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Green's Functions for a Particle in a One-Dimensional Random Potential*
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A method has been found for exactly calculating the spectral density A(k, L') for a particle in a one-
dimensional random potential, when the potential at each point is statistically independent of the potential
at all other points. Generalizations of this method can also be used to Gnd the phonon Green's functions for
a chain of atoms of random mass, or to 6nd various two-particle functions, such as the electrical conductivity
of a system of noninteracting electrons in a random potential. Two functions of the position x on the line are
defined, which depend on the particular potential configuration and on the parameters k and E. The
spectral density is expressed in terms of the probability distribution of these functions when x is at the
right-hand end of the line. The distribution is known at the left-hand end, and the values of the functions,
as x moves from left to right, form a MarkoQ process. One can therefore obtain the spectral density by
solving the equation of motion for the probability distribution. Further simpli6cation is possible because it
is sufhcient to know the erst two moments of the joint distribution with respect to one variable, and because
in the limit of an infinite line, only the asymptotic form of these moments is necessary. The spectral density
requires the solution of a pair of differential or integral equations in one variable, while two-particle func-
tions involve similar equations in two variables. Calculations have been carried out for the spectral density
of a Schrodinger particle in a "white-Gaussian-noise" potential and of a particle confined to 6xed lattice
sites in a random thermal-deformation potential.

INTRODUCTION
' ANY problems which are dificult or impossible to
~ solve in three dimensions turn out to be readily

solvable in one dimension. One class of problems which
has been studied successfully in one dimension is the
calculation of the density of energy eigenstates of a
particle moving in a potential which is not known
exactly, but which obeys a statistical distribution such
that the potential at one point is independent of the
potential at all other points. ' 4 Another closely related
problem which has been solved is the density of normal
modes as a function of frequency for a chain of several
kinds of atoms occurring in random order. "' For many
purposes, however, one is interested not in the density
of states, but in a more complicated function, such as
the spectral density associated with a state of a given
wave vector, or in two-particle Green's functions of
various kinds. In the present paper, a method is pre-
sented for exact solution of one-dimensional models for
a number of these problems.

The single-particle spectral density A(k, E) is of par-
ticular interest when the particle is an exciton in a lattice
distorted by thermal fluctuations. Under proper cir-
cumstances, the line shape for the optical absorption due
to an exciton in a Dondegenerate band is given by the
spectral density of the zero-momentum exciton state. ' '
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For etectroes in an imperfect lattice, the one-particle
Green's function is of less direct interest, but it is still
useful for understanding the nature of the energy eigen-
states. A slightly generalized form of A(k, E) for the
phonon modes of a disordered lattice is of interest for
the inelastic scattering of neutrons and for infrared
absorption by the lattice. Among the problems which
require knowledge of two-particle Green's functions are
the conductivity of electrons in an imperfect lattice and
the optical absorption due to interband transitions in a
nonmetal. The methods of the present paper are re-
stricted to cases of noninteracting particles.

The essential features of the methods of this paper are
as follows: We consider the problem of 6nding the spec-
tral density A(k, E) for a particle in a random potential
on the line segment 0&x&L. One first defines certain
mathematical quantities s and U&, which are functions
of the position x on the line, as well as of k and E, and
of the particular potential configuration. The spectral
density may be written as an average, over the potential
configurations in the ensemble, of a certain function of
the values of s and U1 at the position x=L; hence
A(k, E) is determined by the probability distribution of
the values of s and U1 at the right-hand end of the line.
The functions 2 and U» are dehned in such a way that
for x=0 they are independent of the potential con-
figuration, and at any other position x, they depend only
on the potential to the left of x. Furthermore, they de-
pend on the potential in such a way that if the poten-
tial has the property that its value at each point on the
line is independent of the value at all other points, then
the values of s and U1 constitute a MarkoR process as
x goes from 0 to L. Consequently, one can write down an
"equation of motion" for the joint probability distribu-
tion of s and U1, which one must then integrate from
x=0 to x=L in order to find the distribution at x=L.
An important mathematical simpli6cation is possible
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because the nature of the equation of motion enables
one to work with the zeroth, first, and second moments
with respect to Uq of the joint distribution, for each
value of z, rather than the distribution itself. When one
is interested in the case of very large L, it is only neces-
sary to find the asymptotic form, for large x, of these
moments, and further simplification results.

The calculation of two-particle functions is similar in
principle to the calculation of A(k, E), but the variable
z is replaced by two variables, z and z'.

In Sec. 1, A(k, E) is found for a Schrodinger particle
in a potential whose Quctuations, as a function of posi-
tion, may be described as "white Gaussian noise. "Such
a potential can arise as the potential due to a random
array of point scatterers in the limit of in6nite density of
scatterers, or as a deformation potential due to thermal
Quctuations of a continuous, classical, harmonic elastic
string. The particle may be an electron or an exciton in
the eRective-mass approximation. The total density of
states for this model can be found by the method of
Frisch and Lloyd, ' and as shown in Appendix 8 of the
present paper, can be expressed analytically in terms of
Airy functions. The spectral density A (k,E) is expressed,
for each value of k and E, in terms of the solution of an
ordinary diRerential equation, and has been computed
numerically for several values of k and a range of values
of E. The exact values of the spectral density are com-
pared with the results of a self-consistent Green's-
function approximation in which one sums a selected
set of diagrams in the perturbation series. The asymp-
totic forms for A (k,E) are found analytically for fixed k,
with E—+ &~, and for fixed E, with k —+~.At the end
of Sec. 1, the generalization of the procedure for finding

A(k, E) to handle Schrodinger particles in other random
potentials is brieQy discussed.

In Sec. 2, we discuss applications of the method to a
model of an exciton or an electron in an energy band of
finite width, in a lattice perturbed by thermal Ructua-
tions. Here the position of the particle is restricted to a
discrete set of lattice sites, and the Hamiltonian has
terms which connect nearest-neighbor sites, as well as
terms diagonal in the position of the particle. The spec-
tral density for the problem is given in terms of the solu-
tions of a pair of integral equations in one variable.
These have been solved numerically for several values
of the parameters involved and have been plotted to
show the transition from the case of infinite bandwidth
(Sec. 1) to the case of zero bandwidth.

In Sec. 3, we discuss the phonon spectral density for a
chain of random mass, with a harmonic interaction be-
tween nearest neighbors. The equations derived are
similar to those of Sec. 2.

Finally, in Sec. 4, we illustrate applications to two-
particle Green's functions by deriving the equations for
the frequency-dependent conductivity of a system of
noninteracting electrons in the white-Gaussian-noise
potential of Sec. 1, and by brieRy discussing a model for

interband optical transitions in a nonmetal. The two-
particle functions are expressed in terms of a pair of
partial differential equations in two variables. No
numerical examples have been calculated for Secs.
3 and 4.

g''(0) = ore(0)

f'(L) =zing(L),

(1 4)

(1 3)

where zo and zz, are arbitrary real constants.
The potential V is described as white Gaussian noise,

because its Fourier amplitudes have a Gaussian dis-
tribution with standard deviations independent of the
frequency, and with no correlations between the ampli-
tudes at diRerent frequencies. Because a Gaussian dis-
tribution of any number of variables is completely de-
scribed by its first and second moments, Eq. (1.3) im-
plies that the potential at any point is completely in-
dependent of the potentials at all other points.

