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happens to agree with the calculated value of Clementi4
to almost eight significant figures. However, no theo-
retical values were available for comparison with the
results on the two-open-shell and three-open-shell ex-
cited states.
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An exact calculation of the atomic photoelectric effect is made. The expressions for the differential and
total cross sections are developed explicitly for the X and L shells, for a pure Coulomb potential. The 6nal
electron is described by a partial-wave decomposition, and the interaction with the radiation 6eld is treated
in lowest order perturbation theory. The cross sections are evaluated numerically, and the contribution of
the L shell is found to be non-negligible when compared with the E shell. The results for the X shell are
compared with previous work, and agreement is obtained. The new results for the L subshells are presented
and compared with the available experimental work.

I. INTRODUCTION
' "NVKSTIGATIONS of the atomic photoelectric effect

~ have been concerned primarily with the K shell.
This is because about 80% of the total atomic effect
is due to the E shell; and because the simplest picture
possible, that of just a pure Coulomb potential due
to a nucleus of charge Ze, is most nearly approximated
by the E shell, away from threshold. ' The assumption
of any more general type of potential necessitates a
numerical solution of the Dirac equation for the initial
and Anal electron states, and such a solution was
essentially impossible before the development of
modern fast computers. Thus the L and higher shells
have usually been neglected on the basis that the effects
of screening are appreciable, so that calculations based
on a pure Coulomb potential would have questionable

significance.
In the original period of investigation the theoretical

work was primarily nonrelativistic, except for the
papers of Sauter, ' Hall, ' and Hulme et ul.4 Since the
revival of interest, several years ago, all of the work

*This work was supported in part by the V. S. Atomic Energy
Commission.

f Based in part on a doctoral dissertation submitted by one of us
(W.R.A.) to the Department of Physics, the University of
Notre Dame.' See, for example, B. Nagel and P. Olsson, Arkiv Fysik 18, 29
(1960).' F. Sauter, Ann. Physik 11,454 (1931).' H. Hall, Rev. Mod. Phys, 8, 358 (1936).This article contains a
comprehensive review of all of the work done up to 1936.

4 H. R. Hulme, J. McDougall, R. A. Buckingham, and R. H.
Fowler, Proc. Roy. Soc. (London) A149, 131 (1935).

has been relativistic. K-shell differential and total cross
sections have been obtained in the form of analytical
expressions, approximate in aZ, where o, is the fine-
structure constant and approximately I/137. Some of
these are valid for a general energy, ' ' and some have
been obtained for the high- or low-energy limit. ' "
Additionally, there have been numerical evaluations
in the various energy limits. "—'4 The most recent and
most extensive numerical work is that of Pratt et al. ,

"
giving differential and total E-shell cross sections for a
number of Z's and for photon energies from 0.2 to 2
MeV.

s In succeeding footnotes, the symbols (HE) and (GE) indicate
high energy and general energy, respectively.

'D. Moroi and C. J. Mullin (to be published) (GE). It has
been shown here that for any initial s state, characterized by
principal quantum number n, the corresponding differential and
total cross sections can be written as 1/n' times that for the X
shell, to the neglect of relative order a'Z'. This result was pre-
viously obtained by R. H. Pratt, Ref. 16. This affords an easy way
of determining approximate differential and total cross sections
for s states of higher shells.' B.Nagel, Arkiv Fysik 18, 1 (1960) (GE).

M. Gavrila, Phys. Rev. 113, 514 (1959) (GE).
F. G. Negasaka, Ph. D. thesis, University of Notre Dame,

1955 (unpublished) (HE).' H. Banerjee, Nuovo Cimento 10, 863 (1958) (HE)."T.A. Weber and C. J. Mullin, Phys. Rev. 126, 615 (1962)
(HE)."R.H. Pratt, Phys. Rev. 117, 1017' (1960) (HE)."B.Nagel, Arkiv Fysik 24, 151 (1963) (HE).

'4 W. R. Ailing and C. J. Mullin (to be published) (HE).
'5R. H. Pratt, R. D. Levee, R. L. Pexton, and W. Aron, Phys.

Rev. 134, A898 (1964).Another numerical calculation for inter-
mediate energies has been done by S. Hultberg, B. Nagel, and
P. Olsson, Arkiv Fysik 20, 555 (1961).We shall use HNO to refer
to this latter work.
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The number of calculations for the L shell has been
disproportionately smaller. In the recent period of
interest, there have been four: a high-energy-limit
numerical calculation by Pratt" of the total cross
sections for the various I. subshells; approximate (in
nZ) differential and total cross sections for the subshells
for all energies by Gavrila'7 and by Moroi and Mullin';
and a high-energy-limit calculation of the differential
cross sections which are exact in the forward direction
and valid to two orders in o.Z for all angles by Ailing
and Mullin. '4

The experimental work has been similarly focused
on the E shell. "" There have been a few experi-
ments' "giving ratios such as o.r/air or o.t/o. ~, where
0- stands for the total cross section, and the subscripts
L, K, and A indicate the L shell, the E shell, and the
total atom, respectively. Two experimenters, Hultberg"
and Sujkowski, 27 have investigated angular distributions
for the L shell for a uranium target at different energies.
Their results are given in raw form, without corrections
for scattering or geometry, as there are no accurate
computations with which the results may be compared.

Now the L-shell effect is a non-negligible percentage
of the total atomic effect, being about 15% for uranium.
Because of this, and because of the dearth of investi-
gation of the L shell, in this paper we shall calculate
the exact L-shell angular distributions and total cross
sections. This will be done for a pure Coulomb potential,
for arbitrary Z, and for arbitrary photon energy. Even
though screening may be appreciable, use of the pure
Coulomb potential represents the first meaningful
calculation which can be done for the L subshells.
Subsequent computations which include screening will

then allow an estimate of the effects of screening to be
made.

The general formalism is developed in Sec. II. In
Sec. III, general expressions for the cross sections for
an arbitrary shell are determined in terms of the radial
parts of the matrix element, and the radial matrix
elements are evaluated analytically for the K and L
shells. A program has been constructed for Notre
Dame's Univac-1107 Computer to numerically evaluate

"R.H. Pratt, Phys. Rev. 119, 1619 (1960)."M. Gavrila, Phys. Rev. 124, 1132 (1961).' Reference 6. It has also been shown here that, to the neglect
of relative order n'Z', the differential and total cross sections for
an nP&7& and nP~~& initial state are equal to 32(n' —1)/3n' times
the corresponding quantities for the 2P&/& and 2I'3/2 states,
respectively. {Previously obtained. by Pratt, Ref. 16.)

