratt et al., for a uranium target.

W. R. ALLING AND W. R. JOHNSON

TasLE V. Differential cross sections in b/sr for the Ly, L, Lur
subshells at £=1.332 MeV and Z=92.

6(°) k=0.662 MeV k=1.332 MeV
O @ (©0) 2)
0 1.559 1.55 2.734 2.50
5 3.421 3.40 4784 4.32
10 7.339 7.29 6.715 6.58
15 10.34 10.3 5.675 5.86
20 11.07 11.0 3.857 3.86
25 10.08 10.0 2.474 2.43
30 8.340 8.60 1.569 1.56
35 6.533 6.51 1.025 1.01
40 4.969 4.95 0.688 0.685
45 3.732 3.72 0.477 0.492
50 2.793 2.79 0.346 0.344
55 2.093 2.09 0.256 0.247
60 1.578 1.58 0.192 0.192
65 1.202 1.2 0.150 0.155
70 0.925 0.92 0.119 0.119
75 0.716 0.72 0.094 0.091
80 0.560 0.57 0.077 0.076
85 0.445 0.45 0.064 0.066
90 0.359 0.36 0.052 0.052
95 0.291 0.29 0.043
100 0.239 0.24 0.037
105 0.199 0.20 0.031
110 0.170 0.17
115 0.146 0.15
120 0.127 0.13
125 0.112 0.11

oi/or for uranium, and he finds it to be essentially
independent of energy and equal to 5.34-0.2. Using the
results calculated here, we have

k (MeV): 0.279 0.354 0.412
ox/or: 431 441 4.47

0.662
4.66

1.332
4.87

for uranium. This ratio changes with energy, but
slowly. It is also interesting to note the results, for

TasLE IV. Differential cross sections in b/sr for the Li, L,
Lyt subshells at £=0.662 MeV and Z=92.

0(°) Ly L L
0 0.219 1.742 0.226
5 0.430 1.704 0.339

10 0.894 1.543 0.531
15 1.290 1.233 0.583
20 1.430 0.868 0.476
25 1.338 0.562 0.325
30 1.128 0.351 0.206
35 0.895 0.219 0.131
40 0.686 0.138 0.085
45 0.518 0.088 0.057
50 0.388 0.057 0.039
55 0.292 0.037 0.028
60 0.220 0.026 0.021
65 0.168 0.019 0.016
70 0.129 0.014 0.013
75 0.100 0.010 0.011
80 0.078 0.008 0.009
85 0.062 0.007 0.008
90 0.050 0.006
95 0.041 0.005

100 0.033 0.004

105 0.028 0.004

110 0.024 0.003

115 0.020 0.003

120 0.018

125 0.016

9(°) Ly Ln L
0 0.406 1.289 0.097
5 0.610 1.126 0.199
10 0.824 0.712 0.264
15 0.731 0.329 0.173
20 0.518 0.136 0.085
25 0.340 0.060 0.043
30 0.219 0.030 0.024
35 0.144 0.015 0.014
40 0.098 0.0076 0.0087
45 0.068 0.0048 0.0059
50 0.049 0.0033 0.0042
55 0.036 0.0019 0.0031
60 0.028 0.0014 0.0024
65 0.022 0.0012 0.0019
70 0.017 0.0008 0.0015
75 0.014 0.0006 0.0012
80 0.011
85 0.0091
90 0.0075
95 0.0062
100 0.0053
105 0.0045
uranium,
k (MeV): 0.279 0.354 0.412 0.682 1.332
orforL: 7.77 7.61 7.54 7.41 7.41.

These ratios are surprisingly close to the value of 8

TABLE VI. do/dQ in b/sr for the L subshells, for
0.081-MeV photons on uranium.

6(°) Ly Lyt L
0 0.969 27.02 15.84
5 1.634 27.83 17.22
10 3.559 30.13 21.12
15 6.552 33.59 26.89
20 10.35 37.72 33.58
25 14.69 41.96 40.20
30 19.33 45.76 45.86
35 24.05 48.69 49,94
40 28.70 50.45 52,11
45 33.12 50.92 52.37
50 37.14 50.13 50.91
55 40.62 48.24 48,11
60 43.42 45.45 44,38
65 45.43 42.05 40.10
70 46.58 38.27 35.63
75 46.88 34.36 31.24
80 46.35 30.47 27.09
85 45.09 27.77 23.31
90 43.18 23.33 19.94
95 40.76 20.23 17.00
100 37.94 17.47 14.47
105 34.83 15.08 12.33
110 31.56 13.03 10.52
115 28.21 11.30 9.019
120 24.88 9.858 7.774
125 21.64 8.675 6.750
130 18.55 7.7114 5.912
135 15.66 6.941 5.229
140 13.01 6.328 4,674
145 10.62 5.848 4.226
150 8.512 5.479 3.866
155 6.709 5.200 3.580
160 5.221 4,994 3.359
165 4.056 4.847 3.194
170 3.222 4.750 3.080
175 2.719 4.694 3.014
180 2.552 4.676 2.992
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TaBLE VIIL do/dQ in b/sr for the L subshells,
for 0.081-MeV photons on lead.

