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The purpose of this work is to construct a theory which will explain recent low-temperature measure-
ments of the dielectric properties of KCl crystals containing substitutional hydroxyl ions. The Onsager
theory of polar liquids, as extended by Pirenne to allow for the possibility of spontaneous polarization, is
modified in order to take into account the strong short-range interactions that are important in solids. The
theory leads to two simultaneous transcendental equations, which are solved numerically to obtain the
dielectric constant for small applied fields and the spontaneous polarization as a function of temperature.
The agreement with experiment is good except in the neighborhood of the Curie temperature, where the
discrepancies are such as one might expect to arise from the nonuniform distribution of hydroxyl ions in
the experimental samples. Theoretical results are also given for the dielectric constant measured in a large
steady field or by means of a small alternating field in the presence of a large steady bias.

I. INTRODUCTION

HIS paper contains an account of the beginning
of a theoretical investigation which is motivated
by the recent experimental results of Kinzig, Hart, and
Roberts.! These investigators studied the dielectric
behavior of KCI cyrstals in which roughly 1 in 10® CI-
ions was replaced by a polar (OH)~ radical. Measure-
ments of the dielectric constant and loss angle were
carried out on a number of samples containing different
(OH)~ concentrations, at temperatures in the range
0.3-90°K and frequencies in the range 10°-10* cps. It
was observed that the dielectric constant increased
with decreasing temperature until it reached a maxi-
mum value after which it began to decrease. The tem-
perature corresponding to the maximum dielectric
constant increased with increasing (OH)~ concentration
but was almost independent of frequency, indicating
that the dielectric behavior was determined primarily
by interaction between the dipoles rather than by
relaxation effects associated with the hindered motion
of individual dipoles.

More recently,? measurements of the dielectric con-
stant as a function of temperature have been carried
out in the presence of a strong dc bias. Preliminary
results indicate that the bias field has the effect of
reducing the dielectric constant over the entire tem-
perature range within which the effect of the dipoles is
noticeable. The significance of these measurements lies
in the light they shed on the nature of the collective
ordering which one may reasonably assume to be
responsible for the decrease in dielectric constant at
temperatures below that corresponding to its peak
value. If this ordering were antiferroelectric it would
presumably be inhibited by a dc field and one would
therefore expect a bias field to cause an increase in the
dielectric constant on the low-temperature side of the
peak. Since this is contrary to the behavior observed,
one may conclude that the ordering is ferroelectric. The

1W. Kinzig, H. R. Hart, Jr.,, and S. Roberts, Phys. Rev.
Letters 13, 543 (1964).
2 H. R. Hart, Jr. (private communication),

argument used here has been made quantitative by
Takagi® for a simple model.

Independently of the dielectric measurements on KCl
(OH)~, Kuhn and Liity* havestudied the ultraviolet (uv)
absorption of this material in the presence of a strong
electric field. The theoretical explanation which they
developed for the observed temperature and crystal-
orientation-dependent electric dichroism indicated that
the (OH)— dipoles can orient themselves only along the
six [100] axes of the fcc KCI lattice, and yielded a
value for the electric dipole moment.

An exact theoretical treatment of KC1 (OH)~ would
involve a solution of the statistical-mechanical problem
of an ionic lattice containing a number of substitutional
polar ions on random lattice sites, taking into account
the short-range forces, the long-range electrostatic
interactions, and an external field. If one considers the
difficulties that arise when one attempts to find a
solution for the very much simpler Ising model, one
must conclude that this rigorous approach is unlikely
to yield meaningful results. The literature does, how-
ever, contain some solutions for much simpler problems
involving dipoles on lattice sites, and it is of interest to
discuss these briefly.

Sauer® has discussed the energetics of a three-
dimensional lattice of dipoles, each of which can have
an orientation either parallel or antiparallel to some
given direction. The only forces considered were the
long-range dipole-dipole interactions. The calculations
were actually carried out for the case of magnetic
dipoles, but the results can be applied to electric dipoles
provided one keeps in mind that in the latter case there
is no analog of the demagnetizing field since the di-
electric material is always assumed to be between the
plates of a capacitor.® Thus, the applicable results are
those for long thin needles of magnetic material. A

3Y. Takagi, Phys. Rev. 85, 315 (1952).

