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The S matrix for photon and graviton processes is studied in perturbation theory, under the restriction
that the only creation and annihilation operators for massless particles of spin j allowed in the interaction
are those for the physical states with helicity = 7. The most general covariant fields that can be constructed
from such operators cannot represent real photon and graviton interactions, because they give amplitudes
for emission or absorption of massless particles which vanish as 7 for momentum p — 0. In order to obtain
long-range forces it is necessary to introduce noncovariant “potentials” in the interaction, and the Lorentz
invariance of the S matrix requires that these potentials be coupled to conserved tensor currents, and also
that there appear in the interaction direct current-current couplings, like the Coulomb interaction. We then
find that the potentials for j=1 and j=2 must inevitably satisfy Maxwell’s and Einstein's equations in the
Heisenberg representation. We also show that although the existence of magnetic monopoles is consistent with
parity and time-reversal invariance [provided that P and T are defined to take a monopole into its anti-
particle], it is nevertheless impossible to construct a Lorentz-invariant S matrix for magnetic monopoles and

charges in perturbation theory.

I. INTRODUCTION

HE classical theories of electromagnetism and
gravitation were developed long before physicists
discovered quantum mechanics or the .S matrix. For
this reason, the modern field theorist is generally con-
tent to take Maxwell’s and Einstein’s equations for
granted as the starting point of the quantum theory of
photons and gravitons.

However, the logical structure of physics is often
antiparallel to its historical development. For the
purposes of this article, the reader is requested to forget
all he knows of electrodynamics and general relativity,
and instead to take as his starting point the Lorentz
invariance of the .S matrix calculated by Feynman-
Dyson perturbation theory. That is, we assume the
S matrix to be given by

S=i; (—?nfw dty- - dt, T{H'(t)- - -H'(tx)} (1.1)

with H'(t) the interaction Hamiltonian in the inter-
action representation

H'(t)=exp(iH't)H' exp(—iH"t), (1.2)

where H’ is the free-particle Hamiltonian and H’ the
interaction. The operator H’(f) is some function of the
creation and annihilation operators of free particles, and
we know that these operators transform according to the
various familiar representations of the inhomogeneous
Lorentz group.! Among these representations are those
characterized by mass m=0 and spin j=1 or 2, and we
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accord these the names of photon and graviton, with no
implication intended that these particles necessarily
have anything to do with gauge invariance or geometry.
Our fundamental requirement on the form of H'(?) is
that (1.1) must yield a Lorentz-invariant .S matrix.

The power of this requirement is only now beginning
to be appreciated. There are strong indications,?3
(though as yet no careful proof) that it yields all the
results usually associated with local field theories, in-
cluding the existence of antiparticles, crossing sym-
metry, spin and statistics, CPT, the Feynman rules,
etc. The purpose of this article is to explore the con-
sequences of Lorentz invariance in perturbation theory,
for the special case of zero mass and integer spin.

We shall find within this perturbative dynamical
framework that Maxwell’s theory and Einstein’s theory
are essentially the unique Loreniz-invariant theories of
massless particles with spin j=1 and j=2. By “essen-
tially” we mean only that the conserved current g*and
g* to which the photon and graviton are coupled need
not be precisely equal to the electric charge current J*
and the stress-energy tensor *, since we can always add
Pauli-type currents which vanish in the limits of zero
momentum transfer, or of long range. In the same sense,
we shall also find that there are no Lorentz-invariant
theories of massless particles with j=3, 4 etc., that is, no
theories which yield an inverse-square-law macroscopic
force.

These conclusions have already been anticipated in an
earlier article on pure S-matrix theory.* We showed

2 For the case m##0, see S. Weinberg, Phys. Rev. 133, B1318
(1964).

3gfr the case m=0, see S. Weinberg, Phys. Rev. 134, B882
(1964).

¢S, Weinberg, Phys. Rev. 135, B1049 (1964). See also D.
Zwanziger, Phys. Rev. 133, B1036 (1964). For a preliminary
account of this work and that of the present article, see S. Wein-
berg, Phys. Letters 9, 357 (1964). A unified treatment of Refs.
2-4 will be published in the lecture notes of the 1964 Brandeis
University Summer School on theoretical physics.
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there that the Lorentz invariance of the S matrix and a
few elementary ideas about pole structure imply that
charge is conserved and gravitational mass is equal to
inertial mass, the charge and gravitational mass of a
particle being defined as its coupling constants for
emission of soft photons or gravitons. We also showed
that the analogous coupling constants for j>3 must
vanish. But by using perturbation theory we are able to
go much further here, and will in fact derive both the
form of the interaction-representation Hamiltonian,
and the Maxwell and Einstein field equations in the
Heisenberg representation.

We start in Sec. II with a discussion of the (2j41)-
component free fields for massless particles of integer
spin j. These fields transform according to the (7,0) or
(0,7) representations of the homogeneous Lorentz group,
and correspond for j=1 and j=2 to the left- or right-
handed parts of the Maxwell field strength tensor F»
and the Riemann-Christoffel curvature tensor R*M,
They have already been treated in detail in Ref. 3 for
general spin, but we concentrate here on the tensor
notation appropriate for integer spin, and we also show
that any covariant free field may be constructed as
linear combinations of these simple fields and their
derivatives.

However, these simple tensor fields cannot by them-
selves be used to construct the interaction H'(¢), because
the coefficients of the operators for creation or annihila-
tion of particles of momentum p and spin j would
vanish as p for p — 0, in contradiction with the known
existence of inverse-square-law forces. We are therefore
forced to turn from these tensor fields to the potentials
A#-#i(y), from which they can be derived by taking a
“curl” on each index. But we show in Sec. III that the
potentials are not tensor fields; indeed, they cannot be,
for we know from a very general theorem?® that no
symmetric tensor field or rank j can be constructed from
the creation and annihilation operators of massless
particles of spin j. It is for this reason that some field
theorists® have been led to introduce fictitious photons
and gravitons of helicity other than =7, as well as the
indefinite metric that must accompany them.

Preferring to avoid such unphysical monstrosities, we
must ask now what sort of coupling we can give our
nontensor potentials without losing the Lorentz invari-
ance of the .S matrix? And it is here that the failure of
manifest covariance turns out to be a blessing in disguise.
In Sec. IV we remark that a Lorentz transformation will
induce on 4#1**"#i(x) a combined tensor and gauge trans-
formation, so the only interactions allowed by Loreniz
invariance are those satisfying gauge invariance, i.e., those
in which the potential is coupled to a conserved current.

5 For photons, see S. N. Gupta, Proc. Phys. Soc. 63, 681 (1950);
64, 850 (1951); K. Bleuler, Helv. Phys. Acta 23, 567 (1950);
K. Bleuler and W. Heitler, Progr. Theoret. Phys. (Kyoto) 5, 600
(1950). For gravitons, see S. N. Gupta, in Recent Developments in
General Relativity (Pergamon Press, New York, 1962), p. 251, and
other references quoted therein.
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For example, the direct photon coupling (4, 4#)*is
forbidden, not only by gauge invariance (which we do
not assume) but also by Lorentz invariance, because
A,(x) is not a four-vector. Actually, we show in Sec. V
that even gauge invariance is not sufficient for the
Lorentz invariance of the S matrix; as is always the case
for spins j=1, we must cancel a noncovariant but
temporally local part of the propagator by adding an
extra noncovariant interaction to H’(¢), which for j=1
is the familiar Coulomb interaction, and for j=2 we
christen the Newton interaction. In Appendix B we
present a complete proof® that coupling A#(x) to a con-
served current and adding a Coulomb term to H'(¢) does
in fact make the .S matrix Lorentz-invariant for j=1.
(The propagators for photons and gravitons are calcu-
lated in Appendix A.)