0(°) Ly L L 6(°) Ly L L
0 0.421 18.24 9.52 0 0.387 17.24 11.93
5 0.908 18.78 10.44 5 0.994 17.75 12.81
10 2.318 20.29 13.02 10 2.764 19.20 15.27
15 4,520 22.48 16.68 15 5.553 21.30 18.83
20 7.324 2491 20.68 20 9.145 23.70 22.83
25 10.52 27.16 24.29 25 13.28 25.97 26.59
30 13.90 28.86 26.94 30 17.66 27.71 29.55
35 17.26 29.77 28.32 35 22.03 28.86 31.36
40 20.43 29.78 28.40 40 26.11 29.12 31.91
45 23.24 28.95 27.36 45 29.69 28.57 31.28
50 25.55 27.40 25.46 50 32.59 27.31 29.68
55 27.26 25.34 23.03 55 34.70 25.50 27.41
60 28.32 22.96 20.36 60 35.97 23.33 2473
65 28.71 20.45 17.67 65 36.41 20.98 21.90
70 28.48 17.96 15.12 70 36.08 18.59 19.10
75 27.71 15.58 12.82 75 35.08 16.27 16.48
80 26.50 13.40 10.79 80 33.51 14.11 14.10
85 24.94 11.45 9.061 85 31.52 12.16 12.00
90 23.15 9.739 7.602 90 29.23 10.43 10.20
95 21.22 8.272 6.392 95 26.75 8.931 8.671
100 19.21 7.034 5.398 100 2417 7.659 7.394
105 17.19 6.004 4,590 105 21.58 6.594 6.340
110 15.22 5.159 3.935 110 19.03 5.716 5.476
115 13.33 4474 3.407 115 16.59 5.000 4774
120 11.56 3.924 2.982 120 14.29 4424 4.206
125 9915 3.488 2.640 125 12.14 3.966 3.748
130 8.414 3.145 2.366 130 10.18 3.605 3.379
135 7.063 2.878 2.147 135 8.416 3.324 3.084
140 5.862 2.672 1.972 140 6.839 3.108 2.850
145 4.810 2.516 1.832 145 5.458 2.943 2.664
150 3.906 2.399 1.720 150 4.269 2.820 2.519
155 3.148 2.314 1.631 155 3.271 2.730 2.405
160 2.533 2.253 1.560 160 2.461 2.666 2.316
165 2.059 2.211 1.505 165 1.836 2.622 2.248
170 1.723 2.185 1.467 170 1.391 2.593 2.199
175 1.522 2.170 1.443 175 1.126 2.577 2.169
180 1.456 2.166 1.435 180 1.038 2.572 2.159

predicted by Moroi and Mullin,® who have neglected

relative order o?Z2, which is not small for uranium.

Stobbe® has calculated nonrelativistic total cross
sections for the K and L shells, and he gives the ratio

R, (ULII+ULII!)/GLI=IB (3+8IB/k)/ (k+3IB) )

where I is the mean ionization energy of the L shell.

Fic. 1. Relative K-
shell differential cross
sections for 0.412-MeV
photons on uranium.
The present results are
compared with Hult-
berg’s experimental val-
ues, and both are nor-
malized to a maximum
value of one.

ive 99
Relative dn"

S
T

.S

Z=92

k =.412 Mev
---~ Hultberg
—— Present Calc.

42 M. Stobbe, Ann. Physik 7, 661 (1930).

80
es)

If we compare R, for the energies we have considered

A1039

with the values (R) we have calculated here, for

uranium, we have

k (MeV) 0.081 0.103 0.279
R, 1.005 0.794 0.302

R 1.622 138

The discrepancy is quite

0354 0.412 0.662 1.332
0.239 0.206 0.129 0.064
0.726  0.685 0.590 0.523.

large and increases with

increasing energy, as would be expected. The large
difference at energies less than the electron rest energy

Fic. 2. K-shell
angular distributions
in b/sr for 0.412-
MeV photons on ura-
nium. Present re-
sults are compared
with those of Pratt
et al. The total L-
shell angular distri-
bution is also given.