4 U. Kuhn and F. Liity, Solid State Commun. 2, 281 (1964).

5 J. A. Sauer, Phys. Rev. 57, 142 (1940).

6 For further discussion of this point as well as a good general
introduction to dielectric properties see C. Kittel, Introduction to
Solid State Physics (John Wiley & Sons, Inc., New York, 1956),
2nd ed., Chap. 7.
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number of intuitively chosen lattices at zero tempera-
ture were considered and the interaction energy was
calculated. It was concluded that for a simple cubic
lattice an antiferroelectric arrangement gives the lowest
energy, but for a face-centered or body-centered lattice
a ferroelectric arrangement gives the lowest energy.

A more powerful method for computing the inter-
action energy of any dipole lattice at zero temperature
was introduced by Luttinger and Tisza’; their results
substantiated the conclusions reached by Sauer.

The calculations of Takagi® have been referred to
already. They deal with a simple cubic lattice of freely
rotating dipoles which contains, in addition, a polar-
izable ion at each body site. The temperature is not
assumed to be zero. These calculations are not exact,
however. A two sublattice model is used in order to
allow for the possibility of an antiferroelectric array,
and the field acting on a dipole at a particular site is
calculated by supposing that every other dipole has
just the average orientation taken over the specified
lattice to which it belongs. With this simplification, it
was possible to show that as long as the polarizability
of the central ion is below a certain value, the lattice
becomes antiferroelectric below a critical temperature,
a result consistent with the results of Refs. 5 and 7.
However, if the polarizability of the central ions is
larger, the lattice becomes ferroelectric.

A different approach to the problem of dipoles on a
lattice at a finite temperature was taken by Lax® who
employed the spherical model.® It was concluded that
a cubic lattice of permanent dipoles should undergo an
antiferroelectric transition, a result consistent with
those described above. Toupin and Lax? have also
applied the spherical model to the case of a lattice of
dipoles which are polarizable in addition to having a
permanent moment.

If one turns now to the situation of experimental
interest, i.e., dipoles on random-lattice sites in a polar-
izable medium, one notes that it seems quite possible
that an exact theory would show that the state of lowest
energy of a random array would be ferroelectric at zero
temperature even if the polarizability of the medium
were zero. The fact that the polarizability of the medium
is not zero makes it more likely that an exact theory
would predict a transition to a ferroelectric state at
some critical temperature, and this is in fact the most
natural explanation of the experimental results.

In view of the difficulties that arise when one
attempts a rigorous analysis of the problem, one is
naturally led to consider the possibilities of the simplest
method for calculating the dielectric properties of
condensed materials, i.e., the method of the ‘local
field.” In materials that have at least cubic symmetry,®

7 J. M. Luttinger and L. Tisza, Phys. Rev. 70, 954 (1946).
8 M. Lax, J. Chem. Phys. 20, 1351 (1952).
(;;1;.) H. Berlin and J. L. Thomsen, J. Chem. Phys. 20, 1368
952).
W R. A. Toupin and M. Lax, J. Chem. Phys. 27, 458 (1957).
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one simply considers a typical ion and calculates the
electric field acting on it with the assumption that the
rest of the material may be considered to be homo-
geneous. For nonpolar materials this method leads in
the well-known way to the local field of Lorentz and to
the Clausius-Mossotti (or Lorenz-Lorentz) equation
for the dielectric constant. The derivation of the
Lorentz local field depends on the fact that all induced
dipoles are oriented parallel to each other, a point which
is made more explicitly in the argument leading to
Eq. (9) of the next section. Accordingly, the Clausius-
Mossotti equation does not apply to materials con-
taining permanent dipoles.* This point was recognized
by Onsager'? who proceeded to develop the first quali-
tatively successful theory of polar liquids.

The principal shortcoming of the Onsager theory,?
and one which is of particular importance if one wishes
to apply it to solids, is that it takes no account of the
short-range forces between polar molecules. However,
the present paper is concerned only with solids con-
taining polar ions as widely separated impurities so
that only the long-range dipole-dipole interactions are
important. There are, to be sure, short-range inter-
actions between polar and nonpolar ions but, following
the work of Kuhn and Liity,* one may hope that these
forces are adequately taken into account by treating
them as steric hindrances which restrict the orientation
of the dipoles to certain directions in the lattice.