Having deduced the form of H'(¢), we then pass over
to the Heisenberg representation, taking care to intro-
duce extra potential components (4° for j=1; 4%, 4%,
and A4¢; for j=2) to represent the effects of the direct
Coulomb and Newton interactions. In Sec. VI we show
that the Heisenberg representation A#(x) satisfies the
Maxwell equations in Coulomb gauge, and in Sec. VII
we show that the Heisenberg representation A(x)
satisfies the Einstein field equations, in a gauge too
ugly to deserve a name.

In Sec. VIII we touch briefly on an old problem: Is it
possible to construct a consistent theory of magnetic
monopoles? Within the dynamical framework adopted
here, the answer is definitely no, because the propagator
for a photon linking a charge and a monopole contains
noncovariant parts which cannot be cancelled by adding
direct terms like the Coulomb interaction to H’(¢). The
behavior of monopoles under P and 7 is also discussed.

Although our treatment of electrodynamics is essen-
tially complete, we are not attempting in this article to
solve the really difficult problems of quantizing gravita-
tion. In particular, we do not exhibit the conserved
energy momentum tensor 6+, to which 4# is coupled,
as an explicit function of the gravitation creation and
annihilation operators, and we therefore cannot com-
plete the proof that Einstein’s equations are sufficient
and necessary for Lorentz invariance of the quantized
theory. Needless to say, we do not touch upon the
ultraviolet-divergence problem either. It is intended
that the example of our treatment of photons, together
with the beginning made here with gravitons, will serve
as the basis for future work on the hard problems of
quantum-gravitational theory.

Before setting to work, it may be instructive to com-
pare our development with that of other authors who
have also tried to derive electrodynamics or general
relativity from first principles. Three different previous
approaches may be distinguished.

6 A similar result was obtained using a different approach, by
J. Schwinger, Nuovo Cimento 30, 278 (1963).
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1. Extended Gauge Invariance

We may require the Lagrangian to be invariant under
the extended gauge transformation

Y(x) — '@y (x)

[where g is the charge destroyed by ¢(x) and ®(x) is an
arbitrary c-number function of x#]. Then derivatives of
¥(x) must always occur in the form

(%) —igA w(x) ()

the field 4 ,(x) undergoing the gauge transformation

(1.3)

(1.4)

Au(x) = A (x)+0,8(x). (1.5)
Therefore,
aL(x) dL(x)
=2 —ig——Y(%) (1.6)

94 ”(x) fields 0(6,,¢(x))

and this is the conserved electric current J*(x). Re-
quiring the free field Lagrangian of 4,(x) to be gauge-
invariant then yields Maxwell’s equations, with (1.6) as
source. A similar approach has been used to derive
Einstein’s equations.”

The only criticism I can offer to this textbook
approach is that no one would ever have dreamed of
extended gauge invariance if he did not already know
Maxwell’s theory. In particular, extended gauge in-
variance has found no application to the strong or weak
interactions, though attempts have not been lacking. In
our approach (1.6) is a consequence of Lorentz invari-
ance, and this implies that 4,(x) enters in £(x) only
in the combination (1.4), so that invariance under (1.3)
and (1.5) appears as an incidental result rather than a
mysterious postulate.

2. Geometrization

Einstein’s theory rests on the identification of the
gravitational field with the metric tensor of Riemannian
geometry. Attempts have also been made to include
electrodynamics in this geometric approach. The criti-
cism hereis, again, that the weak and strong interactions
seem to have no more to do with Riemannian geometry
than with extended gauge invariance. In our approach
the geometric interpretation of the gravitational field
arises as an incidental consequence of its coupling to the
energy-momentum tensor, though we shall not go into
this here.

3. Classical Fields with Definite Spin

A number of attempts® have been made to derive
Mazxwell’s and/or Einstein’s equations by imposing on

7R. Utiyama, Phys. Rev. 101, 1597 (1956), and T. W. B.
Kibble, J. Math. Phys. 2, 212 (1961).

8W. E. Thirring, Ann. Phys. (N.Y.) 16, 96 (1961); V. L
Ogievetsky and I. V. Polubarinov, Ann. Phys. (N. Y.) 25, 358
(1963). For earlier work on similar lines see M. Fierz and W.
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classical vector or tensor fields the requirement that
they correspond to definite spins, j=1 or j=2. In
criticism of these articles we may say first that they
generally seem to be based on specific Lagrangians, and
secondly, that there does not seem to be much point in
defining the spin of a field without being able to tie the
definition to the physically relevant representations of
the inhomogeneous Lorentz group, i.e., the one-particle
states. In our work everything rests on the known trans-
formation properties of the operators which destroy and
create physical particles, and of course we make no use
of the Lagrangian formalism.

II. THE COVARIANT FIELDS

In this section we shall show that the most general
free field for a massless particle of integer helicity = j
may be constructed from the fundamental field

e = e [ rp(a] )

X [p*1es”(p)— p*er(p) 1X - - -
X [prie,’i(p)— priect(p)]

X[a(p, £j)e?=+b*(p, Fe#=], (2.1)

by taking direct sums of F, and/or its derivatives. In
Eq. (2.1), a(p,\) and b(p,\) are the annihilation opera-
tors for a massless particle and antiparticle of mo-
mentum p and helicity \; if the particle is its own anti-
particle we of course set a(p,\)=>b(p,\). The ‘“‘polariza-
tion vectors” ey #(p) are defined in Ref. 4, as

e*(p)=R¥(P)ey’
6._;:1= 1/\/2 s 6i2= :l:i/\/z y 65:3: 6i0= 0, (23)

and R#,(p) is the pure rotation that takes the z axis into
the direction of p. By a ‘“‘general free field”’” we mean here
any linear combination ¥.(x) of the a(p,\) and d*(p,\),
such that:

(1) Under an arbitrary Lorentz transformation
x#— A*x’+a* the field transforms according to some
representation D[A] of the homogeneous Lorentz group

ULAaWn(2) U [A,0]=2 m Dun[ A7 Wom(Ax+a). (2.4)

(2) The field commutes with its adjoint at space-like
separations

[Yn(®)¥m'(y)]=0 for (x—y)?>0. (2.5)
Our metric has signature + + + —. (Fields satisfying

(2.2)
where

Pauli, Proc. Roy. Soc. (London) A173, 211 (1939), and M. Fierz,
Helv. Phys. Acta 12, 3 (1939). One sometimes encounters a very
simple version of such arguments, to the effect that the current
J» must obviously be conserved if we define it as Js= —3,F*, But
this does not say that J* is the same as the current gr=—35H'/54,
to which 4, is coupled in the interaction Hamiltonian. In fact,
we will see explicitly at the end of Sec. VI that if g* is not con-
served than J# is not equal to g».
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these two conditions can be coupled together to form a
causal scalar Hamiltonian density, yielding a Lorentz-
invariant S matrix.)

In order to show that all such free fields may be
derived from (2.1), we shall pursue the following line
of argument:

(A) We first show that F.(x) are themselves fields,
by proving that they are tensors.

(B) We then study the algebraic properties of F.(x),
and show that they have at most (25-+1) linearly inde-
pendent components.

(C) We then use the results of (A) and (B) to show
that F.(x) and F_(x) are just the simple fields X,(x)
and ¢.(x) introduced in Ref. 3.