The white-Gaussian-noise potential may arise from a
deformation potential on an infinitely massive continu-
ous string. Let the deformation potential be given by

V(x) = VpdR(x)/dx, (1.6)

where R(x) is the displacement from equilibrium of the
point x on the string. We assume that the string obeys
Hooke's law exactly with elastic modulus B. Then,
according to classical statistical mechanics, the poten-
tial V has a Gaussian-white-noise distribution with the
constant D given, at temperature T, by

D=2Vp'k~T/B,

where k~ is Boltzmann's constant.
An alternate interpretation of V is the potential aris-

ing, in the high-density limit, from the model used by
Frisch and Lloyd' for an impurity band —a set of
5-function potentials of Axed magnitude, distributed at
random on the line. In the high-density limit, the Quctu-
ations about the average potential have a Gaussian-
white-noise distribution with

D= 2@so

l. SCHRODINGER PARTICLES

white-Gagssi am-lVoise Potential

We wish to find the spectral density for a particle on
the line segment 0&x&L obeying the Hamiltonian

H = (—k'/2 happ*) (d'/dx')+ V(x) y (1.1)

where V is a random potential described by a Gaussian
statistical distribution with the expectation values

(1.2)

(V(x) V(x')) =-',Db(x —x'), (1.3)

where D is a constant and 6 is the Dirac 8 function. The
wave functions are assumed to satisfy boundary condi-
tions of the form



BERTRAND I. HALPERIN

where vp is the coefficient of the 6-function potential and
ss is the number of scatterers per unit length.

The spectral density for a one-dimensional Schrodinger
particle in a random potential is defined by s(x; E)—=LBy(x; E)/Bxj/y(x; E), (1.16)

properly normalized on the interval 0&x&L. Ke also
define the four functions

A(k, E. )= I.
e*"'y(x'; E)dr, ' e'"'y(x. E) (1.17)

where E; and P; are the energy and wave function of the
ith eigenstate of the Hamiltonian. (Throughout this
paper we use angular brackets ( . ) to indicate an
average over the statistical ensemble. ) The total density
of states at energy E is defined by

U, (x; F)= y—(x'; E)'dk' y(x; E)',

Ua(x; E)=Bs(x; E—)/BL. (1.19)

p(E) =L '(E' ~(E—E')).

The spectral density is normalized so that Bs B y By)

Bx Bx' Bx)
y'= —s' —2E+2V(x) . (1.20)

From (1.16) and (1.13), we find that s(x; E) obex s the
(1.10) "equation of motion"

A (k,E)dE= 1,

(2~) ' A(k, E)dk=p(E). (1.12)

Similarly, U'~ and U2 obey

BUi/Bx=1 —sUi —ik Ui,

BU2/Bx= 1—2sU2.

(1.21)

(1.22)

The spectral density is equal to —1/7r times the imagi-
nary part of the Green's function G(k,E) for the particle
at energy E and wave vector k.'

In the problem we are considering, it is always possi-
ble to choose units of length, time, and mass, such that
A= m+= D = 1; in the remainder of this section, we shall
assume this has been done. To obtain results in any
other system of units, it is necessary to substitute for I,
in the expressions given below, the energy divided by
the unit of energy, eo

——(D'm*h ')'i' and to substitute
for 4 and L ' the wave vector and inverse crystal size di-
vided by the unit of reciprocal length, Ko = (Dryer*'k

—')'i'.
In addition, the expressions for the spectral density
must be multiplied by the over-all factor 6p ', while the
total density of states must be multiplied by Ep Kp.

I'rocedgre

For each potential configuration in the ensemble of
possible configurations, we define the fun. ction y(x; E)
to be the unique solution of the second-order differential
equation

Differentiating both sides of Eq. (1.20) with respect to
E, we find.

BUa/Bx = —2—2s U3. (1 23)

At @=0, we have the initial conditions s=sp and
Ui ——U2 ——U3 ——0. If x„ is a point such tha, t y(x; E)=0,
then the quantities z, Uj., U2, and Us all become infinite
at x= x . However, the four quantities (x—x„)s,
(x—x )Ui, (x—x )'Us, and (x—x )'U3 are continuous
in the neighborhood of x . Kith these conditions, the
four differential equations (1.20)—(1.23) uniquely de-
termine s, Uq, U2, and U3 for all x. Comparison of equa-
tions (1.22) and (1.23) establishes that, for all x,

U,(x; E) = —2U, (x; E) . (1.24)

2; &(E—E;)=BL«—s(L;E)]IB.(I. E)/BEI. (1.25)

Since U2 is greater than zero, for x&0, it follows that
U3 is less than zero.

For each potential configuration, the energy E; of the
ith eigenstate is the ith value of Ji which satisfies the
equation s(L; E)= sr, . Hence,

s(B'/Bx—') y+ V(x) y=Ey, It follows that
1.13

with the initial conditions

y(0; E)=1,
(By/B )(0x; E)=soy(0; E) . (1.15)

Note that although q obeys the Schrodinger equation
for energy F, it will not be an energy eigenstate unless
it also obeys the boundary condition (By/Bx)(L; E)
=sr, y(L; E). Furthermore, y will not, in general, be

=2L '(I U (L; E) I'&L —(L; E)]). (1.26)

Let us restrict ourselves, temporarily, to the case of
k =0, in order to avoid complications due to the presence

'D. Pines, The Many-Body Problem (W. A. Benjamin, Int:.,
Neg York, 1961), p. 31.

I fL y(x ~ E)eikxdxI 2

(1.14) A(kE)= —— p; 5(R—g))f,s y(x E)'dx

1
I
Ui (L; E)

I

'

I Ug(L; E)
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of complex numbers. The joint probability distribution
of s and U», at the point x, is de6ned by

ments with respect to U» of the joint distribution of s
and U». These functions obey the equations of motion

P(s, U, ; x) —= (5[s—s(x; E))5[Ui—Ui(x; E))). (1.27)

The spectral density is given by

BPO
+—(s'+2E) Pp,

Bs Bs Bs
(1.32)

A(O, E) =2L ' UiPP(ss, Ui) L)dUi. (1.28)
B B

+—(s'+2E) —z Pi+Pp, (1.33)
BS Bz Bs

The spectral density would be determined, if one knew
the probability distribution of s and U» at x=L. The
distribution at x= 0 is known:

P(z, U, ; 0) = S(s—s,) t (U,) . (1.29)

BP
+(s'+ 2E)—Pp+ 2Pi,

Bx Bs Bs-

with the boundary conditions

(1.34)

If we can 6nd and solve an "equation of motion" for
the probability distribution, as x moves from left to
right on the line, we will be able to obtain the spectral
density. If the potential V(x) were absent in Eq. (1.20)
the probability distribution would obey the simple
"Row" equation

m s' sp —lim ' 'P, (1.35)

Equation (1.35) is derived from the properties of s and
U» at the nodes of y, where z crosses from —~ to ~.

