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Effect of Correlation on the One-Electron Wave Function in Atoms*
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The effect of correlation on the wave function of a single electron in an atom is discussed in an approxi-
mation where the exact nonlocal mass operator for the electron is approximated by a Hartree-Fock-
Slater exchange potential plus a local static correlation potential. The correlation potential has been taken
from recent calculations by Hedin for the electron gas over a large range of densities. The effect of such a
correlation potential has been calculated in a few cases by numerical integration in first-order perturba-
tion theory, using the functions tabulated by Herman and Skillman as zero-order solutions. The results
show a small but distinct contraction of the radial wave functions and give non-negligible corrections to
certain single-particle properties such as one-electron energies and the contribution to the diamagnetic
susceptibility.

' 'N this paper we shall find the effect of a correlation
~ - potential taken from recent calculations of Hedin'
for the electron gas on the one-electron wave functions
of neon, argon, and krypton. We use as starting func-
tions those tabulated by Herman and Skillrnan, 2 and
shall confine ourselves to orbitals which are occupied in
the ground state of the atom. The methods of many-
body theory for extended systems have recently been
applied to problems in atomic structure. Kelly' and
Kelly and Sessler4 have recently investigated the cor-
relations in the ground state of atoms by such methods.
Methods closely related to the random-phase approxi-
mation have been used by Brandt and Lundqvist' and
Altick and Glassgold' for investigating the effect of
correlations on dipole spectra. Recently, an extensive
discussion of the one-electron problem in atoms, mole-
cules, and solids has been given by Hedin, ' using Geld-

theoretic methods. Hedin applies the theory to alkali
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' L. Hedin, Phys. Rev. (to be published).
'F. Herman and S. Skillman, Atomic Structure Calculations

(Prentice-Hall, Inc. , Englewood Cliffs, New Jersey, 1963).' H. P. Kelly, Phys. Rev. 131, 684 (1963); 136, 8896 (1964).
4 H. P, Kelly. and A. M. Sessler, Phys, Rev. 132, 2091 (1963).' W. Brandt and S. Lundqvist, Phys. Rev. 132, 2135 (1963).'P. L. Altick and A. E. Glassgold, Phys. Rev. 133, A632
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atoms with emphasis on the effect of core polarization
on the valence-electron spectrum.

The wave amplitude tb(x) and energy e of a single
electron bound in an atom are solutions of the eigen-
value equation

{e—jt(x) —V(x))p(x) — M(x,x',e)Q(x')tfx'=0, (1)

p(x')
V(x) = e' tfsx',

f
x—x'[

(3)

where p(x) is the electron density at x. The self-energy
operator 3f (x,x', e) contains the combined effects
of exchange and correlation. A series expansion in terms
of the unscreened Coulomb interaction gives as the
first term the Hartree-Pock exchange potential, and
the higher terms describe the effect of correlations in
the system.

To get an estimate of the effect, we neglect the energy

for a discrete energy value e. h(x) is the one-electron
part of the Hamiltonian

jt (x)= —(pts/2m) V' (Ze'/
~

—x
~ ) i

and V(x) is the Hartree potential
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Fro. 1. Correlation potential (in Ry); ————from Carr and
Maradudin (Ref. 8); from Hedin (Ref. 1).

Fxo. 3. Radial density of 3p electrons in Ar. P3~2(r)dr= i..

dependence in M and further introduce a loca].
approximation

M(x,x', e) ={V, ,q(x)+V, (x))8(x—x'), (4)

where the exchange is approximated by a local potential,
e.g., in the form used in Ref. 2. The correlation potential
V, (x) can be estimated from the various interpolation
formulas given for the energy density E,(r,) of an elec-
tron gas, where r, measures the volume per electron and
is related to the electron density p through the formula

r, = (3/4s. )'~'p '~'. The correlation potentia1 is then
found to be7

V, (r,) =E,(r,) sr, (dE, (r,)/d—r, )—. (5)
Hedin has calculated the self-energy operator to lowest
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FIG. 2. Radial density of 2p electrons in Ne. Pz„~(r)dr=1.

FIG. 4. Radial density of 4p electrons in Kr. P4p r)dr = i.

'I. Seitz, , The 3Eodern Theory of Solids (McGraw-Hill Book
Company, Inc. , New York, 1940), Chap. IX.
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TABLE I. The diamagnetic susceptibility x
(in units of 10 cgs units).