(Barns/Steradian)

do
da

Z=92

k =.412 MeV
----- Pratt et al
——Present Work

—

30 80 120
6 (degrees)



A 1060

Z=92
k =.412 MeV

25

[
Q

Fic. 3. Angular
distributions for the
three L subshells for
0.412- MeV photons
on uranium.

0.5¢

80 120

(o) 40
8 (degrees)

points up the necessity for a relativistic treatment for
large Z. It also illustrates the inaccuracy concomitant
with using Stobbe’s formulas for determining ratios of
cross sections from various shells, as was done by
White? for example, when they were essentially all that
were available. Hultberg?® gives relative differential
cross sections for the K shell for 0.412, 0.662, and 1.332
MeV and for Z=92. We can make a comparison with

TaBLE IX. do/dQ in b/sr for the L subshells, for
0.103-MeV photons on lead.

W. R. ALLING AND W. R. JOHNSON

his results by normalizing both his and our angular
distributions to maximimum values of unity. Figure 1
has this comparison for £=0.412 MeV, for which it
should be remembered that we have neglected every-
thing but the pure Coulomb interaction. We can also
compare the K-shell angular distributions with the
numerical results obtained by Pratt ef ol.'® In Fig. 2
we have plotted the differential cross sections obtained
here and by Pratt for 0.412-MeV photons on uranium.
The curves can be seen to be essentially on top of one
another. The numerical results for the other energies
of Hultberg’s experiment, for uranium, are compared
with those of Pratt ef al. in Table ITI. For all three
energies, the two sets of values are in agreement, within
the accuracy of the present work and that stated by
Pratt et al.

Figure 2 also contains a plot of the differential cross
section for the entire L shell. The area under this curve
is seen to be a non-negligible fraction of that under the
K-shell curve. The shapes of the two curves differ a
little. This is due to the fact that the differential cross
section for the Zir subshell is large, relative to those for
the other L subshells, in the forward direction. This
is shown in Fig. 3, which illustrates the separate contri-

TaBLE X. do/dQ in b/sr for the K and L shells,
for 0.279-MeV photons on uranium.

0(°) Ly Ln Lt 0(°) K Lx Ln Lt
0 0.161 11.12 6.998 0 0.220 0.023 4.081 1.130
5 0.632 11.45 7.559 5 2.091 0.273 4.166 1.347
10 2.000 12.34 9.101 10 7.180 0.961 4.347 1.876
15 4.131 13.58 11.25 15 14.13 1.920 4.463 2.433
20 6.822 14.88 13.51 20 21.32 2.934 4.376 2.758
25 9.828 15.94 15.42 25 27.34 3.799 4.049 2.749
30 12.88 16.58 16.65 30 31.41 4.380 3.543 2.467
35 15.75 16.67 17.06 35 33.30 4.633 2.958 2.045
40 18.21 16.22 16.69 40 33.26 4.590 2.382 1.606
45 20.13 15.32 15.69 45 31.74 4.325 1.871 1.222
50 21.42 14.08 14.26 50 29.24 3.923 1.445 0.916
55 22.07 12.64 12.62 55 26.24 3.456 1.106 0.686
60 22.12 11.14 10.94 60 23.06 2.979 0.844 0.516
65 21.63 9.654 9.332 65 19.96 2.526 0.643 0.392
70 20.71 8.226 7.871 70 17.07 2,117 0.491 0.302
75 19.47 7.014 6.592 75 14.46 1.760 0.378 0.236
80 18.01 5.915 5.502 80 12.18 1.455 0.294 0.189
85 16.43 4973 4.593 85 10.20 1.199 0.233 0.156
90 14.80 4.182 3.847 90 8.529 0.986 0.189 0.133
95 13.18 3.528 3.244 95 7.120 0.810 0.156 0.116
100 11.62 2.995 2.760 100 5.942 0.667 0.132 0.102
105 10.14 2.567 2.376 105 4.964 0.552 0.113 0.090
110 8.764 2.227 2.073 110 4.154 0.459 0.100 0.081
115 7.503 1.960 1.832 115 3.489 0.384 0.090 0.074
120 6.363 1.752 1.640 120 2.945 0.324 0.083 0.069
125 5.344 1.592 1.488 125 2.502 0.275 0.078 0.060
130 4.442 1.470 1.366 130 2.141 0.237 0.074 0.056
135 3.652 1.378 1.271 135 1.848 0.207 0.071 0.053
140 2.967 1.309 1.196 140 1.612 0.183 0.069 0.050
145 2.380 1.258 1.137 145 1.422 0.165 0.068 0.048
150 1.885 1.221 1.091 150 1.272 0.151 0.066 0.047
155 1.477 1.195 1.054 155 1.155 0.139 0.065 0.046
160 1.151 1.177 1.024 160 1.066 0.131 0.064 0.044
165 0.902 1.166 1.000 165 1.000 0.125
170 0.727 1.159 0.981 170 0.955 0.121
175 0.624 1.156 0.969° 175 0.928 0.119
180 0.589 1.155 0.965 180 0.920 0.118
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butions from the L subshells. The L-subshell angular
distributions for 0.662- and 1.332-MeV photons on
uranium are given in Tables IV and V.