(D) We finally remark that any irreducible free field
may be obtained by differentiating these simple fields a
suitable number of times.

a. Tensor Behavior of F.(x)

The behavior of the polarization vectors e, *(p) under
an arbitrary Lorentz transformation A#, was shown in
Appendix A of Ref. 4 to be

{A—p*A,%/ | p| }es’(Ap) = exp[£iO(p,A) Je *(p) (2.6)

with © an angle whose precise definition need not con-
cern us here. Furthermore, the annihilation operator
a(p,\) for a massless particle of helicity A and mo-
mentum p was shown in Ref. 3 to obey the transforma-
tion law

UlAJa(p MU [A]
=(|Ap|/[p])"/* exp[iNO(p,A) Ja(Ap,\) (2.7)

with © the same angle as in (2.6). The creation operator
b*(p, —\) transforms like a(p,\). Using (2.6) and (2.7)
in (2.1) shows instantly that F.(x) are tensors,
U(A,d)Fi[“y"] . '[Mi”i](x) U_II:A,CL]

=AM A -A,,’."fA,,,-"iFi["l’“]"""”“(Ax-l— a). (2.8)
The causal character of F.(x) can be deduced directly

from the fact that a(p, &=J) exp(ip-x) and d*(p, F7)
Xexp(—ip-x) enter with equal coefficients in (2.1).

b. Algebraic Properties of F.(x)

It follows from (2.2) and (2.3) that the polarization
vectors e *(p) have the algebraic properties

puest(p)=0, (2.9)
exu(p)es*(p)=0, (2.10)
PP esy(D) =TFi[ pres’(p)—pres*(p)], (2.11)

where e##7 is the totally antisymmetric tensor with
"128=1 [We prefer to use a four-vector notation, even
though e,°(p)=0.]

Inspection of (2.1) and (2.9)—(2.11) shows that F.(x)
obeys the algebraic conditions:
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(1) Symmetry. F 4(x) are symmetric under interchange
of any two index pairs [um», ] <> [uevs ).
(%) Antisymmeiry. F.o(x) are antisymmetric under
interchanges u, <> v, within any one index pair:

Fylowd = _F e (2.12)

(#42) Duality. F4(x) and F_(x) are, respectively, self-
dual or anti-self-dual with respect to each index pair

Cuwr]:

eWEE Ly Bl = TR 4R Witk - (213)

(tv) Tracelessness. The complete contraction of any
pair of indices [u.r ], [usvs ] gives zero:

Fm I R C Al COISEIR (2.14)

It is also true that any single trace vanishes:

gumgFi (w1l (paval + ¢« — 0

but this follows from (7)—(4v), and will therefore not be
listed as an independent condition. Conditions (7) and
(iv) are of course empty for j=1.

These four conditions imply that the F.(x) each have
at most 2j-+1 independent components. Condition (47)
lowers the number of independent values taken by each
index pair [u.w,] from 16 to 6, and (#i5) lowers it further
to 3, so under (z), (i), and (43z) alone the number of
independent components would be the same as for a
symmetric tensor of rank j in three dimensions, i.e.,

it .
wi=("7 )16+,
But condition (4v) imposes N;_; further constraints, so

the net number of independent components is at most
Nj—Nj2=2j+1.

c. Identification of F,(x)

In Sec. IIT of Ref. 3, we showed that the only free
fields which can be formed out of the operators

a(p, )’ =+b*(p, Fj)e*"*

must transform under the homogeneous Lorentz group
as a direct sum of those (24-1)(2B+1)-dimensional

irreducible representations (4,B) with
B—A=+j. (2.15)

Indeed, the irreducible fields are determined uniquely
by the representation (4,B) under which they trans-
form, as

ostn(s)= 2m) [ ap(alplyasn-u

X Da,oa[R($)1Ds s ®[R(P)]

XLa(p, =) =+b*(p, Fj)e~=], (2.16)
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where DW[R(p)] is the usual (2J+41)-dimensional
unitary representation of the rotation R($) which takes
the z axis into the direction of p, and the indices ¢ and &
run by unit steps from —A4 to +4 and —B to +B,
respectively. [ These remarks apply for half-integer j as
well as integer j.]

We have learned from Secs. IIa and b above that
F(x) transform according to some reducible or irre-
ducible representation of the homogeneous Lorentz
group, with dimensionality at most 274 1. But of the
irreducible representations (4,B) satisfying (2.15), the
ones with the smallest dimensionality are the 2j41-
dimensional representations (7,0) for helicity — j, and
(0,5) for helicity +j. Hence F_(x) and F(x) must
transform purely according to the (7,0) and (0,7) repre-
sentations, and since the representation uniquely deter-
mines the field they must be, respectively, just the
(25+1)-component fields ¢,(x) and X,(x) introduced in
Ref. 3. That is, the components of F_[#1-**(x) and
Fylreid--+(x) are linear combinations of those of ¢,(x)
and X,(x), and vice versa. [The fields ¢,(x) and Xs(x)
can be obtained from the general expression (2.16) by
setting B=0 or 4=0.]

d. Derivation of General Fields from F. (x)

Let us examine the Lorentz transformation properties
of the 2Jth derivatives (J integer or half-integer)

Oy + - Ong Py lmrrtl =~ luivil (i), (2.17)

This object is a symmetric traceless tensor with respect
to the N indices, so it transforms according to the
representation

F_: (JNQG0)=G+T, N@---@(|i=JT|, 7). (2.19)

The only terms in these Clebsch-Gordan series that
satisfy (2.15) are the first, so (2.17) transforms accord-
ing to the representations (J, j+J) for Fy and (j+J, J)
for F_. By letting J run over all integers and half-
integers we can construct any representation (4,B)
satisfying (2.15), so any free field can be built up as
direct sums of (2.17). [The only possible flaw in this
argument would arise if one of the (J, j+J) or (j4J, J)
terms vanished, but then (2.17) would vanish, and this
is clearly impossible. ]

Incidentally, the same method of proof applies for
m>%0, to show that the most general (4,B) field can be
obtained by projecting out the appropriate part of

VERE aMB‘PF(x)
or
VERE: a)\uxv(x) ’

where ¢,(x) and X,(x) are the (2j+1)-component free
fields constructed for massive particles in Ref. 2. [In
this case the (4,B) part cannot vanish because ¢q(x)
and X,(x) cannot obey any homogeneous field equations. ]
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In contrast with the massive particle case, the mass-
less free fields F(x) obey homogeneous field equations
which just express the absence of those terms in (2.18)
and (2.19) which do not satisfy (2.15). The simplest such
equation may be deduced directly from (2.1) and (2.9):

9y F il =0, (2.20)
For instance, for j=1 the algebraic properties noted
under Sec. IIb let us write
F lil= eijn( E*==1B*),
F ¥ =4 4(EF4iB"),
s0 (2.20) gives
a
v X[E+iB]==:—{E+iB],
at

v -[E+iB]=0,
or
VXE=—0B/ot, VXB=09E/ot,
v-E=0, Vv-B=0,

justifying the identification of E and B with the free
electric and magnetic fields. A similar argument allows
us to identify the five independent components of
F W1l with the left- or right-handed parts of the
source-free Riemann-Christoffel tensor.

It should perhaps be stressed that up to this point we
have done little but put the work of Ref. 3 into tensor
notation.