The original Onsager model predicted a dielectric
constant increasing continuously as the temperature is
lowered ; the theory did not predict the existence of a
state of spontaneous polarization at any temperature.
However, Pirenne!* pointed out that this result arose
only because it was assumed from the beginning that
the polarization in the material was proportional to the
externally applied field. Pirenne showed that if the
possibility of spontaneous polarization was considered
in setting up the equations for the model, then, for an
ensemble of freely rotating permanent dipoles, the
Onsager approximation did, in fact, predict the
occurrence of a first-order phase transition to a ferro-
electric state at a Curie point 7', given by

RT./Nw=20.31, (1)

where &V is the number of permanent dipoles of moment
u per cm®.

1 This invalidates the derivation of the dipole moment for
(OIH)‘ in KCI contained in Ref. 4. See Sec. III for the corrected
value.

121. Onsager, J. Am. Chem. Soc. 58, 1486 (1936).

13 For discussions of the Onsager theory and subsequent
elaborations see, for instance, A. R. Von Hippel, Dielectrics and
Waves (John Wiley & Sons, Inc., New York, 1954), pp. 178 and
266; R. H. Cole, in Progress in Dielectrics, edited by J. B. Birks
and J. Hart (John Wiley & Sons, Inc., New York, 1961), Vol. 3,
p- 47; W. F. Brown, Jr., in Handbuch der Physik, edited by S.
Fliigge (Springer-Verlag, Berlin, 1956), Vol. 17, pp. 53-59; P. W.
Forsbergh, Jr., ibid., pp. 370-372; G. P. Mikhailov and L. L.
Burshtein, Usp. Fiz. Nauk 74, 3 (1961) [English transl.: Soviet
Phys.—Usp. 4, 389 (1961)].

14 J, Pirenne, Helv. Phys. Acta 22, 479 (1949).
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In the preliminary phases of the present work, the
author generalized the calculations of Pirenne in order
to investigate the effect of assuming that the dipoles are
polarizable in addition to having a permanent dipole
moment. This can be done by incorporating into the
theory a quantity e, which is defined as the dielectric
constant of the material which one would calculate
(from the Clausius-Mossotti equation) if all the perma-
nent moments were equal to zero. Pirenne’s calculations
were verified for e,=1. It was found that, for e,=4.3,
the Curie temperature was not changed and moreover
neither was the ratio Po(7)/Po(0), where Po(T) is the
spontaneous polarization at a temperature 7'<T'. For
the spontaneous polarization at absolute zero, the
generalized model yields

Po(0)=3%(em+2)Nu, )

showing the effect of the local fields due to the aligned
array in increasing the moment of each dipole. The
dielectric constant predicted by the model increases in
the manner calculated by Onsager as the temperature
is decreased down to 7'.. At this point it drops abruptly
to a value of about 1.8 €, and then decreases to reach
en at absolute zero. The nature of the effects due to
steric hindrances was also investigated by assuming
that each dipole can be oriented only along =x, =%y,
or -£z; this leads to the introduction of a modified
Langevin function as explained in the next section. This
modification has no effect on the high-temperature
behavior or on the spontaneous polarization at absolute
zero; the Curie temperature, however, is now given by

kT ./ Np?=0.62. 3)

The above results have been quoted without proof
because they are probably of interest only from a formal
point of view; as has already been pointed out, the
importance of short-range interactions in pure polar
solids makes the applicability of a local-field theory very
doubtful.’s A detailed account of the theory for polar
impurities in ionic crystals, where the physical assump-
tions make more sense, is given in the next section.

II. THEORETICAL ANALYSIS

One considers a material which consists of a mixture
of N molecules/cm?® having a permanent dipole moment
&, and N, molecules/cm? having a scalar polarizability
.

A block of this material of height d and essentially
infinite breadth and width is supposed to be between
the plates of a capacitor connected to the source of a
time-dependent voltage V(¢). The electric field E(f)
=TV (t)/d will be referred to as the applied field. The
voltage V(¢) is supposed to be changing sufficiently
slowly so that all relaxation times associated with
molecular motions within the material may be ignored.