At the point x=0, we have

ala
Bs EBx ) BUi Bx j

Pp(s; 0) = b(s —sp),

Pi(s; 0) =Pp(s; 0) =0.
(1.36)

(1.37)

B B
(s'+2E)+— (sUi —1) P.

Bs BU»

The random potential V(x) causes a "random walk" of
the quantity s, with ([s(x+dx; E) s(x; E))')=—2dx.
This adds a diffusion term O'P/Bs' to the equation of
motion:

The differential equations (1.32)—(1.34), together with
the boundary conditions, determine P„ for all x, and
are much easier to solve numerically than the equation
of motion for P(s, Ui, x).The spectral density is given by

A(k, E)= 2L 'Pp(sr„L) . (1.38)

When k does not equal zero, certain changes must be
made. The de6nition of P2 must be modi6ed to

BP B B B
+ (s'+2E)+ (s—Ui —1) P. (1.30)

Bx Bs Bs BU»

P(s, Ui, x) Ui'dUi. (1.31)

The function Pp(s; x) is just the Probability distribution
of s(x; E), while Pi and Pp are the first and second mo-

Equation (1.30) has precisely the form of the Fokker-
Planck equation, and is exact when V(x) has the form
of white Gaussian noise. "

The distribution of s and U» obeys boundary condi-
tions at in6nity which are determined by the behavior
of s and U» at the zeros of y. Together with these bound-
ary conditions, Eqs. (1.29) and (1.30) determine
P(s, Ui, x) for all x. The solution of a partial differential
equation such as (1.30) involves formidable numerical
computations, however, and it is fortunate that several
simpli6cations can be made. We de6ne the three func-
tions P,(s; x), (s=0, 1, 2), by

P, (s; x)= (U,(x; E)'8[s—s(x; E)])

BP2 —B'
+(s'+2E) Pp+2 RePi.—

BS Bs Bs
(1 41)

The rest of equations (1.31)—(1.38) still apply.
If we are interested in the properties of macroscopic

systems, we only need to find the spectral density in
the limit L ~~; this makes still further simplification
possible. In Appendix A, we give physical arguments to
show that for large x, the P, have asymptotic forms

Pp(s; x)-pp(s),

Pi(s; x) pi(s),

Pp(s; x) Cx+ f(s),

(1.42)

(1.43)

(1.44)

where pp, pi, f, and the constant C are independent of
x. The spectral density is given, for large L, by

Pp(s x) =(I Ui(x E) I'~[s—s(*;E))). (1.39)

Equations (1.33) and (1.34) are replaced by

BP» B B
+ (s'+2E) s—ik Pi+—Pp,—(1.40)

BS Bs Bs

"For a derivation of the Fokker-Planck equation, see M. C.
Wang and G. K. Uhlenbeck, Rev. Mod. Phys. 17, 323 (1945). A(k,E)=2C. (1.45)
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where 1V (E) is the cumulative density of states defined

by

(1.53)p(E')dE'.1V(E)=

Density of States

The total density of states p(E) is somewhat easier to
find than A(k, E); for an infinite line, it may be found
directly from the function ps(s). By using the fact that
the number of energy eigenstates with energy less than
A', in any particular potential configuration, is equal to
the number of nodes in the function &p(x; E), within a
possible error of ~1, Frisch and Lloyd' show that

lim s'pe(s) =1V(E), (1.52)

FIG. 3. Self-consistent Green's function approximation. Heavy
solid line denotes complete Green's function for particle; light
solid line denotes unperturbed Green's function for partide;
dotted line denotes a phonon (Ref. 11) or connects repeated
scattering from same impurity (Ref. 12).

and from (1.52) we see that the constant C is just the
cumulative density of states, 1V(E).Hence, substituting
(1.57) in (1.58), we find, after changing variables and
performing one integration,

The function p(E) is obtained from 1V(E) by differentia-
tion. A plot of 1V(E) for a white-Gaussian-noise poten-
tial may be found in Ref. 1, Fig. 6.

The function p(E) can also be expressed in terms of the
function pp(s) at the single energy E, by use of the
methods of the present paper. It is easily seen that

p(E) =I. '(
~
Us(L; E) ( 8/sr, —s(L; E)j). (1.54)

If one studies the equation of motion for the function
(Us(x;E)5Ls —s(x;E))) in the same manner that we

studied the equation of motion for I' s(s; x), one finds

that, for large I.,

1V(E)= s'"u "' exp( ——;,u' —2Eu)du, (1.61)

which is a result obtained by Frisch and Lloyd. In
Appendix 8 we show, by working with the Fourier
transform of pp that the cumulative density of states
can also be expressed as

1V(E)=s='{LAi( —2E)j'+ )Bi(—2E)$')—' (1.62)

where Ai and Bi are the well-known Airy functions. "
From either (1.61) or (1.62), we may establish the

asymptotic forms:

p(E) = 2 ps( —s)po(s)«.
1V(E) (2E)'"s- ', for E»0, (1.63)

where
ps(s) =Cs(s), (1.56)

s(s) —=exp( —-', s' —2Es) exp(siu'+2Eu)du (1.57).

The constant C is determined by the normalization
condition, Eq. (1.48). This gives

C= s(s)ds (1.58)

Analytic Results

It is interesting to see what properties of the eigen-
states of the Gaussian-white-noise potential can be
derived analytically from Eqs. (1.46)—(1.49). The gen-
eral solution of the differential equation (1.46) can be
written in integral form. The solution which is bounded
asz~ —00 1s

N(E) [2E["'s. 'exp( —-', ~2E~"'), for E&&0. (1.64)

Equation (1.63) is just the result one would obtain in
the absence of the random potential, and is the result
one expects from perturbation theory. Equation (1.64),
however, cannot be obtained by such simple methods.

In order to find A(k, E), it is necessary to know pi(s)
as well as ps. Unfortunately, no explicit solution of Eq.
(1.47) has been found. It has been possible, however,
to find simple analytic expressions for the asymptotic
forms of the spectral density, when one of the variables
k and 8 remains 6xed and the other approaches in-
finity. Let us first consider the asymptotic forms of
A (O,E) when E approaches &~. When E))0, ps can be
expanded in the form of Eq. (1.59). We may obtain a
similar asymptotic expansion for pi(s) by treating the
diffusion term in (1.47) as a small perturbation, and ex-
panding pi in powers of this perturbation, using, at the
same time, the expansion for ps. We find

When (s'+2E) is large compared to 1, s(s) may be ex-
panded as

p.()--1V(E)
2E(s'+ 2E)

z' —4E
s(s) (s'+2E) '+2s(s'+2E) '+ ~ . (1.59) +.. . . (1.65)

3E(s'+ 2E)'
It follows that

(1.60)
'3 J. C. P. Miller, The Airy Integral, British Association for the

Advancement of Science Mathematics Tables {Uaiversitv Press,
Cambridge, England, 1946), Part B.