TAnLE II. One-electron energies (in Ry).

2p Ne 3p Ar 4p Kr

Calculated
Observed

—6.9—6.7

Ar

—18.6—18.1
—28.4—28.0

Herman-Skillman, &Hs
First-order correction, ~1

Total energy, ~Hs+e&
Experimental

—1.471—0.181—1.652—1.587

—1.065—0.138—1.203—1.163

—0.952—0.155—1.107—1.045

order in the screened dynamic interaction and we have
calculated the corresponding V, (r,) in the interval
r, &~6 from his results. Around and beyond r, =6 the
results in Hedin's calculation have probably not much
significance and we just made a graphical extrapolation
in order to connect smoothly to the low-density results.
In Fig. 1 we have compared the correlation potential
thus obtained with that obtained from the recent inter-
polation formula for the energy density E(r,) given by
Carr and Maradudin. ' We feel no strong preference for
one or the other, and theyboth seem to serve the purpose
equally well to illustrate the effects we are discussing.
The potential based on Hedin's work was used in our
calculations, and the potential used by Herman and
Skillman was chosen to represent the remaining po-
tential. This choice was made in order to use their wave
functions as the zeroth-order approximation in a per-
turbation approach.

With the approximations just discussed, implying
that both exchange and correlation are represented by
a local and static potential, the problem is reduced to
solving the ordinary differential equations for the
radial motion of the electrons, which are of the form

{—(d'/dr') + (l (l+ 1)/r')+ VHs (r)+ V, (r) )
XP.&(r) = e.&P.i(r), (6)

where VHS is the potential used by Herman and
Skillman. In their calculations J'P„i (r)dr=1. Writing
e„i——e„i'+e„i' and P„,(r) =P„i'(r)+P i'(r), where P„i'
and e„,' satisfy the equation with no correlation po-
tential, thus

(—(d'/«')+ (l (~+1)/r')+ VHs(r))
)&P is(r) = e„isP~is(r), (7)

we obtain the first-order change in the wave function
by solving

( (ds/drs) —(1(1+1)/ys) —Vii s (r) )
&&P i'(r) = (e„i'—U,. (r))P„i'(r), (g)

where ei ——J' V. (r)p'(r)d'r is the first-order correction to
the single-particle energy.

' Q'. J. Carr and A. A. Maradudin, Phys. Rev. 133,A371 (1964).

Equation (8) was solved numerically for p electrons
in the outer shell of Ne, Ar, and Kr. The resulting
change in the density, as measured by P„~'(r), is illus-
trated in Figs. 2—4. The results show a decrease in the
amplitude and density in the outer region of the atom
and an increase as well as a slight sharpening of the
principal peak for the p shells. Quantitatively, the
decrease in (r') relative to the values calculated from
the Herman-Skillman tables amount to 3.2% for Ne,
3.5% for Ar, and 3.4% for Kr. The change in the wave
function is small but is significant in many cases where
high accuracy is essential. Assuming the same con-
tractions for the outer s electrons and that the eRect of
correlation on the inner shells can be neglected, we
obtain for the molar diamagnetic susceptibility X,& the
results given in Table I, which are in close agreement
with the experimental values.

The first-order shifts eq in the single-particle energies
are given in Table II, together with the Herrnan-
Skillman values 6Hg and the total energy obtained from
ionization potentials. The first-order correction is of
appreciable magnitude, but is seen to overcorrect the
Herman-Skillman values, giving, however, a better
agreement with the experimental values. Part of the
overcorrection can be traced to the fact that the ex-
change calculated for the electron gas turns out to be
more negative than the modified Slater exchange used
in Herman and Skillman's calculations. The remaining
discrepancies must be attributed to the inaccuracy of a
local approximation and the neglect of the 6nite gap in
the spectrum for the electrons in the approximation
for V, . Such effects are outside the scope of this
discussion.

We conclude that the self-energy effects on the motion
of a single electron seem to be of sufhcient magnitude
to deserve attention. Our estimates show a considerable
effect on the single-particle energies and an effect on
the single-particle wave function, which although
smaller, is of significance for those properties where
accurate one-electron amplitudes are needed.

We are indebted to Dr. L. Hedin for stimulating dis-
cussions and to S. Bergstrom for carrying out the nu-
merical calculations.