15 For a discussion of phase transitions in the solid hydrogen
halides, see J. G. Powles, ;Trans. Faraday Soc.'48, 430 (1952).
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The macroscopic properties of the material are
characterized by a dielectric constant e and a spontane-
ous polarization P,. Both these quantities are, in
general, functions of the temperature 7I°; the spon-
taneous polarization may be zero. Using the method of
Onsager as modified by Pirenne, the local field F (1)
acting on a typical molecule of each kind is calculated
in terms of the applied field and the macroscopic
material parameters. This permits one to calculate the
average polarization of each kind of molecule and hence
the average polarization per unit volume which, in
turn, determines both e and Py. Clearly, one is dealing
here with a method of self-consistent parameters. The
procedure yields two simultaneous transcendental
equations which are readily solved numerically.

A. Induced Dipoles

In the Onsager model, a typical dipole is considered,
located at the center of an otherwise empty spherical
cavity whose radius ¢ is determined by the volume
associated with each polarizable molecule. Thus, one has

trgd= N, (4)

The material outside the cavity is considered to be
homogeneous. The local field F in the cavity is the sum
of two parts:

(i) The “cavity field” which is obtained by solving
the electrostatic problem for the empty cavity. De-
noting the induced polarization by P, one has

Fo=E+[4r/(2¢4+1) J(P+Po). ©®)

(ii) The “reaction field” which is the field in the
cavity due to the polarization in the surrounding
medium induced by a dipole of moment m at the cavity

center
Fr=(2/a*)((e—1)/(2¢+1))m=gm. (6)

The polarizability of the molecules is denoted by a, so
one has

m=qaF, (7
where

F=F¢+Fz. ®)

At this point one can make the connection with the
well-known local field of Lorentz. For a material which
contains no permanent dipoles, the average value of m
is clearly equal to m since all the induced dipoles point
in the same direction. Consequently, the macroscopic
polarization is equal to m/($w@®) and, assuming the
spontaneous polarization to be zero, one obtains

4r 8r(e—1)
F=E+ P+ ,
2¢+1  3(2¢+1)
=E+ (47/3)P, )

which is the usual result. One notes that it is valid only
in the absence of permanent dipoles.
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One now defines a quantity e» which is the dielectric
constant of the material which one would calculate if
one set all the permanent moments equal to zero; as a
consequence of (9), it is given by the Clausius-Mossotti
equation

(em—1)/(em™2)= (47/3)N ox. (10)

If one uses Egs. (5)-(8) together with the usual
relation for the induced polarization, 4rP= (e—1)E,
one obtains for the average dipole moment per unit

VOluIne
26‘*" | 0 ’

Pa=Naa(
One easily evaluates V,a and ag by means of Eqs. (4)
and (10), and obtains

3e
E+
2e+1

(Em_ 1)

oa=———(3eE+47Py).
dr(2etem)

(12)

In the absence of spontaneous polarization (Py=0) and
of permanent dipoles (e=en), Eq. (12) gives 4nP,
= (em—1)E as it should.

B. Permanent Dipoles

Just as in the case of the induced dipoles, one calcu-
lates the local field by considering a typical dipole of
permanent moment u at the center of an otherwise
empty spherical cavity. Equations (4), (5), and (6)
remain valid provided N, is replaced by N, but Eq. (7)
must be replaced by

m=uy. (13)
One has now to calculate the mean dipole moment.
Classically, the potential energy of a dipole of moment
u oriented at an angle 6 to the field F is given by

3eE  4rnP,
V=—F.u= —< + )u cosf—gu?. (14)
2¢+1 2e+1

It has been assumed here that if a spontaneous polariza-
tion exists it is oriented along the applied field. This is,
of course, not necessarily the case in a crystal for which
a preferred direction of spontaneous polarization exists,
unless the applied field is directed along this preferred
direction.