A 110 BERTRAND I. HALPERIN

lim sf(s) = lim sf(s) .
z ~oo z ~oo (1.68)

Applying the Green's function to the known function

po(s), one obtains the function pi(s), and thence, the
asymptotic form of A (O,E).

The form of the solutions of (1.67) can best be under-
stood by writing

f(s) =—exp( —-', s' —Es)N(s) . (1.69)

Equation (1.66) then assumes the more familiar form

[—(d'/ds')+-'(s'+2E)'7N(s) = 0 (1.70)

which is the Schrodinger equation for a particle in a
certain quartic potential. For E«0, u(s) may be approxi-
mated by the WKB method. The points s= +

~

2E~ '~'

are second-order classical turning points, and the appro-
priate connecting functions must be used in the vicinity
of these points. '4 The result of these ca,lculations is that
the spectral density has the asymptotic form

A (O,E) 2ir
~

2E
~

"' exp( ——,
~

2E
~

'I'), for E&&0. (1.71)

Although the asymptotic forms for A(k, E) given by
(1.66) and (1.71) were derived for k=O, it is not dif-
ficult to verify that the same results hold for k/0, pro-
vided that k is held constant while ~E~ becomes suf-

ficiently large. The asymptotic form, when I;~ —~
and k/~E '" approaches a finite, nonzero constant, is

also of interest. It may be obtained by a procedure
very similar to that leading to Eq. (1.71), for the
case of k =0. The result is that A (k,E) A (O,E)
&&sech'(m-k/

~

SE
~

'").
The asymptotic form, when k —&~ while E is held

fixed, can be found by expanding the solution of Eq.
(1.4'7) for pi(s) in powers of k '. The fourth term in the
expansion is the first which contributes to the integral
(1.49) for A(k, E). and, using the relation (1.55), it can
be shown that for sufficiently large 0,

A (k,E)-2k- &(E) . (1.'72)

'4L. I. SchiH, Quantum Mechanics (McGraw-Hill Book Com-
pany, Inc. , New York, 1955), pp. 184-192.

Substitution of the expansions for po and pi in (1.49)
gives the asymptotic form for the spectral density:

A(0&E)~2 '~'m 'E '~', for E))0. (1.66)

This is in agreement with the results of perturbation
theory.

The form of A(O, E), when E«0, is considerably
harder to obtain. One may proceed by first finding two
independent solutions, in the limit E((0, of the homo-
geneous equation

«d'/d")+("+ E)(~/ ')+'jf(') = .

From the two solutions of the diGerential equation, one
can construct the Green's function for the diGerential
operator on the right-hand side, with the boundary
condition

This asymptotic form of the spectral density, for large
may also be obtained by perturbation-theoretic

arguments.

Othe~ Potentials

The essential property of the equations of motion for
s and U& which permitted us to write down an equation
of motion for the joint probability distribution P (s, Ui, x)
was that the quantities s(x; E) and Ui(x; E) form a
MarkoR process, as x moves from left to right along the
line. If, instead of the Gaussian-white-noise potential,
we had used a model, such as Frisch and Lloyd' s, of
8-function potentials scattered independently at ran-
dom on the line, the Marko6 property would still hold
and the procedures of this section could be carried out.
If the impurity" potentials had nonzero range, how-
ever, s(x; E) and Ui(x; E) would not form a continuous
Markoff process. If one considers any model in which
various kinds of "impurity" potentials of finit spatial
extent occur in random sequence on a line, with a given
distribution of possible distances between successive
impurity potentials, and zero probability of overlap be-
tween two potentials, one can obtain a, discrete Markoff
process by considering the values of s and U» at the
right-hand side of each impurity potential. One can
obtain a similar discrete Markoff process for a sequence
of finite potential wells of random depth.

The condition which enabled us to work with the
functions P,(z; x), instead of the joint distribution of s
and U», was that the equa, tion of motion for U» was
linear in U». This condition also applies to the more
general models of the preceding paragraph. It follows
that the spectral density of such a system is accessible
to the general methods of this paper. The mathematical
details of such a calculation are very similar to the pro-
cedures to be discussed in Secs. 2 and 3 of this pa, per,
and we shall not examine them further.

2. DISCRETE PARTICLES

The 3fodel

As another application of the general method, we cal-
culate the spectral density for a model of a particle in an
energy band in a discrete lattice. We may imagine the
particle to be a conduction electron or a tightly bound
exciton in a chain of N identical atoms of infinite mass,
the random part of the particle Hamiltonian arising from
thermal Quctuations in the distances between neighbor-
ing atoms. The electronic state of the system is de-
scribed by giving the probability amplitude P(m) for
finding the particle at ea,ch lattice site, 1&m(iV. We
assume that the particle Hamiltonian H is of the form

ey(m) =Zy(m)+ M,g—(m)+Sr„P(m+ 1),
for 2&m&X—1. (2 1)

The diagonal matrix element E is assumed to depend
linearly on h and h», the deviations from equihbrium
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of the distances between atom m and its nearest neigh-
bors, atom zzz+1 and atom zzz —1, respectively. The off-

diagonal element M is assumed to be a linear function
of the distance between atoms zzz and zzz+1. Thus we

may write
E =—Ep+nh +nIz

M =M+—Ph„.

(2.2)

(2.3)

We assume all quantities in (2.2) and (2.3) to be real.
If the atoms of the lattice are connected with springs

between nearest neighbors only, we know from classical
statistical mechanics that the distributions of the var-
ious h are statistically independent. If the springs
are perfectly harmonic, then the distribution of each
h,„ is a Gaussian distribution with mean zero and
variance k~Tu, ~B, where T is the temperature, a is the
equilibrium interatomic distance, and 8 is the elastic
modulus of the chain.

The spectral density is defined as

A(ihE)= N '(P~ P—e-"&-(zzz) ~'h(E —E)) (2.4)

where E, and P, are the ith eigenvalue and eigenfunction
of the Hamiltonian, the eigenfunction being nor-
malized by

(2 3)

To completely specify the Hamiltonian (2.1), we must
specify the values of HP(m) at the endpoints zzz= 1 and
m=N. For a p, erfect lattice (Ig —=0), it is convenient
to assume periodic boundary conditions. In that case,
the eigenstates of the Hamiltonian are periodic waves,

(zzz)
—zP

—1 /zgi pm

for q=0y ~27( V p
&4~Ã

y
etc., with energies

E,=Ep+2M cosy.