'~ S. Colgate, Phys. Rev. 87, 592 (1952).' A. Hedgran and S. Hultberg, Phys. Rev. 94, 498 (1954)."S.Hultberg, Arkiv Fysik 9, 245 (1955).
"G. White Grodstein, Natl. Bur. Std. (V. S.), Circ. No. 583

(1957); also R. T. McGinnies, Natl. Bur. Std. (V. S.), Suppl. to
Circ. No. 583 (1959)."S. Hultberg and R. Stockendal, Arkiv Fysik 15, 355 (1959).

24 G. D. Latyshev, Rev. Mod. Phys. 19, 132 (1947).' E. P. Grigor'ev and A. V. Zolotavin, Zh. Eksperim. i Teor.
Fiz. 36, 393 (1959) /English transl. : Soviet Phys. —JFTP 9,
272 (1959)j."S. Hultberg, Arkiv Fysik 15, 307 (1959).

"Z. Sujkowski, Arkiv Fysik 20, 269 (1961).

the analytical cross sections for the E and L shells, and

for arbitrary Z and energy. Numerical results for a
number of elements and energies are presented and
discussed in Sec. IV, and compared with previous work.

II. GENERAL FORMALISM

The problem is the determination of the differential

and total photoelectric cross sections for the K and L
shells, for the case that both the initial and final

electrons are considered to be moving in a pure Coulomb

field. This implies that higher order radiative corrections
will be neglected, and the interaction. with the radiation
6eld will be treated in lowest order perturbation theory.
The momentum associated with the bound state can
be appreciable for intermediate and large Z, so that
the relativistic effects become important even for low

energies. Consequently, the treatment will be a com-

pletely relativistic one. With these assumptions the
differential cross section can be written"

where (p,iW) =four momentum of the final electron,

(k,ik) =four momentum of the incident photon, and M
is the matrix element given by

M= drPrtn ee"'P, ,

with n= ~, the o, being 2 X 2 Pauli matrices, e =unit&os

l, o0 '

vector specifying the polarization direction of the
incident photon. We want to consider the incident-

photon beam to be unpolarized, and we also want to
count all electrons coming out, regardless of their

spins. We shall thus average over polarization directions
and sum over 6nal electron spins. Since we require the
cross section for either the E shell or a certain L
subshell, we shall sum over all electrons in the particular
shell or subshell. In Eq. (1), —', Q represents the average
over photon polarizations and the sum over initial
and final electrons.

lt, is the wave function for the initial bound electron
and the solution of the Dirac equation for energy
W&(m. inert is the Hermitian adjoint of the final state

t(r which is a continuum solution of Dirac s equation
for energy t/t/ &m and which must have the well-known

asymptotic form of a plane wave plus an incoming
spherical wave. As such it cannot be written in closed
form; instead it occurs as an in6nite sum of partial
waves.

The nucleus is considered to be infinitely heavy so
that it can absorb an arbitrary amount of momentum.
However, energy is conserved among the photon and
the initial and final electrons. This is expressed as

lc+ Ws ——W.
"We shall use natural units with A, =c=1. A unit vector is

denoted by d=a/(a(.
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III. EXACT CROSS SECTIONS FOR
ARBITRARY ENERGY

The 0, 's are two-component functions given by

I. General Expressions for the Crops Sections
for an Arbitrary Energy

Using Eqs. (1) and (2), we want to determine the
analytical expressions for the relativistic differential
and total cross sections, for an arbitrary atomic shell.
No restriction will be placed on the energy of the incident
photon beam. However, when the resulting expressions
are to be evaluated numerically, a practical limit must
be imposed. This is owing to the fact that the relative
contributions of successive partial waves decrease less
rapidly for increasing energy, so that more partial
waves must be included as the energy increases. The
method, however, is practical for the beta-spectro-
scopically important region, and this is the very region
where a more exact analysis is needed. The expressions
will be given in terms of the radial parts of the matrix
element, which can be evaluated upon specification of
the atomic shell. Their evaluation will be carried out in
the subsequent section for the E and L shells.

The wave functions in the matrix elements, lP; and
lPi representing the initial and final electron states, may
be written as

ZgxxQxpmx (r)

f.,Q,,„,(r)

Q, =Q, (l —+l'),

where C(l,lpl„zrz zrzb) is the Clebsch-Gordan coefficient
(referred to hereafter as C coeflicient), Fl, is the
spherical harmonic of order /, and the X" are two-
component Pauli spinors. "The quantities j) l) and
are obtained from x by

g„, f„and g„&'&, f„&"are the radial parts of the bound
and continuum functions, respectively; the normali-
zation of the latter being chosen to give the proper
asymptotic form.

Following Hulme, "we expand the retardation factor
as

e'"'=4zr P i'j, (kr)F', , *(k)V, „(r),
Lm

where the jl (kr) are spherical Bessel functions of order l.
Inserting this and the expressions for the wave functions
into the matrix element (2), de6ning the radial parts of
the matrix element as

ig„" (pr)Q„, (r)
4=4~ 2 f-'*4- (P,~)

f„&"(pr)Q „,(r)
where p is the linear momentum of the Anal electron,
and 5 indicates its spin.