For freely rotating dipoles, Eq. (14) leads in the
usual way to a mean dipole moment

(BeE+-4wPo)u
A
(2e+1)ET
where L(x) is the Langevin function
L(x)=cothx—1/x. (16)

In a crystal, dipoles cannot generally rotate freely
because of steric hindrances. In a crystal of cubic
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Fic. 1. The Langevin function L(x) and the
modified function L,(x).

symmetry, it is in fact more reasonable to assume? that
a substitutional ionic dipole can be oriented only along
one of the (100) axes, i.e., along x, 4y, or 4=2z. The
applied field is supposed to be along the z axis so the
allowed values of cosf are 1, —1, 0, 0, 0, 0. This model
implies that, in Eq. (15), one should use a modified

Langevin function
e*—e " sinhx

ez+e—’”+4.— coshx-+2 '

Lo(x)= an

One notes that for <1, L.(x)=L(x)=2x/3. A plot of
L.(x) and L(x) is given in Fig. 1.
The dipole moment per unit volume is thus given by!®

(3eE+ 47rPo)p,]

e+ 1DET a8

Pis=N, 'ULCI:
C. Total Polarization and Dielectric Constant

The total polarization is found by adding Egs. (12)
and (18).

P=P,+Pq
(en—1)
=4qr———[3eE+4nPy ]
(2€+ 5m)
(3¢E+4mPo)u
+N/.LLC[———*~——:| . (19)
(2e+1)kT

One now considers the dielectric constant that one
would measure by using an infinitesimally small applied
field (the dielectric constant for finite applied fields will

16 Tt might be of interest to comment briefly on the validity of
the classical derivation leading to Eq. (18). It is well known [see,
for instance, J. H. Van Vleck, The Theory of Electric and Magnetic
Susceptibilities (Oxford University Press, New York, 1932),
Chap. 7] that for freely rotating dipoles the Langevin function
can also be obtained quantum mechanically provided that the
zero-field splitting between the ground and the first excited states
is less than 27 It is reasonable to assume that a similar result
holds for a dipole rotating in a potential of cubic symmetry. It has
been determined experimentally (see Ref. 1) that the zero-field
splitting is in fact less that 0.3°K so that quantum-mechanical
corrections to L.(x) should not be large at temperatures above
this value.
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Fic. 2. Differential dielectric constant for e, =1.0.

be considered in Sec. IT D). Thus, one has by definition
€= 1+4W(6P/(9E) E=0

=1+

3(em—1)e 127Npule 47 Pou
: ) ], eo
2¢eten  RT(2¢+1) 2e+1)ET
where M ,(x) is the derivative of L,(x),
M ,(x)= (142 coshx)/ (2-+coshx)?. (21)

It is convenient to introduce the dimensionless

variables _
T=kT/Nu2, (22)
P():Pou/kT. (23)

One thus obtains the following two simultaneous trans-
cendental equations for the unknown quantities e and
P,

2etem 4Py
Poe Lcli
T(2e+1) L2e41
3e(en—1) 127e 47 Py
- —— MC[ ]= 0.
2¢etem  T(2e4+1) 2e+1

One notes immediately that, since L,(0)=0 and
M .(0)=1, one possible solution of these equations is

Py=0, (26)
e
— =0.
T(2e+1)

]:0, (24)

(25)

e—1

(27)
2et+é€m

This is, in fact, the only possible solution at sufficiently
high temperatures. Equation (27) is a cubic equation
for ¢ and is essentially the Onsager solution for a
mixture of polar and nonpolar liquids. The slight
difference in appearance between Egs. (27) and (35) of
Ref. 12 arises because e» is defined as the dielectric
constant that would be calculated if all polar molecules
were replaced by void, whereas Onsager’s #? is defined
as the dielectric constant that would be calculated if all
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polar molecules were replaced by nonpolar molecules.
The inclusion of steric hindrances makes no difference
in this limit, since M ,(x) goes to the same limiting value
of % as the derivative of the Langevin function when «
goes to zero. In the high-temperature limit, the last
term in Eq. (24) may be dropped and the resulting
quadratic equation yields simply e=e, which is ex-
pected, since the permanent dipoles can make no
contribution to the dielectric constant at high tem-
peratures. In order to find an approximate solution
at somewhat lower temperatures, one may substitute
e=entA in Eq. (27) and solve to first order in A as-
suming that 7>>1. One obtains

ept+(121en2/ (14-26,)2T), T>>1.

At low temperatures, e becomes large and the second
and third terms of Eq. (27) become small compared to
the fourth term. In this limit, therefore,

/T, T«K1.

(28)

(29)

It is easy to show that, in general, Eq. (27) has only
one positive root and that e therefore varies smoothly
between the limits given by Egs. (28) and (29), pro-
vided that Py=0.