A number of additional differential cross sections, for
the K and L shells, are presented in Tables VI-XTII.
These are given for lead and uranium targets, and for a
number of photon energies. The values of 0.081, 0.103,
and 0.279 MeV correspond to Sujkowski’s?” experi-
mental energies for Z=92. He has measured the ratio
(0rtorw)/oLy for 0.103 MeV. If we compare his
value with ours we have

(010 ru)/orm=2.74 present work
=3.03£0.15 Sujkowski

in fair agreement. This would seem to indicate that
the effects of screening are not the same for all three
subshells, at this energy. We can also compare the
ratio or;;/o Ly for 0.081 MeV and Z=92. We have

0Lu/01=1.08 present work
=0.92+0.15 Sujkowski.

This result is almost within the experimental error.
In general, poorer agreement should be expected as the

TaBLE XI. do/dQ in b/sr for the K and L shells,
for 0.354-MeV photons on uranium.
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TasBLE XII. do/dQ in b/sr for the K and L shells,

for 0.279-MeV photons on lead.

6(°) K L Ln L
0 0.158 0.018 2.130 0.742
5 1.918 0.249 2.172 0.860
10 6.604 0.867 2.255 1.141
15 12.73 1.683 2.288 1.424
20 18.61 2.475 2.199 1.566
25 23.00 3.067 1.979 1.521
30 25.34 3.377 1.675 1.330
35 25.73 3.413 1.350 1.076
40 24.60 3.237 1.050 0.826
45 22.49 2.928 0.797 0.617
50 19.88 2.557 0.598 0.457
55 17.15 2.176 0.445 0.340
60 14.52 1.818 0.331 0.255
65 12.13 1.498 0.246 0.194
70 10.04 1.223 0.185 1.149
75 8.246 0.992 0.141 0.117
80 6.742 0.802 0.110 0.095
85 5.498 0.646 0.088 0.079
90 4.478 0.521 0.072 0.068
95 3.649 0.420 0.060 0.060
100 2.975 0.340 0.052 0.053
105 2.430 0.276 0.046 0.047
110 1.989 0.225 0.041 0.042
115 1.635 0.185 0.038 0.039
120 1.352 0.153 0.036 0.036
125 1.126 0.128 0.034 0.034
130 0.945 0.108 0.033
135 0.800 0.092 0.032
140 0.684 0.080 0.031
145 0.592 0.070 0.031
150 0.521 0.063
155 0.466 0.057
160 0.425 0.053
165 0.394 0.050
170 0.373 0.048
175 0.360 0.047
180 0.356 0.046

energy decreases, since the effects of screening on the
final electron become more important.!

2. Checks and Accuracy

Two types of checks were made on the calculation.

6(°) K Ly Lt L
0 0.546 0.068 3.081 0.702
5 2.403 0.299 3.122 0.876

10 7.243 0.916 3.181 1.270
15 13.29 1.715 3.124 1.615
20 18.70 2.463 2.877 1.722
25 22.27 2.983 2474 1.581
30 23.69 3.205 2.005 1.301
35 23.26 3.159 1.555 0.996
40 21.55 2.924 1.171 0.733
45 19.16 2.585 0.866 0.530
50 16.53 2.212 0.635 0.382
55 13.95 1.849 0.464 0.277
60 11.60 1.521 0.340 0.203
65 9.544 1.238 0.250 0.152
70 7.796 1.002 0.187 0.117
75 6.343 0.806 0.142 0.094
80 5.152 0.648 0.110 0.077
85 4,184 0.522 0.087 0.064
90 3.403 0.421 0.070 0.055
95 2.775 0.341 0.058 0.048

100 2.274 0.278 0.050 0.042

105 1.879 0.228 0.044 0.038

110 1.560 0.189 0.039 0.034

115 1.310 0.159 0.035 0.031

120 1.111 0.135 0.033 0.028

125 0.954 0.117 0.031 0.026

130 0.832 0.102 0.029 0.025

135 0.736 0.091 0.028

140 . 0.661 0.082 0.027

145 0.603 0.076 0.027

150 0.558 0.071 0.027

155 0.525 0.068 0.026

160 0.500 0.065 0.026

165 0.482 0.063

170 0.470 0.062

175 0.462 0.061

180 0.460 0.061

The first of these was to take a low Z value (Z=5), and
to compare the resulting angular distributions and total
cross sections with those obtained from the approximate
calculations of Gavrila.®'" Qualitative agreement was
obtained for all four shells, but the quantitative dis-
parity was as large as 109, in some places.