III. POTENTIALS

After having shown that any free field can be con-
structed from F,(x) and its derivatives, we might feel
justified in trying to construct the interaction Hamil-
tonians for photons and gravitons out of F.[*! and
F W Byt this does not work. Inspection of (2.1)
shows that the amplitude for emitting or absorbing a
massless particle of spin j by a field F.(x) will vanish
like p#1/2 for momentum p — 0. Hence an interaction
built out of Fy(x) could never give rise to the phe-
nomena most closely associated with electromagnetism
and gravitation, ie., long-range forces and infrared
divergences.® [Using other free fields would be even
worse; we can see from (2.16) that the amplitudes
yielded by a field of type (4,B) would vanish as pA+8-1/2
for p— 0, and (2.15) gives A4 B=j. This is of course
because such fields can be written as the 24 th derivative
of F.(x) or the 2Bth derivative of F_(x).]

Instead of yielding to despair at this point, let us
ignore the results of Sec. II for a moment, and try to
strip away the objectionable factor of p7 in F.(x), by
writing these fields as jth derivatives of other objects.
We note by inspection of Eq. (2.1) that the F.(x) can

9 By “infrared divergence”” here we mean that the amplitude for
internal bremsstrahlung of a soft photon or graviton is dominated
by a term that behaves like w™ for w — 0. See e.g., Ref. 4.
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be written as generalized curls of the potentials

Ay ki(x) = (2m) 7802 / @*p(2|p[) e () - -e4*i(p)

X[a(p, £j)e> =+ (—)b*(p, F e >=]. (3.1)
That is,
F W=9r4 v — A+, 3.2)
F w1l = gugr 41— gugng
— P4 407974 ., (3.3)

and so on. The potentials 4. (x) which are symmetric in
their u indices, vanish if any one u index is zero

A0 ri=() (3.4)
and have zero trace
Guapad 1=, (35)
They satisfy the free-field equations
0 At k=0 (3.6)

Ry A pa k= A e mi— Qrig vieaeeki (37)
and of course

24 rv k=0, (3.8)

The discussion of Sec. III makes it clear that the
A4 (x) cannot be fields, in the sense of (2.4) and (2.5).
Indeed, we can see that they are not even tensors,
because their time-like components vanish; if they were
tensors then they would transform according to the
(37,%7) representation of the homogeneous Lorentz
group, and this representation does not satisfy the
fundamental condition (2.15) for fields constructed from
the operators a(p, &= 7) and o*(p, F 7).

But F,(x) are tensors, so the noncovariance of A4,
must be manifested in the appearance of gradient terms
in the Lorentz transformation law for the potentials,
which do not show up when we take curls to obtain
F.(x). Infact, thisis the case. A simple calculation using
(3.1), (2.6), and (2.7) shows that

ULAJA ke +i(x) U [A]
=AM .Avjuj(2W>—3l2/d3P(2lpl)—1/2

X[ew'(p)— " fo(p,A) ] - - [ex”i(p)— p"i f(p,A) ]
X[a(p, £ 7)er 2o+ (—)b*(p, Fje-i72¢] (3.9)
with

f(p,A)=A%,"(p)/|A~"p]| . (3.10)

10 See e.g., J. Schwinger, Phys. Rev. 74, 1439 (1948); 127, 324
(1964).
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This can be written

U[A]Ai‘“"'"i(x)U_l[:A:|=Av1"l' . .AyiﬂiAi:l'].n.vj(Ax)

J
+Z aurq)im---ur—wﬁr'-ni(x; A), (3.11)

r=1

We will fortunately not need the rather complicated
explicit formulas for ®,. However, for an infinitesimal
Lorentz transformation A*,=d8*~+w*, the functions
f+(p,A) are infinitesimal

fi(p, 1+w)=woiesi(p)/ [ D[

and &, is then given by the simple expression

(3.12)

&, (25 14w) =i(2m) =32 / a*p(2|p|)~

X fa(p, 1+w)es(p)- - -
XLa(p, £5)e=—(—)*(p, Fje~»=]. (3.13)

We will find it convenient from now on to shift our
attention from A4, (x) to the potentials 4 (x) and B(x),
defined by

Aul"‘#i(x)EA+M1'"M(x)—*—A_Ml“'H:‘(x)
’iB“l"'”f(x)EA+”1‘"‘fi(x)—A_"l'"“i(x).

(3.14)
(3.15)

A particle that interacts with left- and right-handed
particles with the same coupling constant will be coupled
only to A(x), while one that has coupling constants of
opposite sign to left- and right-handed quanta will inter-
act only with B(x). Hence an ordinary charge will
couple only to A*(x), while a magnetic monopole will
couple to B#(x). The two fields can be distinguished by
their different behavior 'under parity (P) and time-
reversal (T):

PAwcvi(g) P-1=(—)idm wi(—x ),  (3.16)
PBu - #i(x)P1= — (—)iBu+wi(—x, £), (3.17)
TAm - wi(x)T—1=(=)idm wi(x, —1),  (3.18)
T B #i(x) T-1= — (—)iBrr#i(x, —8). (3.19)

In Sec. VIII we will discuss reasons why nature has not
made use of B(x) in forming the interactions of massless
particles.

Since the photon and graviton are both purely neutral,
we will surrender a little of our extreme generality, by

11 These are derived using the P and T behavior of the operators
a(p,\) and b*(p,\), as worked out in Sec. IX of Ref. 3. In order to
obtain the particular sign changes given here for P it is necessary
to adjust the relative phases of a(p, +7) and a(p, — 5), while the
sign change under T can be obtained by adjusting the over-all
phase of both operators. The important thing is that the P and T
sign changes are both opposite for 4 (x) and B(x), because P
interchanges helicities == 7, and because 7 is antiunitary.
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restricting ourselves to the case of particles identical
with their antiparticles. It will be convenient to define
phases so that

b(pN)=(—)a(p\). (3.20)

STEVEN WEINBERG

We note that e **=es*, so now we have
Agpvsitm fgprni (3.21)

Therefore (3.14) and (3.15) give A(x) and B(x) as
Hermitian operators:

()= A ) = r) o [ p(2lpl) e S @) est ) olo, )%, F)e ] (322

Breei(x) = Bre kit () = —i(2m) 81 f @*p(2|p[)" %:J:ei‘“(p)- +~exti(p)[a(p, £ 7)™ *+a*(p, Fy)e~7] . (3.23)

IV. LORENTZ INVARIANCE AND
CURRENT CONSERVATION

The potentials 4(x) and B(x) are not tensors, and
cannot be made into tensors by redefiniton of the
polarization vectors, because condition (2.15) does not
allow us to construct (37,%7) tensor fields of rank j for
massless particles of helicity == 7. On the other hand, the
true tensor fields Fy(x) of rank 25 (and any other truly
covariant fields) give amplitudes for emission and ab-
sorption of soft quanta which vanish at least as fast as
12 for momentum p— 0, in contradiction to our
everyday experience with photons and gravitons. There
seem to be just two available methods for the circum-
vention of this difficulty:

1. The traditional approach? is to introduce operators
for fictitious particles of helicity other than 47 (some
with negative probabilities) in such a way that A(x)
and B(x) become true tensor fields.

2. Alternatively, we can resign ourselves to the non-
tensor character of A(x) and B(x), but construct the
interaction Hamiltonian so that the .S matrix is never-
theless Lorentz-invariant.

I will follow the second path. One reason is that no one
likes unphysical particles, or the indefinite metric and
subsidiary state-vector conditions that they entail. But,
more significant, the lack of manifest Lorentz covariance
in the second approach means that we must impose
powerful restrictions on the interaction Hamiltonian in
order to obtain a Lorentz-invariant .S matrix. This
feature is a minor nuisance if we are sure we already
know the correct theory of photons and gravitons, but
it becomes all-important if what we want is an a prior:
derivation of electrodynamics and general relativity.