(2 6)

(2.7)

For our present purposes, we shall not use periodic
boundary conditions, but shall specify the boundary
conditions by defining quantities f(0), P(N+1), h,
and /z~ to be substituted in Eq. (2.1) at the end points.
We define

4(0)=yoM V(1), (2.8)

kp:—0 (2.9)

P(N+1) = (M+Ph~) (y~ nh&) 'P—(N), (2.10)—

where yp and y& are real fixed constants. We shall not
fix the quantity hN, however, but shall consider a statis-
tical ensemble of crystals, in which h~ is a random vari-
able which is statistically independent of the other h
and has the same probability distribution as each of the
h . When the number of atoms is large, of course, the
spectral density will be independent of the choice of
boundary condition.

The relation between the discrete Hamiltonian of the
present section and the Schrodinger Hamiltonian of
Sec. 1 may be seen, if one assumes that the wave func-
tions of interest are slowly varying functions of m. The
finite difference operator II can then be approximated
by a differential operator, which, for the case of a per-
fect lattice, is the Schrodinger Hamiltonian for a free
particle with effective mass zzz*= —2h'/Ma'. For the
imperfect lattice, we have the additional terms o,h

and Ph of Eqs. (2.2) and (2.3). The first of these leads
to a deformation potential, while the second leads to a
combination deformation potential and local change of
effective mass. If the wave functions are sufficiently
slowly varying, and the perturbation sufficiently weak,
the local change of effective mass will be negligible com-
pared to the deformation potential. The value of the
deformation potential coefficient Vp, as defined by Eq.
(1.6), is given for the present model by

Up
——(2n+2P) a. (2.11)

In the limit of slowly varying wave functions, the effect
of the deformation potential is the same as that of a
Gaussian white-noise potential, with coefficient D
given, as for the continuous string, by

D= 2UpkzzT/B. (2.12)

Although the equations for A(q, E) given below are
derived for general values of the parameters, numerical
computations have been carried out only for the case of
P and q equal to zero. To facilitate comparison with the
results of Sec. 1, the units of length, time, and mass were
again chosen such that h=nz*=D=1, with D defzzzed

by (2.12) and (2.11).Also to fa.cilitate comparisons, the
origin of the energy scale was chosen to be the edge of
the unperturbed energy band, so that Ep+2M=O. The
dimensionless parameter which controls the shape of
the spectral density is the lattice constant a, expressed
in terms of the unit of length, imp

' ——(Dm*'h ') "'
The function A(O,E) is plotted, for several values

of the lattice parameter a, in Fig. 4. The value a=0
corresponds to the continuous model of Sec. i. The
limit a&)Kp corresponds to an energy bandwidth
(l4M~ =2k'~zzz*) 'a ') which is small compared with
the root-mean-square deformation potential. In such a
system, the eigenstates are localized at a single lattice
site m, and the energy is shifted by the deformation po-
tential at that site, n(h +h i). This leads to a spec-
tral density, independent of the wave number q,
which is a Gaussian distribution with variance equal
to D/4a. " iP When a is not large compared to imp ',

"The Gaussian shape for the spectral density in the limit of
zero bandwidth is derived in Ref. 8 by summation of the pertur-
bation theory expansion for the Green's function.

~ When the bandwidth is zero, it is possible to calculate the
spectral density exactly, even when phonon energies are not zero.
See, J. J. Hopheld, in International Conference on the Physics of
Semiconductors, Exeter, 1962 (The Institute of Physics and the
Physical Society, London, 1962), p. 75; M. Lax, J. Chem. Phys.
20, 1752 (1952}.
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We also define

m—r e
—r&m'y(m )

Ur(m) —= g
mI r e am —

~(m)

t p(m')'
Us(m) —= P

m'=1 p(m)s

Us(m) —= (8/BE)y(m) .

(2.17)

(2.18)

(2.19)

The functions y and U obey the equations
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y(m+1) =~h„—(M+Ph )s

X [y(m)+rrh E+—Es] ' (2.20)

Ur(m+1) = e"[Ur(m)+1]
X[y(m+1) —uh ](M+Ph ) ', (2.21)

Us(m+1) = [Us(m)+1]
X[y(m+1)—nh ]'(M+Ph )-', (2.22)

U&(m+1) = [Us(m) —1]
X [y(m+1) —aha]s(M+Ph~) s

~ (2 23)

-3

FIG. 4. The spectral density A (O,E) for the discrete model, for
several values of the lattice constant a. The energy E is measured
in units of eq ——(D'm*6 ')'~', the lattice constant in units of
Ko = lDm*'h 'l »'. The zero of energy is the energy of the k=0
state in the unperturbed lattice.

the spectral density still has the Gaussian form,
constX exp[—2(E—Eo)'a/D], whenever the magni-
tude of (E—Eo) is large compared to the bandwidth.
Note that the center of this Gaussian is the cerIter of the
unperturbed band. In Fig. 4, the curve corresponding
to a= 8 is almost undistinguishable from a Gaussian.

Procedure

U, (m) = —U, (m) .

The spectral density is then given by

A(q, E)=N '(I Ur(N+1) I'/Us(N+1)
X

I
Us(N+1)

I &[yrr —y(N+1)])
=N-'&IU. (N+1) I'~[y~ —y(N+1)]&

(2.24)

(2.25)

P, (y; m) =(Ut(m)'5[y —y(m)]), for s=0, 1

=(I Ut(m) I'I[y—y(m)]), for s=2. (2.26)

The three functions U(m) are equal to zero when m= 1.
Hence, comparing (2.22) and (2.23) we see that for
all m,

For each energy, and each lattice configuration, we

define a function q (m), such that p(0) = 1, ip(m) obeys
the homogeneous "initial condition" (2.8), and p obeys
the difference equation

These obey equations of motion of the form

o(y; +1)= Eo(y,y')~o(y'; m)dy', (2.27)

M (p(m+1)+M„rrp(m —1)+(K„—E)&p(m) =0. (2.13)

We define

y(m) = (M+Ph t) p(m —1)/(p(m)+nb, .—(2.14)

The initial condition" (2.8) implies that

Pr(y; m+1) =e'& Fr(y, y')

~s(y; m+ 1)= Es(y,y') P's(y', m)

XP't(y', m)+P&(y'; m)]dy', (2.28)

y(1) =yo (2.15)

+2 RePt(y'; m)+Pe(y'; m)]dy'. (2.29)The final condition (2.10) means that E is an eigenvalue
of the Hamiltonian, if and only if

y(N+1) =y~.
The kernels F,(y,y') are given, in terms of the proba-

(2.16) bility distribution p(h) obeyed by each of the h, by the
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equation X, are defined as
N

X=iV "'Q e""X R
tn=l

(3.2)

(M'+Ph)'
X~ y —~h- p(h) dh. (2.30)

y' nh —E+E—p

The behavior of P,(y; m) for large m may be studied
by a procedure very similar to the analysis of the cor-
responding quantities for the white-Gaussian-noise
potential given in Appendix A. We use the fact that
the integral operator on the right-hand side of (2.29)
is related by a change of variables to the adjoint of the
opera, tor in (2.27), a fact which follows from the relation