'l
Ixylx2 Z rzdrg„"l*(pr) f„(r)jl (kr),

r'dr f„"~"(pr) g„(r)jl (kr),

P.,„,(P,S)= (Q„„,(P),v(s)),

where z(s) is the large component of the plane-wave
splnor:

I= )
'DtV= 1)

and the angular parts by

6m]—m—m2 ~+xymylm+x2m2

we obtain

dQ„Q~„„,t(r)4r eQ~„„,(r)Fi, (r),

(4zr)4

P ~cV~'= Q QQEe, „-,(P,S)P„„,t(P,S)Yl,„*(k)Vl,„-(k)e, ,"'e„-, —

m,S,mm 2 XImI lm 4.S
gImI, l tn m2

+(A m lmx—lxizmpIxrlxp '4 x4mzlmxpmxf— xrlxp)(Axgmllm xxmprxllxx —~ elmrlmxpm—a elixx ) ~

e*, , represents the complex conjugate of the components of 8 in a spherical basis. The components are

el ——(—1/v2) (e,+ze„), ep= e» e i——(1/v2) (e, ze„), —
and similarly,

o.
z (—1/v2)(o, +io„), op=o„o i= (1 V/2)(,o io„). —

' The angular-momentum coupling coefficients and the spherical harmonics used are those as de6ned in M. E. Rose, E/gypgggtgry

Theory of Arlgulor 3Eome6444rrl (John Wiley 8r Sons, Inc. , New York, 193'I).
'4 H. R. Hulrne, Proc. Roy. Soc. (London) A133, 381 (1931).
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Integrating over the solid angle dQ„and using the Vfigner-Eckart theorem" gives

A»~g)~ —g2~2 = (3[l2'7[l]/42r[l1])'"C (l2'll1)p C (-,' 1~2; u2, m1—m —m2)C (l,2 j1., m+m2 u—2, m1—m —m2+u2)

XC(l2 j2 m2 u2 u2)C(l2 ll1 m2 n2 m)

+—»m11mzpm2 ~ »t»be zp—m2(ll ~ ll q l2 ~ l2) i

where [u]=2a+1 and C(l /pl. )=C(l,l,l, ; 00). The sum over final electron spins gives

Q P;,„,(p,S)-P„„,(p,S)=0;.,—,(j)Q„,(j).

For the sum over polarizations we use

Q 31 31=511—(42r/3) I'1,1*(k)l'1, ),(k) =811—(—)"Q (42r/[L]) "2C(11L)C(11L;—X$) Vr„1 1(k),

employing the coupling rule for spherical harmonics. " |A'e wish to carry out the sums over the projection numbers

m2, n:1, m1, m, m. This task is simplified considerably if we choose k= 2. Then

Fg, *(k)= ([l]/42r)'~'B,.p vg, -(k) = ([l]/42r)'"B-p,

where 0;; is the Kronecker symbol, and two of the sums are eliminated. Q/ith nz and m both zero, a third sum is
eliminated by virtue of the sum over polarizations,

p p, „,"p„-, „- 2=+ p„, 2*p„-, „2=8„,„-,{1—(—)~&—"'p C(11L)C(11L;m2 —m1, m1—m2)},

leaving only sums over nz2 and m&. This still appears to be a sizeable problem since, for example, A„,&

contains four C coefficients which depend on ns2, so that a total of eight are implied in the square of the matrix
element. This number can be reduced by using the relations between C and Racah coefficients, "and the symmetry
relations for C coefficients. "For m=0, A „,~ „,has the form

A»„„& „,= (3[l][12']/42.[l1])' 'C (l2'll1) p C(—', 1-', ; u2, m1 —m2) C(l1—',j1,m2 —u2, m1—m2+n2)

The relations between Racah and C coefFicients allow us to write

XC(l2 2' g2; m2 n2& n2)-—C(l2 ll1& m2 u2, 0)—.

C(l2'll1, m2 —u2, 0)C(l1-',j1,m2 —u2, m1—m2+») =p ([11][f])'"W(ll2'j1-', ; l1f)

XC(lfj1,0m1)C(l2 -f m2 u2 ml m2+n2)

where W (abed; ef) is the Racah coef5cient. The resultant sum over u2 involves a, product of three C coeKcients and
can be done. Applying the symmetry relation

C(lll2l3 mlm2) ( ) " C(l2lll3 m2ml)

to all three, the product can be summed directly to give

A», i .. .= I (3/22)D][l2'][ j2]}'"C(l2'll1)g([f])"'W(ll2' j1-', ; l,f)W(1-,' fl2', —,
' j2)

If we define

XC (lfj, ; Om, )C (j21f; m2, m1 —m, ) . (9)

u, (x1, l, —x2) = ([l2'])'~'C(l2'll1) W(ll2' j1—', ', l1f)W(1—,
' fl2', ',j2)—

a, (—x„ l, x,) =a, (x„ l, —x,) ~I
-,',*,

3~ Reference 29, p. 85.
'2 Reference 29, p. 61.
33 Reference 29, p. 110.
~ Reference 29, pp. 38-39.
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and use (7), (8), and (9), then

r' 2 I~I'=4g~' 2 2 [j~][i]D]([f][f])'"".- '(P)fl. (P){at(», l, —»)at(xi, l, —x2)I.,~*,I*it-'
e,S,m2

+af ( xi l x2)af (—xi, l, x&)J„z„J;,t„*—2af (xi, l, —x2)af (—xi, l, x2) ReI„&„J;,t„")'
X+{1—(—)~i ~' p C(11L)C(11L;m& —mi, roti —m&)}C(j&1f;F2, m& —nsu)

m2

XC(j 21f; m2, m& —m2)C(tf j&, Om&)C(lf ji, Om&).

The sum over m2 therefore gives rise to sums over products of two and three C coefficients. The former yields just
the orthogonality relation for C coefficients, 35 and the latter can be carried out in a manner similar to that for N2.

To carry out the sum over mq, the product (7) must be expanded using (4). Employing the orthogonality of the
Pauli spinors and the coupling rule spherical harmonics, the sums in (7) can be performed to give

tl»i"(P) fl»- (iP)=[(—)"'+"'/4~]([ji][j~][li][l~])'"2C(i~ll~)W(jlili~l~;~l)I'~(c»e)C(jljl~ ~1~&),

where Ez(costt) is the Legendre polynomial of order X. The sum over m& will involve products of three and four
C coefficients and can be performed in a manner similar to the previous sums. If we then sum over L, we obtain the
differential cross section for the atomic photoeffect for any shell,

do/dQ= (1/47r)g A&I'~(cos8),
X=O

where

A &, =n(PW/k)24ir 2 2 [jg][ji][ji][l][l]([li][li])t C(tllh)W(ji jitili, ' &g) {at(xz, l, —xg)af(xi, l, —x2)

XI»«"I*it*i +af( xii i x'i)af ( xii li x~)»&*~I&it*i af(xi' ii x2)

and
Xat(—xi, l, x2) ReI.,&„J.-,(„*)T»,.-,(t,

T»~, «&»tf= (—) &"'& t[f]{-,8tt(tCD) W(jijill; Xf)+(—)'+~C(112)[f]W(fj&21; if)g [t]W(lt jiji, Xf)

The total cross section is obtained by integrating over dQ, with the result
XW(l ji2f; ft) C(l9,)C(lt2) ) .