So we must ask what sort of couplings we can give
A(x) and B(x) without violating the Lorentz invariance
of the S matrix. For the moment, we will assume that
only A(x) enters in the interaction, (e.g., no magnetic
monopoles) and will return to the more general case in
Sec. VIII.

A Lorentz transformation A#, induces on the potential
A(x) a combined tensor and “gauge” transformation

U[A]A m-"n;‘(x) U”‘l[:A:]=A,,,"‘ .. .AvjuiAn--'Vi(Ax)

J
437 Qurmrurtbrirewi(ys ) (4.1)

r=1

with ®=&,+®_. [See Eq. (3.11)]. The potential
appears in the interaction Hamiltonian H'(f) coupled
to a current

Juowij(x)=—0H'(t)/ 847 "¥i(x) , (4.2)

but when we sum to all orders of perturbation theory the
matrix elements for creation or annihilation of real or
virtual massless particles are determined by the current
in the Heisenberg representation

IHiyo.iy(%) = exp(iHx®) $uy...;;(0) exp(—iHx?). (4.3)

The form of the two terms in (4.1) then leads us to
guess that the Lorentz invariance of the S matrix re-
quires J to have the properties

(a): giriy(x) is the spatial part of a symmetric
tensor Jyy...u;(%),

ULA]gupeo ;@) U [AT= Ayt - - A1 Gorr(Ax) . (44)
(b): gH¥yy...; is conserved
9mgH ... (2)=0. 4.5)

We will remove most of the guesswork in the next sec-
tion, but let us accept (4) and (B) for the moment as
necessary requirements for Lorentz invariance.

There are two familiar types of conserved symmetric
tensor: for j=1 there are the currents J* of additively
conserved quantities such as charge and baryon number,
and for j=2 there is the symmetric stress-energy tensor
6+, In addition, it is easy to construct conserved currents
of the ‘“Pauli”-type for any j:

Spauu‘“"""'(x)= Oy ayjz[mvl]"'[nivi](x) , (4.6)

where T is any tensor antisymmetric within each index
pair [u,»] and symmetric between different index pairs.
A familiar example for j=1 is the Pauli-moment current

g“l’auli o« av(&”"”‘/’) .

However, coupling the potential A(x) to the current
(4.6) is equivalent to coupling the tensor field F(x) to
Z(x), and cannot by itself give finite amplitudes for
producing or absorbing very soft massless particles. In
particular, the “charge” carried by (4.6) vanishes, i.e.,

/d%c Ipauii® "2""‘i(x) =0,
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The only currents which avoid this criticism are the
charge (or baryon number, etc.) current J* and the
stress-energy tensor §**. Hence we conclude that Lorentz
invariance forces the photon potential A*(x) to be coupled
to J#(x), and the graviton potential A*(x) to be coupled
to 6#(x), except that in both cases there is the possibility
of adding extra terms like (4.6) to J* and 6**, or equiva-
lently, of adding interactions involving the covariant
fields Fi#1(x) or Flw1l(x),

In fact, nature does not seem to take its option of
using terms like (4.6) in the interaction currents of
massless particles. For the photon we have clear evi-
dence of this in the success of Dirac’s calculation of the
magnetic moment of the electron. And also, the very
absence of massless particles with j= 3 is symptomatic
of nature’s abhorrence of Pauli-type currents, since
these are the only currents with which such particles
could interact. For photons the absence of Pauli cou-
plings is sometimes referred to as the “principle of
minimal electromagnetic coupling,” but it remains a
mystery nonetheless. Perhaps the solution will be found
in considerations of high-energy behavior, since the
Pauli currents are worse in this respect than J* and 6,
and, in particular, can never give renormalizable
interactions.

It seems fairly obvious that the statements that 4#
couples only to J* and 4#” couples only to §* (except in
both cases for possible Pauli terms) are equivalent, re-
spectively, to gauge invariance of the second kind and
to Einstein’s equivalence principle. We will not pursue
this point further here, as it would lead us into the
Lagrangian formalism, which we have been so far suc-
cessful in avoiding. Instead, we will give a direct deriva-
tion of Maxwell’s and Einstein’s equations in the
Heisenberg representation, in Secs. VI and VII.

V. LORENTZ INVARIANCE OF THE
FEYNMAN RULES

In order to understand better what conditions are
actually necessary and sufficient for the Lorentz in-
variance of the .S matrix, we will now examine the
Feynman rules generated by formula (3.22) for the
potentials A(x). We have already remarked in Ref. 4
that the requirements (4.4), (4.5) for a conserved tensor
current are sufficient for the Lorentz invariance of
S-matrix elements with external massless particle lines
(provided that the covariance of matrix elements of J#
is not spoiled by the internal massless particle lines) and
that these conditions are also necessary at least on the
light cone in momentum space. Our remaining task is to
examine the Lorentz transformation properties of the
internal massless particle lines.

The coordinate-space propagator of the field 4 (x) is

IN PERTURBATION THEORY
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easily calculated as

(T{Arri(x) A7 7i(y)} o

@n [“om ®
= (27r)-3 KL LY
2[p|
X[g(x_.y)eip‘(z—y)+g(y_x)eip'(y—:c)] (5.1)
with
Hﬂ‘l"'l‘i"l"”’i(p)
=21 ex*(D): - - exti(pes(p)* - er’i(p)*. (5.2)

In momentum space the propagator is

apwreg)mi [ dse eI A (@, an ),

=T/ (i) (53)
For j=1 we easily calculate (in Appendix A)
0 (q) = g +-n+g"+w'gr— g ¢
n*={0,0,0,1} (5.4)

¢*=1{4,1}.

In order to express (5.4) in terms of a non-light-like ¢*,
we set

¢*=[g*+n*(la| —¢21/14q|
and we obtain
0#(g) = g+ ((n*g+n¢*)¢"/ | q| )
—(¢*¢’/la|D+(g**w/ |q]?). (5.6)

Hence the propagator may be written as the sum of
three terms

AF(g) = A cov(g)+ A¥graa(g) + AP 10(q) . (5.7

The first term A*.(¢g) is the usual covariant tensor
propagator

(5.5)

APeov(q) = g’"’/ (g*—1e). (5.8)

The second term A*praq is not covariant, but it is pro-
portional to factors ¢g* or ¢” which give zero!? when
multiplied into the conserved currents connected by
A.#. The final term A#4, is also not covariant, but it is
characterized by the absence of the pole at |¢°| =|q]:

A*00(g) =n"n’/ | q 2. 5.9

Hence it gives a coordinate-space propagator that is

12 This is easy to prove in electrodynamics, where the current
does not involve the potential; see R. P. Feynman, Phys. Rev.
101, 769 (1949), Sec. 8. [This result is also implicit in the theorem
proved here in Appendix B.] The situation is enormously more
complicated in the case of gravitation, where the “current’” must
involve the potential 4#; we will not attempt a treatment of this
highly nontrivial problem here.
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local in time:

1
(2m)*

/d4q eiq-(a«‘—ﬂ)Auvloc(g)
=8(x0— ) D(x—y)n*n’, (5.10)

Dx)= (2n) f &g explig-x)|a|*=1/4x|x—y| (5.11)

and it may therefore be cancelled by the addition to
H'(1) of the familiar Coulomb interaction

1
HCOul’(t)=—2— /dsx/tﬁy JxNDx—y)g(y,t). (5.12)

j=2 [see Appendix A]

H#mzvm(q) = %[I]‘_mn(q)nmvz(q) + Hﬂlvg(q)nmvx(q) — H#wa(q)nma(q)] ,

j=3

STEVEN WEINBERG

Note that this cancellation is only possible because
(5.12) is temporally local; the interaction must be local
in time because of its definition as
H'({)=e"tH'(0)e—iH't, (5.13)

In particular, A#,.q(q) does not have a temporally local
Fourier transform so it cannot be cancelled by adding a
term to H'(t), and it must be eliminated by requiring
the current g, to be conserved.