At low temperatures, one may anticipate that a
possible solution of Egs. (24) and (25) exists for which
Py>=0. In this case, one easily finds that as 7— 0,
(TYM ,(Py) — 0 and therefore Eq. (25) yields
T—0.

€ €m,

(30)

This is to be expected since at absolute zero the dipoles
become frozen in position and cannot contribute to the
dielectric constant. In the same limit, since L.(Po) — 1,
one finds from Eq. (24) that

Po— Pim=3en/ (2emt1))Ne,

For en=1, this result simply means that all the perma-
nent dipoles are lined up parallel to each other at
absolute zero. For e,>1, Eq. (31) shows that the
polarizable molecules also contribute to the spontaneous

T—0. (31)
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Fi1c. 3. Spontaneous polarization for ex=1.0.
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polarization—they are polarized by the local field due
to the permanent dipoles.

An exact solution of Egs. (24) and (25) may be
readily obtained by means of a suitable numerical
iterative procedure. The Newton-Raphson method!?
was found to be convenient; the equations were
programmed in FORTRAN for the RCA 601 computer
at RCA Laboratories.

The numerical calculations require an initial guess
for e and Py. It is convenient to carry out preliminary
computations using for guesses the known zero-tem-
perature results e=e, and Py=3en/(2en+1)T, in
order to find the approximate Curie temperature T
below which a nonzero P can exist. Then, by extrapo-
lating the calculated low-temperature values of e and
Py, one may obtain improved guesses in order to obtain
the precise value of T,. Some care is necessary, since
Py=0 is always a possible solution and if poor initial
guesses are put into the program the numerical iteration
may lead to this solution, or to a nonphysical solution
with €<0, even though the equations actually admit a
solution with Py>0 and e> em.

The results of computations for e,=1, i.e., a system
consisting only of permanent dipoles, are shown in
Figs. 2 and 3. In order to investigate the effect of steric
hindrances, calculations were also carried out for freely
rotating dipoles, i.e., using the usual Langevin function
instead of L.(x). In either case, one notes that e follows
the Onsager result, Eq. (27), for temperatures down
to a Curie temperature 7', at which point it drops
abruptly to a value only slightly larger than 1. The
effect of including steric hindrances in the calculation
is to increase T'. by roughly a factor of 2, a reasonable
result since if it is hard for the dipoles to rotate one
would expect to be able to freeze them into fixed
positions at a higher temperature. The spontaneous
polarization decreases only slightly from its saturation
value as the temperature is raised from 0°K to T, at

17 See, for instance, J. B. Scarborough, Numerical Mathematical
Analysis (Johns Hopkins Press, Baltimore, 1962), 5th ed.,

Chap. 10.
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which point it drops abruptly to zero. The result shown
in Fig. 3 for freely rotating dipoles was previously
obtained by Pirenne.*

The results of computations for e»=4.3, an approxi-
mate value for KCl at low temperatures, are shown in
Figs. 4 and 5. The results are qualitatively similar to
those for e.»=1 but the Curie point is lower by roughly
a factor of 3. This last result may be qualitatively
understood by noting that at the Curie temperature
the thermal energy of a typical dipole must be approxi-
mately equal to its potential energy in the field of the
other dipoles taking into account the screening effect
of the polarizable medium in which the dipoles are
embedded. Thus, one expects

ET 2N/ em, (32)

in agreement with the exact calculations.

D. Calculations for Finite Applied Fields

In the following, ¢(E,T) is used to denote the di-
electric constant which one would infer from a measure-
ment of the electric polarization resulting from the
application of a finite field E at a temperature 7. Thus,
one has by definition

P(T,E)—Po(T)

e(E,T)El+47r{——‘————} ’ (33)
E

which should be compared with Eq. (20). The method
of calculating Po(7") has already been given so that it
will now be considered simply as a known number. The
quantity P(T,E) is given by Eq. (19), it being now
understood that eis a function of E as well as 7. Thus,
Eq. (33) yields a transcendental equation for e(E,T).
It is convenient to introduce the dimensionless variable

E=Fu/kT, (34)
and Eq. (33) can now be written as
) 3e(em—1) 1 47P(2¢+1)
e—1— =
2eten | B(eten)
dr [ 3efi+4nP,
_—_—:Lcl: y '] =0. (35)
ET (2¢+1)