F&(y,y') =Fp(E Ep y'—, E —Ep y) .— (—2.31)

The functions Pp(y; m) and P&(y; m) approach func-
tions pp(y) and p&(y), independent of m, when m be-
comes large. These limiting functions may be determined
by substituting pp and pt for Pp and Pt on both sides of
(2.27) and (2.28), and using the fact that pp, as a proba, —

bility distribution, is normalized to have area one. When
m is large, the function P&(y; m) has the asymptotic
form, constXm+ f(y). The resulting spectral density,
for large N, is independent of N and y~, and is given by

A (q,E)= p, (E Ep y)— —

X[2 Rep&(y)+ pp(y) jdy. (2.32)

Thus, the problem of 6nding the spectral density is
reduced to the solution of two one-dimensional integral
equations, for pp and p&, and one quadrature.

where R is the displacement of the mth atom from
equilibrium and X is a real or complex number which
depends on the particular type of atom at the mth site.
For example, in applications to the one-phonon in-
elastic scattering of neutrons, ' X would be the scat-
tering length of the mth atom. To each value of the mass
3f„ there is a corresponding value A„so that X =A„
whenever p, =M„. The operator R may be expanded
in terms of the normal coordina, tes Q, of the crystal as

F.„=P; I;(m)Q;, (3.3)

where I;(m) is the eigenfunction for the ith normal
mode. The function D(q, po) may then be expressed a,s

D(q~)=~&l~l '~(~)A(q, lgl), (34)
where

tt(to) =—[exp(tttto/haT) —1j '+1, for po) 0,
=—[exp(hltol/htt7') —1j-' for co(0 (3 5)

and the spectral density A(q, to) is de6ned by

A(q, to)=—pr (pl Q e'p & N, (m)l 8(to —to;)), (3.6)
i tn=1

P tt I;(m)'=1. (3.8)

where co; is the frequency of the ith mode. The eigen-
functions tt, (m) obey the equations

KN, (m+1)+KN;(m 1)——(2K—tM„poP)N, (m) =0, (3.7)

3. PHONON GREEN'S FUNCTIONS

The similarity between problems involving normal
modes of phonons and those involving electronic eigen-
states has been emphasized by Schmidt. ' It is not sur-
prising, therefore, that the methods of the previous
sections may be used to 6nd phonon Green's functions
for certain one-dimensional models. We shall consider
here a model in which N atoms on a line are connected
to their nearest neighbors by identical harmonic springs
with spring constant E.The mass of each atom may be
any one of the values 3f&, M2, ~ ~ ~, the probability that
mass of the mth atom, p, has the value 3f„ is zv„, and
is independent of all the other masses on the line. The
functions we are interested in are correlation functions
of the form

D( )= '"'((X.(l)x'(o)))« (3.1)

where we have used the double angular bracket (( ))
to indicate the quantum-mechanical expectation value
for a variable, averaged over the thermal distribution
of phonon occupation numbers, as well as over the
possible sequences of the diferent masses. The variables

The u; must obey appropriate homogeneous boundary
conditions at the ends of the line, which we shall not
specify here.

In order to simplify slightly the equations which
follow, we assume that units have been chosen such that
the spring constant K equals one.

In the analogy with the procedures of Secs. 1 and 2,
we define for each frequency co&0, and for each of the
possible sequences of masses, a function q (m), which has
a 6xed value at m=0, which obeys the homogeneous
boundary condition at the left-hand end of the chain,
and which obeys the difference equation of (3.7) with
a and y substituted for ~; and I;.I et us also de6ne

y(m) = q (m —1)/p (m), (3.9)
—t X,„e 'p 'p(m')

Ut(m) =Q, (3.10)
m'=1 e t pm y (m)—
m-t tt .q(m')'

Up(m)= Q (3.11)
m =t po(m)'

Vp(m) = (et/Bto)y(m) . (3 12)
"See C. Kittel, Qttaltttrrt Theory of Solids (John Wiley R Sons,

Inc. , New York, 1963), Chap. 19.
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These obey the equations

y(m+1) = [2—p cp' —y(m)] ', (3.13)

Ui(m+1) = e'py(m+1) [Ui(m)+'A ], (3.14)

Up(m+1) =y(m+1)'[Up(m)+ p ], (3.15)

Up(m+1) =y(m+1)'[Up(m)+2p cp]. (3.16)

From the last two equations we see that

Up(m) = 2cpUp(m) . (3.17)

If we define P.(y; m) precisely as in Fq. (2.26), then

A (q, cd) = 2cdlV 'P p(yv
—
, iV). (3.18)

If the functions Pp(y; m) and Pi(y; m) approa, ch
continuous limits pp(y) and pi(y), as m ~~, then
these limits can be found by substituting p, for P, on
both sides of Eqs. (3.19) and (3.20). If, furthermore, the
function P&(y; m) has the asymptotic form, const
Xm+f(y), as m~~, then we ma, y find the spectral
density by multiplying both sides of Eq. (3.21) by
P,. w„pp(2 —M„.cp' —y) and integrating with respect
to y. By changing the variable of integration on the
right-hand side from y to I'=2 —3f„—y

—', and using
the difference equation satisfied by pp, we find (in the
limit AT —+~)

where we have assumed a boundary condition on the
right-hand end of the chain of form y(%+1)=y&. The
equations of motion for the I', are

Pp(y; m+1) =y—' P„w,Pp(2 M„cd' —y'; m)—, (3.19)

Pi(y; m+1) = e"y ' P, w, [Pi(2—M,cp' —y ', m)

+A„Pp(2 M.„cp' y—'; m)]—, (3.20)

Pp(y; m+1) =Q„w„{Pp(2—M,cp' —y '; m)

+2 Re[A„P,(2—M,cp' —y '; m)]
+IA„I'Pp(2 —M~' —y

—'m)). (3.21)

A (q, cp) in these regions of bad behavior is clearly out of
the question.

The reason for this difficulty is that we have chosen a
discrete set of masses M „.If we had chosen a continuous
distribution of possible masses, so that the sums in
Eqs. (3.19)—(3.22) were changed to integrals, then all
the limits would have existed and the functions p,
would be continuous. Physically, we expect to be able
to approximate a discrete distribution as closely as we
desire by a continuous distribution which is sharply
peaked about the values of the discrete distribution.
If A(q, cp) is discontinuous for the discrete distribution,
we would not expect to be able to calculate it in this
manner; but the quantities of real physical interest are
averages of the spectral density over a finite spread of
cp, such as (Acp) J' „"+~"A(q, cp')dcp', and we do expect
that, for fixed Ace, such quantities can be calcula, ted as
accurately as desired by choosing a continuous distribu-
tion sufficiently close to the discrete distribution.