All this is familiar for j=1, and it works out much
the same for j=2, because the general polarization sum
II(g) is built up out of the II**. For example

TIA10908v17a78 — %[H‘“"IH naa[] #ars—| T #17a] ] wavsT] #av1- TT w173 #1] ] #av1- T #1va]] ki wovs—|- T #17s[] #173] #3v1
+ I[#mnmwsnum:] —_— %.[Hmn‘ﬂnnnsnms.}. TI#o]] p1es]] P23 TT #evi]] p1va]] 273 T #1v2]] HausT] 7178

-|_ Humnmnanun.}. IIMmHmuaHVlvs+ HMU?HMMHVW+ Huavanmnanvm.i_ Humnmnanma] s

and so on. Evidently the propagator for any integral j
can be decomposed as in (5.7), into a covariant part
Agev built up out of the gy, plus a noncovariant part
Agraa proportional to one or more factors of g,, plus a
noncovariant part Aj,e which lacks the pole at ¢?=0.
The last term is to be cancelled by adding a temporally
local term to H'(f). The second term Ay, is not tem-
porally local, so it must be eliminated by requiring that
A(x) be coupled to a conserved current.

For instance, Egs. (5.3), (5.6), and (5.14) give the
three parts of the j=2 propagator as

Aco vmnmva(q) = [gmnguava+ gmvagum__ gmuagvm] /
2(92— 1‘5) ’
» V1M1 247119771
%‘“q 1..}_” 1qu qo%q Ry :I
2|q|? lq|?
(nuzqv2+nvzqu2)

2|q|%(g*—1ie)

(5.16)

Agm dumzvxvz(q) = [ gnm_lr

q° (5.17)
-+ five similar terms.

Axoe"”"""’(q) = [gnxl'1nmnva+ gH et
+ gmnnmnn_l_ guavlnmnn_ g"“"n"ln”’

— gmen]/2| q| gt /2 g4 (5.18)

The gradient term (5.17) does not contribute if we
require the “current” g, (x) to be conserved.’? The
term (5.18) gives a temporally local contribution to the
propagator

(27)—4/d4q eiq-(z—-u)Alocnwznn(g)

= %Egumnuanvz_*_ gmvznmnvx+ grrmprnt
+ gV — ghike iR — gV 2
+ i ]5 (60— y0) D(x—y)
+Lpmripra2§(a0—y0) 8(x—y), (5.19)

(5.14)
(5.15)
where D(x) is given by (5.11), and
8(x)5(2w)—3/d3q exp(iq-x)|q| = 8(0)——5;—' . (5.20)

[We will see that the divergent constant &(0) gives no
trouble.] In order to cancel (5.19) we must add to the
Hamiltonian a “Newtonian’ term:

1
H,Newt(t) =5 /d3xd3y[25"o(x,t)guo(y,t)

—39*4(X,8) Joo(¥,1) — 3 Joo(X,8) §*u(¥,2)
+%500(X)t)500()')t)]3)(x_' y)

1 .
+5 fdsxd3ygoo(x,t)goo(y,t) 8(X—'y) . (521)

In Sec. VII we shall see that this term, ugly as it seems,
is precisely what is needed to generate Einstein’s field
equations when we pass to the Heisenberg representation.

The conclusion suggested by the above is that the
conservation and covariance of the current plus the
presence of direct-interaction terms like H'cou and
H'Newt, are together the necessary and sufficient con-
ditions for the Lorentz invariance of the .S matrix. In
Appendix B we show that these conditions do in fact
imply the Lorentz invariance of the S matrix in quantum
electrodynamics.® Our proof of their sufficiency makes
their necessity rather evident, and can also obviously
be extended to any massless particle theory in which the
potential does not itself appear in the current. The
rigorous treatment of Lorentz invariance in cases like
the gravitational or the Yang-Mills field where the
potential must appear in the current requires a much
more elaborate discussion, and I reserve this for a future
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paper. [The problem has lost some of its urgency, be-
cause wehave already seen in Ref. 4 that very simple and
general arguments insure that any Lorentz-invariant
theory of massless particles with j=1 or j=2 must
possess the most striking dynamical features of photons
and gravitons, to wit, the conservation of charge and
the equality of gravitational and inertial mass.]

VI. DERIVATION OF MAXWELL'S EQUATIONS

The space-components of the vector potential 4 z#(x)
in the Heisenberg representation are defined, as usual, by

Ap'(x)=U) 4 (x)U™(2?), (6.1)
U(t)=exp(iHt) exp(—iH’t) (6.2)

with H the free-particle Hamiltonian and H=H/+H'
the total Hamiltonian. The interaction-representation
potential 4%(x) is explicitly given by

Ai(x)= (2m)sr / (2Bl T )

X [a(p, £1)ei? *4-a*(p, F1)e=7=] (6.3)

so it satisfies the field equations

024%(x)=0, (6.4)
8:47(x)=0, (6.5)

and the commutation reltions
[4i(x),4(y)1=0, (6.6)
[4i(x),4%(y)]=0, (6.7)
[4i(x),4%(y)]=iD¥(x~y), (6.8)

with
o8(x—3) = (2r)"* [ atp 1) expliv- ()]

=§;;0°(x—y)+9:0;D(x—Y). (6.9)

The lemma proved in Appendix C thus allows us im-
mediately to write down the field equation for 4% in the
Heisenberg representation:

D 2A Hi(x:t)

= —/dsy Di(x—y)gu'(y,)

= — Ju'(x,t) — 3:9; / By D(x—y)gu’(y,t). (6.10)

However, the response of one system of charges to
another system cannot be described solely in terms of
the three-vector field 4 g%(x), because there is also a
direct Coulomb interaction (5.12) between the two
systems. For instance, it is easy to show that the S
matrix for a transition @ — 8 caused by an infinitesimal
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c-number current §g#(x) is, to first order in 84
S,g,,=i/d4x(6 out| 4 #*(x)| e in)s g,(x)
——i/ dtfd%/d"y(ﬂ out| gu°(x,t) | @ in)
XD(x—y)og'(y,1). (6.11)

Therefore we invent a fourth component of 4 z#(x)

Ani(x)= / By DEx—y)gn(yl)  (6.12)

which enables us to write an expression like (6.11)
compactly as

Sﬂa=i/d4x(ﬂ out| 4 z*(x) | in)dg,(x). (6.13)

The field 4x° obeys the Poisson equation
V2A g (%)= — gu'(x). (6.14)

Also, (6.12) and the current conservation condition
(4.5) let us write (6.10) as

024 #'(%) = — gu'(x)+000:4 (). (6.15)

Together (6.14) and (6.15) yield Maxwell’s equations
3, Fut (%)= — gu() (6.16)
Fyu*(x)=0*A (%) — 0"A g*(x) . (6.17)

The particular form of (6.14) and (6.15) arises because
(6.1) and (6.5) impose on A z*(x) the Coulomb gauge
condition

3:A 1(2)=0. (6.18)

It may be of interest to note that in the absence of
current conservation (6.15) would become

024 gi(x) = — gu'(x)+ 000:4 x°(x)
—a, / dy D(x—)0,95(3,)

and Mazxwell’s equations would read

O Hi(x) = — 9u'(x)+-0: / a5y D(x—)3,924(y,0)

0uF (%) = — gn'(x).