One notes that if, in Eq. (35), one assumes E to be small,
expands the modified Langevin function to first order
in , and uses Eq. (24), one obtains"again Eq. (25).
Equation (35) can be readily solved numerically by
means of the Newton-Raphson method.!” A convenient
initial guess for e(E,T) is €(0,T). Having found (&, T),
the dimensionless displacement vector D(E,T)=Du/kT
can be calculated from

DE,T)= e, T)E+4xP(T). (36)



A 1016

I ! T TTTT
0,99 -
€m=4.3
098 -
Po o097}~ =
2 - .
PMAX I'tc. 5. Spontane-
0ssl B ous polarization for
en=4.3.
095~ -
7 ¥
1 1 N O I B |
OO.I 2 4 6 8 10
KT/Np?

It should be recalled at this point that Egs. (35) and
(36) are based on the assumption that £ is parallel to
Po. If one wished to calculate hysteresis loops, one
would also have to carry out the computations for £
antiparallel to P, in which case one would simply
replace £ by —E.

Another quantity that is of interest is the dielectric
constant that one would measure by determining the
polarization induced by an infinitesimally small field
in the presence of a large bias field. This is the dielectric
constant that one would infer if, in an experiment of
the usual type in which one measures the resonant
frequency of a circuit containing a capacitor filled with
the material under study, one were to add a large dc
bias. Roughly speaking, ‘“large” means that E= Eu/kT
is comparable to unity. The dielectric constant deter-
mined in this way may be referred to as the “differential
dielectric constant at bias £’ and is given by

dacibes 37)
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The quantity de(#,T)/dE is readily evaluated using
Eq. (35), which gives a somewhat complicated but
straightforward expression for ess(#,7) in terms of
¢(£,T). In Fig. 4, results for eqits(B,T) are shown as a
function of 7, for several values of E. One notes that
the calculated effect of a bias such that K=1 is quite
small, whereas for E=4 one has almost complete
saturation, i.e.Ye=e, at all temperatures, indicating
that the dipoles ‘are almost completely aligned by the
dc bias so that they can contribute hardly at all to the
differential dielectric constant.

III. COMPARISON WITH EXPERIMENT

It is important to note, first of all, that the theory
developed in the present paper leads to a change in the
value of p to be inferred from the work of Kuhn and
Liity.* These authors assumed that the local field
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tending to orient a typical dipole was given by the
Lorentz result (e4-2)£/3. However, the theory de-
veloped in Sec. II B shows that one should use instead
the “cavity field” given by 3¢£/(2e-+1) ; the “reaction
field gu is always parallel to the dipole and hence, as
Onsager pointed out,'? it has no effect on the orientation.
As a result, one finds that for an (OH)~ dipole in KCI

p=2.93 Debye units. (38)

Some experimental results from Ref. 1 are shown in
Fig. 4, for comparison with the theoretical curve for
zero bias. The values of NV that were used were those
determined in Ref. 1 by fitting the results to a Clausius-
Mossotti formula at high temperatures; this procedure
is not quite correct, of course, but it turns out that one
gets essentially the same values by fitting the results to
the Onsager result, Eq. (27). It is to be noted that the
peak value of the oscillating field in all these experi-
ments was only 15 V/cm so that even at 7’=0.3°K, the
lowest temperature used, the peak oscillating field
corresponds to Eu/k7T=20.004. Thus the oscillating field
is essentially infinitesimal and Eq. (20) or (37) is
applicable.

The agreement between the theory and experiment
is evidently rather good down to k7/Nu?=1. The
discrepancy at lower temperatures can be readily under-
stood by recalling that the theory was based on the
implicit assumption that the (OH)~ ions are distributed
uniformly throughout the crystal. In fact, since the
distribution is random, localized regions in the crystal
will have concentrations higher or lower than the
average so that one would expect the sharp transition
predicted by the theory to be somewhat smeared out
in practice. To put it another way, below 27/Nu?=<1,
one presumably has randomly distributed, locally
ferroelectric regions in the crystal, and these regions
grow in size and number as the temperature is reduced.
This interpretation is in contradiction to the recent
suggestion of Brout!® that one has randomly distributed
locally antiferroelectric regions. Further work may be
desirable to determine which interpretation is correct,
although the argument given in the second paragraph
of Sec. I supports the ferroelectric interpretation.
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