Reo (cp) =
s-e' " f(hv) —f[h(v+cp)]

F(v, v+cp)dv, (4.1)
m QQ

2

where f is the Fermi function,

a,nd Ii is defined by

4. TWO-PARTICLE FUNCTIONS

E/ectrical Comdlctivity

The methods of the previous sections can be general-
ized to two-pa, rticle functions, such as the frequency-
dependent electrica, l conductivity of a system of non-
interacting electrons in a random potential. The real
part of the conductivity, at frequency co, for a collection
of noninteracting, spinless particles of charge e and
ma, ss nz, is given by"

A(q, cp) = 2cp Q„w„pp(2 —M„—V)

X{2Re[A.„Pi(V)]+IA„I Pp(V))dV. (3.22)

Unfortunately, the functions P,(y; m) do not neces-
sarily approach continuous limits as m —+~, even if
one starts with a continuous function for Pp(y; 0).
Schmidt' showed that, a,t least in certain cases, pp(y),
if it exists at all, is highly discontinuous, the values of
pp(y) being infinite at a dense set of points. Even if the
limit pp(y) does exist, in these ca,ses, it is not clear that
the limit pi(y) will exist, or that the integral on the
right-hand side of (3.22) will exist. In fact, there is
reason for believing that A(q, cp) itself is infinite at a
dense set of points in certain regions of the line
0(cp( ~, while the integral J'p" A(q, cp')dcp' is a con-
tinuous function of co. Numerical computations of

In Eq. (4.3), I. is the length of the system, (i
I p I j) is

the matrix element of the momentum operator between
the eigenstates i and j of the one-particle Hamiltonian,
and E; and E; are the energies of the eigenstates; the
quantity p in Eq. (4.2) is the chemical potential of the
electron system. If the real part of the conductivity is
known, the imaginary pa, rt may be calculated by use of
the Kramers-Kronig relations.

As an example, we shall derive the expressions for F
when the random potentia, l is the white-Gaussian-noise
potential of Sec. 1. We again choose units such that
h=m=D=1. We define the functions pp(x; P) and

"See H. Nakano, Progr. Theoret. Phys. (Kyoto) 15, 77 (1956).
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z(x; E) as in Sec. 1. We also define a, new function

W(x; E,E') —=

(p(x'; E)—p(x', I )dx'
Bx

q(x; E)p(x; E')
(4 4)

The equation of motion for 8' is

BW/Bx= z(x; E') —[z(x; E')+z(x; E)]W. (4.5)

Functions P,(z,z', x) are defined, for s=O, 1, 2, by

The equations of motion for these functions are

BP, —8' 8 8 8
+2 + +(z'+2E)—

Bx Bs BZBs Bz Bs

P, (z,z'; x) = (W(x; E,F.')'b[z —z(x; E)$
Xb[z'-z(x; E')]). (4.6)

Interband Optical Transit 'ons

As a fina, l exa,mple of the properties which can be cal-
culated using the methods of this paper, we mention
the line shape for optical absorption by interband elec-
tronic transitions, under the assumption that the elec-
tron and hole do not interact. We consider a model in
which the electron and hole are treated in the effective
mass approximation, and the random potential is white
Gaussian noise arising from a deformation potential
on a, classical continuous string. The effective ma, ss m*

and the deformation potential coefficient Vo may be
different for the electron and hole. We assume that the
interband part of the momentum operator, which is
responsible for the interband tra, nsitions, has the form

pinterband = const

[a,t(x)a.t(x)+a.(x)a.(x)]dx, (4.1O)

8
+(z"+2E') +(2—s)(z+z') p,+szP, i. (4 7) where apt, ap, a,t, and a, are the creation and annihila-

t9$ tion operators for a hole and an electron, respectively.
The optical absorption for this model is proportional to

[Note that the "diffusion term, "

82 82
+2 +

Bs BsBs t9s

n((p) —= G(v, p~ —v)dv, (4.11)

represents random walk in the (z+z') direction only;
the random potential in the equation of motion for
z(x; E) is the same as that in the equation for z(x; E').j
The boundary conditions at infinity on the functions
P, are

lim s' 'P = lim s' 'P, ,
Z ~00 Z ~oO

lim s" 'P, = lim s" 'P, .
z' ~oo z' ~oo

(4.8)

If E does not equal E', then Po and Pj approach
limits pp(z, z') and pi(z, z'), independent of x, as x
approaches infinity. The limiting functions are deter-
mined by the differential equations (4.7), with the left-
hand sides set equal to zero, together with the boundary
conditions (4.8) and the normalization condition
J'J'pp(zz )dzdz' = 1.The function Pz has the asymptotic
form, const&&x+ f(z,z'), and we find that in the limit of
very large L,

F(E,F.') =4L 'Pz(zg, ,zI. , L)

where G is defined, in terms of q;" and E;", the wave
function and energy of the ith hole eigenstate, and

p,' and E,', the wave function and energy of the jth
electron state, by

L

G(v, v') —=I=' Q (p,"(x)p,'(x)dx
0

g5 p — b p' — . 4.12a) ai
The procedures for calculating G(v, v') are very similar
to the methods used in calculating the function F(v, v')

of Eq. (4.3), and we shall not discuss them further here.
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Pp( z, z )Pi(z, z )zdzdz ~ (4 9) APPENDIX A. ASYMPTOTIC BEHAVIOR OF P, (z;x)

For the case where E=E', these methods cannot be
used directly, because pp and pi do not then approach a
well-behaved limit as x —+~. The zero-frequency con-
ductivity must therefore be obtained by studying the
limit of a(pp) as pp ~ O.

We wish to study the behavior, for large x, of the
functions P,(z; x) for the Gaussian-white-noise poten-
tial of Sec. 1.The function Po is the probability distribu-
tion of z(x; E), and we shall give a physical argument
that this probability must approach a limiting distribu-
tion as x ~~. It is perhaps easiest to first project the
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line —~ &z(x; E)& ~ onto the unit circle 0&8(x) & 2z

by

8(x)= 2 arctan z(x; E) . (Ai)

p(8'~ 8",~x) &m, for ail 8', 8". (A2)

These conditions are more than sufficient to insure that
the probability density of 8(x), and hence that of
z(x; E), approaches a limit exponen. tially fast as x —+~.
It would have been sufhcient for convergence that the
above conditions hold for one particular Ax&0. Also
it would have been sufficient that (A2) hold for all 8",
whenever tI' lies in a specified nonzero segment of the
circle."