A more stringent check was needed, and this was
obtained by replacing the final-state wave function
with the first term of the Sommerfeld-Maue wave
function.® We shall briefly indicate the procedure. For
the conjugate of this replacement we have

¥st=Nse®F (iv, 1, ipr+ip-n)ut(p)

where N;=I'(1—iy)e’"2, For the numerical program,
this can be incorporated by changing the radial matrix
elements. The position-dependent part of ¥, can be

4 A. Sommerfeld and A. W. Maue, Ann. Physik 22, 629 (1935).
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TaBLE XIII. do/dQ in b/sr for the K and L shells,
for 0.354-MeV photons on lead.

0(°) K Ix Lt Lm
0 0.332 0.042 1.566 0.453
5 1.968 0.250 1.585 0.546

10 6.127 0.783 1.604 0.752
15 11.07 1.428 1.551 0.922
20 15.09 1.968 1.393 0.954
25 17.30 2.273 1.159 0.852
30 17.66 2.328 0.905 0.684
35 16.63 2.191 0.676 0.512
40 14.80 1.943 0.491 0.370
45 12.65 1.652 0.351 0.265
50 10.52 1.364 0.249 0.189
55 8.578 1.105 0.177 0.137
60 6.909 0.883 0.126 0.100
65 5.519 0.700 0.091 0.075
70 4,387 0.553 0.068 0.058
75 3.481 0.435 0.051 0.047
80 2.762 0.343 0.040 0.039
85 2.195 0.271 0.032 0.033
90 1.748 0.215 0.026 0.028
95 1.398 0.171 0.022 0.024

100 1.123 0.137 0.020 0.022

105 0.910 0.111 0.018 0.020

110 0.742 0.090 0.016 0.018

115 0.611 0.074 0.015 0.016

120 0.508 0.062 0.014 0.014

125 0.428 0.052 0.013 0.013

130 0.366 0.045 0.013

135 0.318 0.040 0.012

140 0.280 0.035

145 0.250 0.032

150 0.228 0.029

155 0.211 0.027

160 0.198 0.026

165 0.189 0.025

170 0.183 0.024

175 0.179

180 0.178

expanded in a series of Legendre polynomials as
eI (iv, 1, ipr+ip-1)=3_ ai(pr)P(p-7),
i

and the coefficients a;(pr) can be determined in the
usual way. Following Gordon* we obtain

¥t =5 QU Dite(pr) Pu(p-P)uct (),
1
where
)= g/t 1)
oe = pVT I
Wpr)=e T (20+2)

XF(4+1—iv, 2142, —2ipr).
# W. Gordon, Z. Physik 48, 187 (1928).

(2pr)!
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Expressing P;(p-#) in terms of spherical harmonics this
becomes

Y =4r ZZ UL (pr) V1, m(P)Y 1, ™ (F)ut (p)

,m

=4r Z CilmlT(- /L.gﬁfl*ﬂ‘l'lmli. (7;); fx],*g—zlml (7’)) .

Using the orthogonality of the ,,,’s and the relation?s
0 PQon (P) = — Qs (P)
we get
Corm= Qarmi (P),2)
W+m
2w

, W —a\ 12
fxl*:“"bh< T ) £11'(P7>-

1/2
gxl*:ill+l< ) £1,(pr)

By inserting g.,* and f,,* into the radial matrix elements
the replacement is accomplished. In addition, to
simplify the corresponding analytical calculation, we
set r7171=1 for the K, L1, and Ly1 bound-state functions
and 77:7*=7 for the Ly bound state. The radial matrix
elements can be evaluated in a manner similar to the
previous ones, and the analytical cross sections could
be evaluated in a straightforward way. Both were
evaluated for Z=35 and £=0.200 MeV. Twelve partial
waves were required in the numerical part. The agree-
ment obtained was better than 19 for the K, Ly, and
Li shells, and about 19 for the Ly subshell.
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