The crucial importance of current conservation for
Lorentz invariance is apparent again in these field
equations.

VII. DERIVATION OF EINSTEIN’S EQUATIONS

The traceless part of the spatial components of the
gravitational field 4 z*'(x) in the Heisenberg representa-



B 998

tion are defined in the same way as we have defined
Agtin (6.1), ie.,

Ap¥i(x)—3090ud g* ()= U ) A%(x) U (=) (7.1)
with the interaction representation potential A%(x)

given explicitly by

Aii(x) = (2m)~* / d*p(2|p|)1" z:. ex'(p)e+’(p)

X[a(p, &=2)ei? s+a*(p, F2)e—ir=]. (7.2)

Note that 4% is traceless because (e.)?=0. Also, 4%(x)
satisfies the field equations

024%(x)=0,
6;A“(x)=0,

(7.3
(74)

and the commutation relations

[4%(x),4%(y)]=0, (7.5)
[4#(x),4%(5)]=0, (7.6)
[47(x),A%(y)]=iD*(x~y) (7.7)
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with
Dik(x—y)= (2#)‘3/033? 1% (p) exp[ip- (x—y)]. (7.8)

Equation (5.14) gives the polarization sum for j=2 as

L) = 33— 5*) (67— 75")
(88— BB BR) — (89— P31 — 5]
so
i (x— y) = S[51+8714 i57%— i3 |63 (x—y)
+%[6i6k5ﬂ+ ajalaik_J‘_ aiala;’k_i_ ajakail
— 97igk— 9+l |D(x—y)
+30'979%3' 6(x—y) ,
D(x)=1/4r|x|,
8(x)=8(0)— |x| /8.
The lemma of Appendix C thus gives us the field equa-
tions satisfied by (7.1)

O A4 u¥(x,t) — $696,,4 *1(x,1) ]

(7.9)

=—/d3y DIE(x—y)Iu,u(y,t) (7.10)

or more explicitly

2L A ¥(x,t) — 387604 n*(x,1) 1= — Ju*(X,t) + 587601 u" (x,1) — / y[Iu™(y,1)0:07+ gu*(y,t) 3,0°

——%gkyk(y,t)aiaj——;—(gj,,"l(y,t)waka,jﬂ)(x—y)——%aiafa,cé),/d‘*y Ju"¥(y 1) 6(x—y). (7.11)

[The current gu . in the Heisenberg representation is related to the interaction representation current
gr=—0H'/3A* by the same unitary operator U(f) as appears in (6.1) and (7.1).]

Just as the space components of the vector potential 4 z*(x) had to be supplemented by a time component to
represent the direct-Coulomb interaction, it is necessary now to invent auxiliary components of the Heisenberg
representation gravitational field 4x*(x) in order to take account of the direct Newtonian interaction (5.21).

This interaction can be written

1
H'xewt(D) =E f d3xd®y[ 29%(%,) Gio(¥,1) — 3 9 :(X,1) Joo(¥,1) — 5 Joo(X,1) §s(¥,t) — 5 Joo(X,1) Joo(¥,) 1D (x—y)

Therefore, we define

Ano(x)= f By (3, D(x—y),
3
AH,-"(x,t)EE / d%y gu(y,) D(x—y), (7.13)

1
Au(xi)= / Y99+ 9 D(x—y)]

1 .o
—= f dy Ju®(y,t) 8(x—y). (7.14)
2

(7.12)

1 .
-{—5 / d*xd®y Joo(X,1)Joo(¥,£) E(x—y).

With these definitions, the S matrix for a transition
a— f due to an infinitesimal ¢ number 84,,(x) is

Spa= —i/d“x(ﬂ out| 4 z#(x)|a in)8g,.(x).

These synthetic field components obey the field
equations

V24 g(x) = — gu'*(x) , (7.15)
VA yii(x) = —39u"(x), (7.16)
V2A p%(x) = — 3 Juri (%) — 1 9u®() +3A mit(x) . (7.17)
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Using the current conservation condition (4.5) let us
write (7.11) as

D024 () = — 8 (2)+ 399, (2)+ 80094 ()

+000°A g (x)+ 9°0TA () — 3 A g*r(x)]. (7.18)
To the field equations (7.15)—(7.18) we must append
two first-order equations, which remind us that we

have defined the traceless part (7.1) of Ax% to be
divergenceless

a@A H“(x) = %é)jA H'}(x) (719)

and have defined 4 5% and 4 x%; in (7.12) and (7.13) so

that the conservation of gu*” relates them by

(95/1 H"“(x) =— %60/1;1%(90) . (720)

Equations (7.15)—(7.20) can be put together compactly
as

Ry (x)=—gu*(2)+3g7gu\(x),  (7.21)
where
RH“”(x) =[]24 H“”(x) —9kdhA H“(x)
—PNAg*Mx)+ oA (). (7.22)

The complicated form of (7.15)-(7.18) just arises from
the fact that we happen to have defined 4x* in the
peculiar gauge characterized by (7.19) and (7.20). We
might have avoided some algebra along the way had we
chosen a different polarization “tensor” in forming the
potential (7.2), but the choice we made was the most
obvious generalization of the Coulomb gauge used for
j=1, and at any rate has brought us safely to our goal.

Equation (7.21) can also be put in the familiar form

Ru*(%)—4g”Ran(x)=— g (). (1.23)

If gu*(x) were proportional to the energy-momentum
tensor of matter alone then (7.23) would be identical
with Einstein’s equations in the weak field limit, where
we set the Einstein metric tensor equal to the Minkow-
ski g# plus our 4", and keep only terms of first order
in Ax*. However, such a theory would not be Lorentz
invariant, because Lorentz invariance requires that
9,9n*=0, and this condition is fulfilled only if the
current gx** contains terms involving 4 z**, representing
the energy and momentum density of gravitation. If we
therefore identify gu** with the full-energy momentum
tensor §** of matter plus gravitation, Eq. (7.23) becomes
highly nonlinear. As remarked by Gupta,'® there is
obviously one choice of a conserved 6* which makes
(7.23) equivalent to Einstein’s nonlinear equations,
namely that obtained by identifying the nonlinear terms
on the left-hand-side of Einstein’s equations with the
negative of the gravitational part of 6. In fact,
Feynman!4 has shown that this is the only choice which

8. N. Gupta, Proc. Phys. Soc. A65, 608 (1952).
4 R. P. Feynman (private communication). I am indebted to
Professor Feynman for a discussion of this point.
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works. In Feynman’s Lagrangian approach, Lorentz in-
variance is built in, but other desiderata of perturbation
theory such as unitarity can be lost by making the
wrong choice of 6#*, while in our approach unitarity and
the particle interpretation are built in, and only Lorentz
invariance can go wrong; therefore we may presume that
the sort of covariance proof given in Appendix B for
photons will only work for gravitons if we choose §* in
agreement with Einstein’s theory. However, this still
leaves an ambiguity in the matter part of 6**, because
we can always add “Pauli” terms such as (4.6).