2. Radial Matrix Elements: K and I Shells

The radial parts, I,~, and J„~„of the matrix element are written in terms of unspecified radial functions for
the bound and continuum states. The large and small components of the latter may be given as

Wy, ~ ~r(& —,) ~

(i) —
~

e i4,+v~N- ,(2pr)' '{ )+
2W i F(2y +1)

trW —m '" (I'(ylr iv) [—
f "'=I 's Bx1' +v 'tl I' 2 -(2pr)'

2W r(2& +1)
where

{ )~ = (ylr+i v)e 'v'+'"Ii (yIr+1+i v, 2ylr+1, 2ipr) ~c.c.

&. =rt &Jr~/2+argP(ylr —i ), vlr= (&' '—Z')'", I = ~x, ~—,

"ReCerence 29, p. 34.

2 trl
yrr+iv

xi+1v

xi+2', v'
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F(a) is the gamma function, and F(a,b,Z) is the confluent hypergeometric function. "The photoeffect for any
atomic shell can then be studied, by merely specifying the appropriate g„and f„and carrying out the evaluation
of the radial integrals. We want to consider the E and I. shells, and therefore we shall give the appropriate bound-
state radial functions.

E shell:
)1+71

g. =i C (2Xr)
—'e—"" f, =i CIr(Per) '—'e—""

p x2 — .. K

I.x shell:
CII ——[(2X)3/F (27,+1)$'/2, X=meIZ, 7,= (1—I22Z2) ) '2.

2X2r 2'A2r

E2 (2+——27,)'/', CI.I
——[2X2'(/V2 —1)//V2F (27,+1)j'", X2——X//V2.

I.D shell:

g,= (1+.V2/2)'/2CI, ,e "2"(2X2r)» ' /V2 — f„=(1—/V2/2)'/2CI, ,e—12'(2X2r)»—' X2+2-
iV2 —1 E2—1

2X2r
g»= (1+1Y2/2)'/'C»e "'"(2X2r)» ' 1V2—2—

lV2+1
f» ——(1 iV2/2)'—"CI»e "'"(2X2r)~' ' /V2—

I.m shell:
CI,„[(iV2+—1—)/(/V2 —1)j'/'CI I .

g* =(1+72/ &'"C« """Or)' ' f* =(1—72/2)"'CI e """P~)' '

(4 a2Z2)1/2 C —p3/2F (27 +1)jl 2

These discrete radial functions have the same r structure, i.e., r'e " (8, e arbitrary), so that the resulting radial
integrals may be written in terms of one general integral. If we set

/)'I = [(p/+2/2)/2g ]'/2e '(~II —1+I ) ~—/2F (7II iv)/F—(271[y 1),

(W—r/3) ~'/2

Sg=i a1=71c+1+iv, a.=71r+iv,
(W+m)

we have

""(E)=-[(1-")/2j"C-.V.((-"+' )E(~,",7.,1)+(7--'.)E(~,",7„1))
~* *.(E)=L(1+7)/23'"C V ((— + ")EP, ,7,1)—(7 — )E(l1, ,7,1)),

( P/ 1/2

&.,1.,(1&)= —
(

1— CLI VI (lV2+2) [( xi+i v—')E(/12, a1,71,1)+(71r iv)E(—X2,a2,71,1)7
2

[( x1+iv )E(~2 a 1 71 0)+ (71'—iv)E(&2 a2 71 0)]
E2—1

( Q7 1/2

Z„...(Lr) =
~
1+—C,P, X [(2x,+iv )—E(~„a„7„1) (7~ iv—)E(~„—a„7„1)j

2
1

[( xl+iv )E(~2 al 71 0) (7X iv)E(~2,a2 71 0)]
E2—1

1/2

I.„.,(Lrr) = —
(1

— C g¹[(—x„,+i. ')E(4a,p, ,1)+(y —l )E(4a,,y, ,l)]
2

[( l+x) 2v(EX2) l)a1)7)+0(7IC 2V)E (X2)a2)71)0)j
Ã2+ 1

( /V 1/2

J„/„(Izr) =
(
1+ CI,„/VI (/V2 —2)[(—xl+2v') E (X2,a1,71,1)—(7~—zv)E(X2, a2,71,1)]

2
1

[(—xl+iv')E(X2, a1,71,0)—(71[—iv)Ep. 2,a2,71,0)]
/V2+1

36 See, for example, Higher Trenscerrdeeta/ Functions, Batemae MurINscript Project, edited by A. Erdelyi (McGraw-Hill Book
Company, Inc. , New York, 1953), Vol. 1, Chaps. I and Vl.
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.„.( ( „
,„)I;(y/2,a„y,1)) .)~(q/2 „,~„1) h

7&
ill {( xz zo(L ),, 1+—

i CLIIIIII (
hich these are writteten isral in terms of w icThe general integra, i

;„)II-(y/2, as,yz, 1))
7&

~ ~ {( xz zo~)~(y/2, az,vs~1)+ (VI, L,III)= —1—

Ic R,a,V,zl) = -«+' l (2 r) I(2gr-) V'(a,-b, 2zpr,r'tjr jt r e
—'&+'"l" 2 r

this,

( l, m)(1+—l, m)j t(kr) =i'+'e +C.C. )

(2kr) "+'

0

Iese
' ' kr)'"totic represeIeSentatiOn fOr jz(we use the exact asymp=2 +1.To integrate

'
we use

Zm

whereb= y~

I —'(1—u) '-'-'e"&""du.F(a,b, 2ipr) =
r(a)r(b —a)

or 't kr) into E, we haveis and the expression for g~ r iIf w substitute this an ee

(b) t (—l, m)(1+i, m
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The integrals over de are just integral representations for the hypergeometric function. "Therefore E becomes

I (y+y~+I ~) . (—l, m) (1+l, m)E=- et(~/s)(t+s r —err—) p {xvrrsv »y—& ~p(&++&+1 rt ftt a b x)
Sp)'ts s (1,m)(rt —y —pe, m)

—xp~st&-sy, '-"e-' t'+"&F(y+yrr+1 —
rt
—ns, a, b, xt) ) .