The function Pi(z; x) obeys the differen. tial equation
(1.40) with the boundary condition (1.35). Since the
inhomogeneous term in (1.40), Po(z; x), approaches a
limit exponentially fast, the function P j will approach a
limit, if all solutions of the homogeneous equation

l9 8 8—f(z; x) = —+(z'+2E)—+z—ik f(z; x), (A3)
Bx Bs

The equation of motion (1.20) for z can be translated
into an equation of motion for 8(x), which may be
described, like the equation for s, as a "Qow" plus a
"random walk. "The Aow velocity for 0 is continuous at
all points on the unit circle, including the point 0=x,
corresponding to s= ~. The magnitude of the random
walk vanishes at the point 8=x, but the Row velocity
at this point is not zero. At all other points on the circle,
the random walk is nonzero. It is physically clear that
no matter what the value is of 8(x), there will be a 6nite
and nonvanishing probability density for 8(x+8 x) to be
at any point on the circle, for any Ax&0. More ex-
plicitly, we claim that for any dx&0, the conditional
probability density p(8'~8", Ax)& for 8(x+Ax) to have
value 8' when 8(x)=8", is bounded above for all 8'

and 0", and that there exists a lower bound m&0 such
that

same reasoning as that used in Eq. (1.26), we see that

(U4(L; E)o[sr, z(—L; E)])
= 2e '"'(e 2 4'(0)lt'(L)8(E —E')), (A6)

P2(z; x) =2 dz' dx'G(z, x—x'; z')

XRePi(z'; x'), (AS)

where the Green's function G(z, x; z') is the solution of
the homogeneous equation

t9—G(z, x; z') = +(z'+2E)—G(z, x; z'), (A9)
Bx Bs t9s

where the f; are the normalized eigenstates of the
Hamiltonian, with the boundary condition sz, . Borland"
has shown that the eigenstates in a one-dimensional
disordered potential are highly localized in space, de-
caying exponentially on either side of the point at which
they are maximum. It follows that the product/;(0) P;(L)
will be very small for large L,, and unless the density of
states is infinite at energy E, the function f(zl.„,L) must
be very small, for large L. Since sz, is an arbitrary con-
stant, it follows that all solutions of (A3) and (A4) de-
cay to zero as x —+~.

Finally, we consider P2(x; z). If the spectral density
is to be independent of j., and of the boundary condition
sz„ it follows that

x 'P2(z x) =C+R(z,x),
where C is a constan. t, and the remainder R(z,x)
vanishes as x —+~. If we make the further assumption
that x8R(z,x)/8x goes to zero for large x, then one
can use the reasoning preceding (1.49) to evaluate C
and thus determine the spectral density.

It is also possible to study the limiting form of P2
more directly from the equation of motion (1.41),
without use of the physical interpretation of P2. The
function P2 may be written as

with the boundary condition

lim zf= lim zf,
z ~00 z ~oo (A4)

for x greater than zero, with the boundary conditions

lim G(z, x;z')= lim G(z, x;z'), (A10)

G(z,0; z') = 8(z—z') . (A11)

U4(x; E)=c/e"'q (x; E), (AS)

where c is some constant. By examining the equation of
motion for V4, one can readily see that the functions
f(z; x) are just the expectation values (U4(x; E)
X8(z—z(x; E)]), where the average is to be taken not
only over all potential configurations, but over a dis-
tribution of initial conditions so and constants c, chosen
so as to give the correct values for f(z,0). Using the

' Cf. the discussion in Ref. 1, Appendix 2.

decay to zero as x —+~. I.et us define the function
U4(x; E) by

lim s"H= lim s"H,
Z Z ~—00

(A13)

H(z', 0; z) = 8(z—z'). (A14)

4«. E. Borland, Proc. Roy. Soc. (London) A274, 529 (t963).

We know that Pi(z'; x') approaches a limit as x —+oo; in
order to 6nd the asymptotic behavior of P2 from (AS),
we must also study the behavior of G. Let H(z', x; z)
be the solution of the adjoint equations:

BH 8 8
(z"+2E) H, for x& 0, (A12)

8$ Bs l9s
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If we multiply both sides of (A12) by G(s', x"—x; s") This last requirement, together with (82), implies that
and integrate with respect to s' and x, over the region
— &s'& ~ and 0&x&x", then we 6nd, after integra-

—lim Redp(q)/dq=nlV(E) . (83)
tion by parts, "

G(s,x";s")=H(s",x";s) . (A15)

Note that Eq. (A12) is identical to the equation of
motion (1.32) for Ps except for the sign of s'. Hence,
from our discussion of the limiting form of I'0, it follows
that G(s,x; s') approaches the limit po( —s') independent
of the value of s as x —+~, and that this approach is ex-
ponentially fast. From this it follows that Ps(s; x) has
the form (const&&x+f(s)+terms which go to zero as
x~~), and the spectral density, for large I., may be
found from Eq. (1.49).

APPENDIX B. DENSITY OF STATES FOR THE %HITE-
GAUSSIAN-NOISE POTENTIAL IN TERMS

OF AIRY FUNCTIONS

Equation (1.46) for the probability distribution ps(s),
in the case of a white-Gaussian-noise potential, may be
integrated once with respect to s, giving

d
+(s'+2E—) po(s) = const.

ds

From Eq. (1.52) and the expansion in (1.59), we see that
the constant in (81) is just the cumulative density of
states, 1V(E). Taking the Fourier transform of (81),
we have

(d'/dq')+i—q+2E jp(q) = 2n tV(E)8(q), (82)

where p(q) is the Fourier transform of po(s). As a Fourier
transform of a probability distribution, p(q) must be
equal to one when q equals zero, p(q) must approach
zero when q

—+ &~, and p(q) must equal p( —q)*.
"Cf. 3. Friedman, Principles and Techniques of Applied 3fathe

matics (John Wiley & Sons, Inc. , New York, 1956), p. 174.

G"(t) = tG(t) . (85)

The general solution of (85) is G(t) =a Ai(t)+b Bi(t),
where Ai and Bi are the Airy integrals, de6ned and
tabulated for real values of t in Ref. 13. The Airy in-
tegrals may be expressed in terms of Bessel's functions
of «~ order, and have an analytic continuation to the
entire complex plane. From the well-known asymptotic
properties of the Bessel's functions, " it follows that
when ~t ~~~, the Airy functions have the asymptotic
form

Ai( t) 7r '—"t "' sin(-', 7r+-', t'"),
Bi(—t)-m.—'t't —'t' cos(-,'sr+-'t't')

(86)

(8&)

in the sector —assr(argt( —seer. The condition G(t) ~0,
as t —+ —i~, thus implies

G(t) =aP i(t)-' »(t)1 (88)

Since the Wronskian, Ai'(t) Bi(t)—Bi'(t) Ai(t), equals
—1/n for all t, we have, finally,

tV(E) =7r '(LAi( —2E)$'+)Bi(—2E)g') —'. (89)
"E.Jahnke, F. Emde, and F.Losch, Tables of Higher Functions

(B. G. Teubner Verlagsgesellschaft, Stuttgart, 1960) 6th ed. ,
p. 147.

If g(q) is any solution of the homogeneous part of
Eq. (82), such that g(q) ~0 as q

—++~, then it
follows that —sr ' Ret g'(0)/g(0)]=X(E). If we write

g(q) —=G(t), where t= —iq —2E, we have

X(E)= —sr ' Im/G'( —2E)/G( —2E)$. (84)

The function G(t) must approach zero as t —+ i~- ,
and G must obey Airy's diAerential equation