%e can analytically continue the second hypergeometric function" to obtain anally

I'(y+yx+1 —q) t (—f, m) (1+3,m) 1
E(&,a,y, rt) = x&rrys~ s- e"'""+"' ' ' Z —&(y+yrr41 -rt—m—, a, b, x)

SpP s (1,m) (rt —p —plr, ns) y

~p+ P z$~ 7+y~+1—
q
—m

+&iw(y+yrr t q) ~—— &(y+yx+1 —
rt
—m, b a, b—, x'")

kp+b+ s~)

IV. RESULTS AND DISCUSSION

1. Presentation and Comparison

A program was written for Notre Dame's UNIUAC-
1107computer, to evaluate do/dQ for an arbitrary target
and photon energy, for the E and Lshells. Explicit
numerical evaluation was done for uranium and lead
targets and for incident-photon energies of 0.081, 0.103,
0.279, 0.354, 0.412, 0.662, and 1.332 MeU. At the 6rst
two energies, the cross sections could only be evaluated
for the L subshells, as these energies are below the
E-shell threshold. The energies were chosen primarily
to coincide with the experimental values of Hultberg"
and of Sujkowski" for which raw angular distributions
were obtained for the L shell. Some of the correspond-
ing K-shell angular. distributions could also be checked
against the numerical work of Pratt et ul."

The number of partial waves (xt values) included was
determined by the relative size of the radial matrix
elements. The partial-wave sum was usually terminated
when this relative size was down by four orders of
magnitude. Thus, for example, 11 partial waves were
used for 0.412 MeU, 16 for 0.612 MeU, and 22 for
1.332 MeU. Once the x~ values were chosen, all the other
sums were determined by the triangular relations. The
radial matrix elements were evaluated with double
precision. Any error in this evaluation was found to be
in the second word, for all cases. The 6rst word of the

radial integrals was used for combining with the vector-
addition coefficients, and this was always exact. The
programs for determining Racah and C coeKcients were
checked against tables" and found to be good in the
erst word. Therefore, the main source of error is
truncation and rounding, incurred in the combina-
tion of radial matrix elements with vector-coupling
coeKcients.

The total cross sections obtained for the E shell can
be compared with experimental and previous theoretical
results, as a rough verification of the present calcu-
lation. This comparison is given in Table I for a number
of photon energies and a uranium target. The present
results are seen to be in good agreement with the others.
Additionally for a lead target and a photon energy of
0.354 MeV, the total cross section obtained was
O-A,.=54.95 b, which compares well with the value of
54.4 taken from the curve of Hulme et c).4 YVe shall give
a discussion of the accuracy of the calculations and the
checks which have been applied, following presentation
and comparison of results.

Exact total cross sections for the L shell, or the L
subshells, have not been calculated or measured directly.
Thus the cross sections for the L subshells, given in
Table II, cannot be compared explicitly with other
values. Hultberg, ' however, has measured the ratio

TmLE II. Total cross sections for the I subshells in barns.

Z (MeV)

0.279
0.412
0.662
1.332

(1)

154.3
59.47
20.21
4.928

Theoretical
(2)

154
59.5
20.2

(3)

155
59.9
20.4
4.93

Experimental
(4)

58.6+0.2
19.9m 0.1
4.7~0.1

TAsLE I. Z-shell total cross sections in barns for uranium:
(1) present work, (2) HNO (Ref. 15), (3) Pratt et ot. (Ref. 15),
(4) Colgate's absorption measurements (Ref. 19).

92

0.081
0.103
0.279
0.354
0.081
0.103
0.279
0.354
0.412
0.662
1.332

Z k (MeV) I-z

275.2
153.9
12.75
7.086

382.4
219.0
19.86
11.26
7.891
2.727
0.6649

I-zz

166.2
81.23
4.367
2.250

322.6
162.6

9.710
5.102
3.422
1.055
0,2365

lzzz

170.0
78.29
3.294
1.614

297.6
139.4

6.213
3.070
1.98
0.555
0.111

'9 Reference 38, p. 8.
~ Reference 36, p. 105.

4 A. Simon, J. H. Vandersluis, L. C. Biedenharn, Oak Ridge
National Laboratory Report No. 1679, 1954 (unpublished).
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TAnr. z III. da/dQ in b/sr for (1) present work, and
(2) Pratt et a/. , for a uranium target.

TAsLz V. Differential cross sections in b/sr for the Lr, L&r, Lrir
subshells at k = 1.332 MeV and Z= 92.

0
5

10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95

100
105
iio
115
120
125

1.559
3.421
7.339

10.34
11.07
10.08
8.340
6.533
4.969
3.732
2.793
2.093
1.578
1.202
0.925
0.716
0.560
0.445
0,359
0.291
0.239
0.199
0.170
0.146
0.127
0.112

1.55
3.40
7.29

10.3
11.0
10.0
8.60
6.51
4.95
3.72
2.79
2.09
1.58
1.2
0.92
0.72
0.57
0.45
0.36
0.29
0.24
0.20
0.17
0.15
0.13
0.11

k=0.662 MeV
(1) (2)

2.734
4. 784
6.715
5.675
3.857
2.474
1.569
1.025
0.688
0.477
0.346
0.256
0.192
0.150
0.119
0.094
0.077
0.064
0.052
0.043
0.037
0.031

2.50
4.32
6.58
5.86
3.86
2,43
1.56
1.01
0.685
0.492
0.344
0.247
0.192
0.155
0.119
0.091
0.076
0.066
0.052

k = 1.332 MeV
(1) (2)

s(')
0
5

10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95

100
105

uranium,

k (Mev):
&k &I.:

0.406
0.610
0.824
0.731
0.518
0.340
0.219
0.144
0.098
0.068
0.049
0.036
0.028
0.022
0.017
0.014
0.011
0.0091
0.0075
0.0062
0.0053
0.0045

0.279
7.77

0.354
7.61

1.289
1.126
0.712
0.329
0.136
0.060
0.030
0.015
0.0076
0.0048
0.0033
0.0019
0.0014
0.0012
0.0008
0.0006

0.412
7 54

0.682
7.41

0.097
0.199
0.264
0.173
0.085
0.043
0.024
0.014
0.0087
0.0059
0.0042
0.0031
0.0024
0.0019
0.0015
0.0012

1.332
7.41.

ol,/o. l. for uranium, and he finds it to be essentially
independent of energy and equal to 5.3&0.2. Using the
results calculated here, we have

These ratios are surprisingly close to the value of 8

TAnLx VI. do/dQ in b/sr for the L subshells, for
0.081-MeV photons on uranium.

k (MeV): 0,279 0.354 0.412 0.662
o.a/O. r. . 431 4.4t 4.47 4.66

1.332
4.87

TABLE IV. Differential cross sections in b/sr for the Lq, Lrp,
lrrr subshells at k=0.662 MeV and 2=92,

e()
0
5

10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95

100
105
110
115
120
125

0.219
0.430
0.894
1.290
1.430
1.338
1.128
0.895
0.686
0.518
0.388
0.292
0.220
0.168
0.129
0.100
0.078
0.062
0.050
0.041
0.033
0.028
0.024
0.020
0.018
0.016

1.742
1.704
1.543
1.233
0.868
0.562
0.351
0.219
0.138
0.088
0.057
0.037
0.026
0.019
0.014
0.010
0.008
0.007
0.006
0.005
0.004
0.004
0.003
0.003

0.226
0.339
0.531.
0.583
0.476
0.325
0.206
0.131
0.085
0.057
0.039
0.028
0.021
0,016
0.013
0.011
0.009
0.008

for uranium. This ratio changes with energy, but
slowly. It is also interesting to note the results, for

~()
0
5

10
15
20
25
30
35
40

50
55
60
65
70
75
80
85
90
95

100
105
110
115
120
125
130
135
140
145
150
155
160
165
170
175
180

0.969
1.634
3.559
6,552

10.35
14.69
19.33
24.05
28.70
33.12
37.14
40.62
43.42
45.43
46.58
46.88
4635
45 09
43.18
40.76
37.94
34.83
31.56
28.21
24.88
21.64
18.55
15.66
13.01
10.62
8.512
6.709
5.221
4.056
3.222
2.719
2.552

Lgz

27.02
27.83
30.13
33.59
37.72
41.96
45.76
48.69
50.45
50.92
50.13
48.24
45 45
42.05
38.27
34.36
30.47
27.77
23.33
20.23
17.47
15.08
13.03
11.30
9.858
8.675
7.714
6.941
6.328
5.848
5.479
5.200
4 994
4.847
4.750
4.694
4.676

15.84
17.22
21.12
26.89
33.58
40.20
45.86
49.94
52.11
52.37
50.91
48.11
44.38
40.10
35.63
31.24
27.09
23.31
19.94
17.00
14.47
12.33
10.52
9.019
7.774
6.750
5.912
5.229
4.674
4.226
3.866
3.580
3.359
3.194
3.080
3.014
2.992
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TwnLE VII. da/dQ in b/sr for the I. subshells, for
0.103-MeV photons on uranium.

TxnLE VIII. do/dQ in b/sr for the f. subshells,
for 0.081-MeV photons on lead.

e(')

0
5

10
15
20
25
30
35
40

50
55
60
65
70
75
80
85
90
95

100
105
110
115
120
125
130
135
140
145
150
155
160
165
170
175
180

0.421
0.908
2.318
4.520
7.324

10.52
13.90
17.26
20.43
23.24
25.55
27.26
28.32
28.71
28.48
27.71
26.50
24.94
23.15
21.22
19.21
17.19
15.22
13.33
11.56
9.915
8.414
7.063
5.862
4.810
3.906
3.148
2.533
2.059
1.723
1.522
1.456

18.24
18.78
20.29
22.48
24.91
27.16
28.86
29.77
29.78
28.95
27.40
25.34
22.96
20.45
17.96
15.58
13.40
11.45
9.739
8.272
7.034
6.004
5.159
4.474
3.924
3.488
3.145
2.878
2.672
2.516
2.399
2.314
2.253
2.211
2.185
2.170
2.166

9.52
10.44
13.02
16.68
20.68
24.29
26.94
28.32
28.40
27.36
25.46
23.03
20.36
17.67
15.12
12.82
10.79
9.061
7.602
6.392
5.398
4.590
3.935
3.407
2.982
2.640
2.366
2.147
1.972
1.832
1.720
1.63l
1.560
1.505
1.467
1.443
1.435

~(')

0
5

10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95

100
105
110
115
120
125
130
135
140
145
150
155
160
165
170
175
180

Lr

0.387
0.994
2.764
5.553
9.145

13.28
17.66
22.03
26.11
29.69
32.59
34.70
35.97
36.41
36.08
35.08
33.51
31.52
29.23
26.75
24.17
21.58
19.03
16.59
14.29
12.14
10.18
8.416
6.839
5.458
4.269
3.271
2.461
1.836
1.391
1.126
1.038

17.24
17.75
19.20
21.30
23.70
25.97
27.77
28.86
29.12
28.57
27.31
25.50
23.33
20.98
18.59
16.27
14.11
12.16
10.43
8.931
7.659
6.594
5.716
5.000
4.424
3.966
3.605
3.324
3.108
2.943
2.820
2.730
2.666
2.622
2.593
2.577
2.572

11.93
12.81
15.27
18.83
22.83
26.59
29.55
3136
31.91
31.28
29.68
27.41
24.73
21.90
19.10
16.48
14.10
12.00
10.20
8.671
7.394
6.340
5.476
4.774
4.206
3.748
3.379
3.084
2.850
2.664
2.519
2.405
2.316
2.248
2.199
2.169
2.159

predicted by Moroi and Mullin, ' who have neglected
relative order n'Z', which is not small for uranium.

Stobbe4' has calculated nonrelativistic total cross
sections for the E and I shells, and he gives the ratio

+ (&L +ALII )IrrLI ~&(3+81&/~)!(~+31&)&

where I& is the mean ionization energy of the I. shell,

1.0

If we compare E., for the energies we have considered
with the values (R) we have calculated here, for
uranium, we have

P (MeV) 0.081 0.103 0.279 0.354 0.412 0.662 1.332
1.005 0.794 0.302 0.239 0.206 0.129 0.064

R 1.622 1.38 0.802 0.726 0.685 0.590 0.523.

The discrepancy is quite large and increases with
increasing energy, as would be expected. The large
difference at energies less than the electron rest energy

20- Z =92

Frc. 1. Relative E-
shell differential cross
sections for 0.412-MeV
photons on uranium.
The present results are
compared with Hult-
berg's experimental val-
ues, and both are nor-
malized to a maximum
value of one.

4l

I I

0 40 80
8 (degrees)

120

I'n. 2. E-shell
angular distributions
in b/sr for 0.412-
MeV photons on ura-
nium. Present re-
sults are compared
with those of Pratt
et cl. The total I.-
shell angular distri-
bution is also given.

l6

C
O
'o

5
os

a
8

b

"M. Stobbe, Ann. Physik 7, 661 (1930).
0 40 80

8 ( degrees)
I20
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2.5
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C
D
D
D

CO
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D
03
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b[&

FIG. 3. Angular
distributions for the
three L subshells for
0.412- MeV photons
on uranium.

'0 BIO 80
8(degrees)

I20

points up the necessity for a relativistic treatment for
large Z. It also illustrates the inaccuracy concomitant
with using Stobbe's formulas for determining ratios of
cross sections from various shells, as was done by
White" for example, when they were essentially all that
were available. Hultberg" gives relative differential
cross sections for the E shell for 0.412, 0.662, and 1.332
MeV and for Z=92. We can make a comparison with

his results by normalizing both his and our angular
distributions to maximimum values of unity. Figure 1
has this comparison for k=0.412 MeV, for which it
should be remembered that we have neglected every-
thing but the pure Coulomb interaction. We can also
compare the E-shell angular distributions with the
numerical results obtained by Pratt et al." In Fig. 2
we have plotted the di6erential cross sections obtained
here and by Pratt for 0.412-MeV photons on uranium.
The curves can be seen to be essentially on top of one
another. The numerical results for the other energies
of Hultberg's experiment, for uranium, are compared
with those of Pratt et ul. in Table III. For all three
energies, the two sets of values are in agreement, within
the accuracy of the present work and that stated by
Pratt et al.

Figure 2 also contains a plot of the diGerential cross
section for the entire I. shell. The area under this curve
is seen to be a non-negligible fraction of that under the
E-shell curve. The shapes of the two curves differ a
little. This is due to the fact that the differential cross
section for the LII subshell is large, relative to those for
the other I. subshells, in the forward. direction. This
is shown in Fig. 3, which illustrates the separate contri-

TABLE IX. do /dQ in b/sr for the I. snbshells, for
0.103-MeV photons on lead.

TAnLE X. da /dQ in b/sr for the E' and I. shells,
for 0.279-MeV photons on uranium.
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0.161
0.632
2.000
4.1.31
6.822
9.828

12.88
15.75
18.21
20.13
21.42
22.07
22.12
21.63
20.71
19.47
18.01
16.43
14.80
13.18
11.62
10.14
8.764
7.503
6.363
5.344
4.442
3.652
2.967
2.380
1.885
1.477
1.151
0.902
0.727
0.624
0.589

11.12
11.45
12.34
13.58
14.88
15.94
16.58
16.67
16.22
15.32
14.08
12.64
11.14
9.654
8.226
7.014
5.915
4.973
4.182
3.528
2.995
2.567
2.227
1.960
1.752
1.592
1.470
1.378
1.309
1.258
1.221
1.195
1.177
1.166
1.159
1.156
1.155

6.998
7.559
9,101

11.25
13.51
15.42
16.65
17.06
16.69
15.69
14.26
12.62
10.94
9.332
7.871
6.592
5.502
4.593
3.847
3.244
2.760
2.376
2.073
1.832
1.640
1.488
1.366
1.271
1.196
1.137
1.091
1.054
1.024
1.000
0.981
0.969
0.965
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0.220
2.091
7.180

14.13
21.32
27.34
31,41
33.30
33.26
31.74
29.24
26.24
23.06
19.96
17.07
14.46
12.18
10.20
8.529
7.120
5.942
4.964
4.154
3.489
2.945
2.502
2.141
1.848
1.612
1.422
1.272
1.155
1.066
1.000
0.955
0.928
0.920

0.023
0.273
0.961
1.920
2.934
3.799
4.380
4.633
4.590
4.325
3.923
3.456
2.979
2.526
2.117
1.760
1.455
1 199
0.986
0.810
0.667
0.552
0.459
0.384
0.324
0.275
0.237
0.207
0.183
0.165
0.151
0.139
0.131
0 125
0.121
0.119
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4.081
4.166
4.347
4.463
4.376
4.049
3.543
2.958
2.382
1.871
1.445
1.106
0.844
0.643
0.491
0.378
0.294
0.233
0.189
0.156
0.132
0.113
0.100
0.090
0.083
0.078
0.074
0.071
0.069
0.068
0.066
0.065
0.064

1.130
1.347
1.876
2.433
2.758
2.749
2.467
2.045
1.606
1.222
0.916
0.686
0.516
0.392
0.302
0.236
0.189
0.156
0.133
0.116
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0.090
0.081
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0.069
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0.050
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TABLE XI. do/dO in b/sr for the E and I, shells,
for 0.354-MeV photons on uranium.
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0.546
2.403
7.243

13.29
18.70
22.27
23.69
23.26
21.55
19.16
16.53
13.95
11.60
9.544
7.796
6.343
5.152
4.184
3.403
2.775
2.274
1.879
1.560
1.310
1.111
0.954
0.832
0.736
0.661
0.603
0.558
0.525
0.500
0.482
0.470
0.462
0.460

0.068
0.299
0.916
1.715
2.463
2.983
3.205
3.159
2.924
2.585
2.212
1.849
1.521
1.238
1.002
0.806
0.648
0.522
0.421
0.341
0.278
0.228
0.189
0.159
0.135
0.117
0.102
0.091
0.082
0.076
0.071
0.068
0.065
0.063
0.062
0.061
0.061

3.081
3.122
3.181
3.124
2.877
2.474
2.005
1.555
1.171
0.866
0.635
0.464
0.340
0.250
0.187
0.142
0.110
0.087
0.070
0.058
0.050
0.044
0.039
0.035
0.033
0.031
0.029
0.028
0.027
0.027
0.027
0.026
0.026

0.702
0.876
1.270
1.615
1.722
1.581
1.301
0.996
0.733
0.530
0.382
0.277
0.203
0.152
0.117
0.094
0.077
0.064
0.055
0.048
0.042
0.038
0.034
0.031
0.028
0.026
0.025

butions from the I. subshells. The L-subshell angular
distributions for 0.662- and 1.332-MeV photons on
uranium are given in Tables IV and V.

A number of additional differential cross sections, for
the E and I. shells, are presented. in Tables VI—XIII.
These are given for lead and uranium targets, and for a
number of photon energies. The values of 0.081, 0.103,
and 0.2/9 MeV correspond to Sujkowski's" experi-
mental energies for Z=92. He has measured the ratio
(ar.,jar,„)/ar,„, for 0.103 MeV. If we compare his
value with ours we have

(ar„+o r,„)/ar,„,=2.74 present work
=3.03&0.15 Sujkowski

in fair agreement. This would seem to indicate that
the e6ects of screening are not the same for all three
subshells, at this energy. We can also compare the
ratio or,„/az,„,for 0.081 MeV and Z=92. We have

ar,„/az„„=1.08 present work
=0.92&0.15 Sujkowski.

This result is almost within the experimental error.
In general, poorer agreement should be expected as the

TanLE XIL da/dQ in b/sr for the K and I. shells,
for 0.279-MeV photons on lead.
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0.158
1.918
6.604

12.73
18.61
23.00
25.34
25.73
24.60
22.49
19.88
17.15
14.52
12.13
10.04
8.246
6.742
5.498
4.478
3.649
2.975
2.430
1.989
1.635
1,352
1.126
0.945
0.800
0.684
0.592
0.521
0.466
0.425
0.394
0.373
0.360
0.356

0.018
0.249
0.867
1.683
2.475
3.067
3.377
3.413
3.237
2.928
2.557
2.176
1.818
1.498
1.223
0.992
0.802
0.646
0.521
0.420
0.340
0.276
0.225
0.185
0.153
0.128
0.108
0.092
0.080
0.070
0.063
0.057
0.053
0.050
0.048
0.047
0.046

2.130
2.172
2.255
2.288
2.199
1.979
1.675
1.350
1.050
0.797
0.598
0.445
0.331
0.246
0.185
0.141
0.110
0.088
0.072
0.060
0.052
0.046
0.041
0.038
0.036
0.034
0.033
0.032
0.031
0.031

0.742
0.860
1.141
1.424
1.566
1.52i
1330
1.076
0.826
0.617
0.457
0.340
0.255
0.194
1.149
0.117
0.095
0.079
0.068
0.060
0.053
0.047
0.042
0.039
0.036
0.034

energy decreases, since the effects of screening on the
final electron become more important. '

4' A. Sommerfeld and A. W. Mane, Ann. Physiir 22, 629 (1935).

2. Checks and Accuracy

Two types of checks were made on the calculation.
The 6rst of these was to take a low Z value (Z= 5), and
to compare the resulting angular distributions and total
cross sections with those obtained from the approximate
calculations of Gavrila. ''r Qualitative agreement was
obtained for all four shells, but the quantitative dis-
parity was as large as 10% in some places.

A more stringent check was needed, and this was
obtained by replacing the Anal-state wave function
with the first term of the Somlnerfeld-Maue wave
function. 4' YVe shall brieRy indicate the procedure. For
the conjugate of this replacement we have

Pgt /Vge @'F(iv, 1,——ipr+-iy r)gt(y),

where X~——I'(1—iv)e"~1'. For the numerical program,
this can be incorporated by changing the radial matrix
elements. The position-dependent part of list can be
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TAzzx, z XIII. do/dzt in h/sr for the iz and I. shells,
for 0.354-MeV photons on lead.

Expressing Pt (f7 r) in terms of spherical harmonics this
becomes
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0.332
1.968
6.127

11..07
15.09
17.30
17.66
16.63
14.80
12.65
10.52
8.578
6.909
5.519
4.387
3.481
2.762
2.195
1.748
1.398
1.123
0.910
0.742
0.611
0.508
0.428
0.366
0.318
0.280
0.250
0.228
0.211
0.198
0.189
0.183
0.179
0.178

0.042
0.250
0.783
1.428
1.968
2.273
2.328
2.191
1.943
1.652
1.364
1.105
0.883
0.700
0.553
0.435
0.343
0.271
0.215
0.171
0.137
0.111
0.090
0.074
0.062
0.052
0.045
0.040
0.035
0.032
0.029
0.027
0.026
0.025
0.024

1.566
1.585
1.604
1.551
1.393
1.159
0.905
0.676
0.491
0.351
0.249
0.177
0.126
0.091
0.068
0.051
0.040
0.032
0.026
0.022
0.020
0.018
0.016
0.015
0.014
0.013
0.013
0.012

0.453
0.546
0.752
0.922
0.954
0.852
0.684
0.512
0.370
0.265
0,189
0.137
0.100
0,075
0.058
0.047
0.039
0.033
0.028
0.024
0.022
0.020
0.018
0.016
0,014
0.013

expanded in a series of I,egendre polynomials as

Pf =4zr P i'2 z(Pr)I'z (P)Yt "(r)tt (p)
l, m

=4 E C.,-,'(—'r. ,*fi„.,'(~), f.,*~ ...(')).
Using the orthogonality of the 0 's and the relation4'

~ Pfi*-(P) = —IL*-(P)
we get

&'1~1 ( &1~1(P) ) )

W+I
g.,*=i'z+z Zz, (pr)28'

/W —m "
f' *= i"'I — «, '(Pr)

i, 2W

By inserting g„*and f„*into the radial matrix elements
the replacement is a,ccomplished. In addition, to
simplify the corresponding analytical calculation, we
set r» '= 1 for the E, L~, and Ll~ bound-state functions
and r» '= r for the Lzi~ bound state. The radial matrix
elements can be evaluated in a manner similar to the
previous ones, and the analytical cross sections could
be evaluated in a straightforward way. Both were
evaluated for Z=S and k=0.200 MeV. Twelve partial
waves were required in the numerical part. The agree-
ment obtained was better than 1% for the K, I.z, and
I.zz shells, and about 1% for the Lzzz subsheH.

and the coefficients az(pr) can be determined in the
usual way. Following Gordon44 we obtain

lt f'= 2 (2t+ 1)i'~z(pr) Pt(r")I'(I ),

I'(3+1—iv)
g (pr) eve/2+~tv (2pr) z

I"(2f+2)

XF(l+1—iv, 21+2, 2ipr). —
44%. Gordon, Z. Physik 48, 187 (1928).
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