VIII. MAGNETIC AND OTHER MONOPOLES

We saw in Sec. III that the particle operators for
mass zero and integer spin j can be used to construct
two different Hermitian potentials, a normal one
A#revi(y) with parity and time-reversal-phase (—)7,
and an abnormal one B#**#i(x) with P and T phases
equal to —(—)’ [See Eqgs. (3.14)-(3.19).] Both A (x)
and B(x) must be coupled to conserved tensor currents.
However, the Hermitian current J* of charge (or baryon
number, etc.) and the Hermitian energy-momentum
tensor 6*(x) both have normal P and T phases, by
which we mean that their spatial components obey the
same P and T transformation rules (3.16) and (3.18) as
for A%(x) and 4%(x). Therefore, both P and T invariance
do not allow B#(x) and B*(x) to be coupled to J#(x) or
0#(x). We could, of course, couple B(x) to a Pauli
current (4.6), but such interactions can be rewritten in
terms of A(x); for instance the coupling B*0*[{ysou ]
is equivalent [using (3.7)] to 4*8"[Yo,¥]. Hence, we
would normally conclude from P or T invariance that
all interactions may be expressed in terms of the normal
potential 4(x), and in particular that there can be no
magnetic monopoles,!

But there is one way that magnetic monopoles can
occur without violating P or T. Suppose there is a
particle which turns into its antiparticle under the
operation of either parity!® or time-reversal, and that
the number of such particles is conserved. Then the
Hermitian current M*(x) of the particle would undergo
an extra sign change under P and T, and hence could be
coupled to B#(x). Note that in this case P or 7" would
forbid A#(x) from being coupled to M*(x); that is, a
magnetic monopole cannot also carry a normal charge.
Note also that we are defining P and T so that they act
as usual on familiar particles like electrons and photons,

16 The apparent violation of time-reversal invariance by mag-
netic monopoles has been noted by L. I. Schiff, Am. J. Phys., 32,
812 (1964).

16 This is sometimes expressed in the statement that the true
symmetry is not P but PM, where M changes the sign of all
magnetic monopole moments. See N. F. Ramsey, Phys. Rev. 109,
225 (1959). We would prefer to say that i/ takes magnetic
monopoles into their antiparticles, and include this in the definition
of C, P, and T. (The product CPT takes all particles into their
antiparticles, including magnetic monopoles.) This redefinition of
T resolves the contradiction noted in Ref. 15.
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and it is these ordinary inversions that take magnetic
monopoles into their antiparticles; if all particles had
this abnormal behavior under P and 7" we would just
interchange the definitions of P and CP, T and CT,
A#(x) and B*(x), charge and magnetic pole strength, etc.

In contrast, P or 7" do not allow the abnormal gravita-
tional potential B#(x) to interact with anything. Even
if there were magnetic monopoles which went into their
antiparticles under P and T, they would still make a
contribution to the energy-momentum tensor 6#(x)
which behaved normally under P and T, and which
therefore could only be coupled to the normal potential
AP (x).

Since magnetic monopoles are allowed by C, P,and 7,
but are not observed in nature, we must ask if there is
any other reason why they should not exist. Zwanziger?
has noted that their existence would give the charge-
monopole scattering amplitude A(s,?) two very peculiar
branch points in s near ¢=0. This suggests that field
theories of photons, charges, and monopoles might be
unavoidably acausal, and therefore, not Lorentz in-
variant. We now show that this is the case, at least
within the interaction-representation dynamical frame-
work used here.

The trouble arises in diagrams in which a photon is
exchanged between a charge and monopole. Since the
charge current J,(x) is coupled to A#(x) and the mono-
pole current M,(y) is coupled to B’(y), the photon
propagator will be

—iAap*(q)= / a4 g7t @ (T{AX(),B"(9)})o.  (8.1)

This can be easily calculated using (3.22) and (3.23) and
the results of Appendix A we find

P—ie
() =1 2 o(F)es(@es’(0)*

= e g,/ |q] -

Aap*(g)= (8.2)

(8.3)

This is not covariant, but more important, it cannot be
split up as in (5.7) into a covariant part, a noncovariant
gradient part which vanishes between conserved cur-
rents, and a noncovariant “local” part which can be
cancelled by adding a temporally local term to H'(?).
To see that this crucial decomposition is impossible
for (8.3), note that the one-photon-exchange matrix
element for scattering of a charge, with conserved
current J,, and a monopole, with conserved current M,

is
JubasM,=(q"/ 14| )[(J W *+a] ?) (M M ~-a i?)
— (T M+ oMo) 1/ (g2 —i€)  (8.4)
with
a=q¢/|q|2. (8.5)

17D, Zwanziger (to be published).
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This may be compared with one-photon-exchange be-
tween two charges (or two monopoles)

Jbaa?T) =T J¥+ad T/ (g2—1ie).

In both cases the matrix element is invariant for ¢*
precisely on the light cone («=0) but not otherwise.
The great difference between (8.4) and (8.6) is that the
o term in (8.6) can be cancelled by a temporally local
interaction JoJo'/|q|? while no similar cancellation is
possible in (8.4).

Incidentally, the square root in (8.4) would yield
Zwanziger’s branch points!” if we set a=0..But the
failure of analyticity is academic if the theory of mono-
poles isn’t even Lorentz invariant.

There is one possible hope for saving Lorentz invari-
ance. According to Dirac,'® the coupling constant ge for
charge-monopole interactions must be an integer or a
half-integer. Perhaps the exact .S matrix is Lorentz-
invariant for these particular large values of ge, though
not in any finite order of perturbation theory. However,
preliminary examination of the ladder series by A. Gold-
haber indicates that this is unlikely.

There is a possibility that time-reversal as well as
parity is violated by the weak interactions. In this case,
some of the conclusions reached earlier in this section
might need revision. In particular, CPT alone would
not prevent a particle from carrying a magnetic mono-
pole moment as well as an ordinary charge, or in other
words, of coupling with different strength to the left- and
and right-handed parts of the electromagnetic field.
And in the same way, all particles might respond with
different coupling constants f. (the ratio of gravita-
tional to inertial mass) to the left and right-handed
parts of the gravitational field. However, this still would
not produce observable anomalies in gravitational inter-
actions, for Lorentz invariance tells us? that all particles
must have the same f; and the same f_ (perhaps # f4).
The. contribution of virtual graviton lines in Feynman
diagrams would therefore be proportional to

2 fefe(T{AMx),d="(0)} o= fof(T{A*(x),47(3)} o

and this has the same form as if the coupling constants
f+ for right- and left-handed gravitons were the same.

(8.6)
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APPENDIX A: THE POLARIZATION SUMS

We wish to evaluate the sums

I#(q) =21 ex*(@)es”(Q), (A1)
E(@) =12 1(E)eH(Des” (), (A.2)
mewr(@) =34 ex*(Per(@es"(@ex"(Q). (A3)

18P, A. M. Dirac, Proc. Roy. Soc. (London) 133, 60 (1931).
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These are the numerators, respectively, of the photon
propagator linking two charges or two monopoles, the
photon propagator linking a charge and a monopole,
and the graviton propagator.

First take ¢=~F, defined as the unit vector in the
z direction. Then the polarization is

e (B)=1/VZ, eu2(k)==+i/NZ, es(k)=es(k)=0,

so the only nonvanishing components of (A.1)-(A.3) are

Mi=T1122=1, (A4)
Fll= —E2=1, (A.5)

TIl111— J2222 — JT1212 — J]2112— J2i2!
=I22l= 2= —JI2211=1/2, (A.6)

For §=F, (A.4) agrees with (5.4) or (5.6), so it agrees
with them for all §, because I1#*(¢) is related to II**(k)
by the rotation R#\(¢) which takes & into ¢:

I1#(g) = RA\(@ R (@I (E). (A7)

A similar argument verifies Eq. (5.14) for IT*#kw2(g)
and verifies Eq. (8.3) for E#*(¢).

APPENDIX B: LORENTZ INVARIANCE OF THE
QUANTUM-ELECTRODYNAMICAL S MATRIX

We shall show in a separate paper that if the inter-
action is translation and rotation invariant then the
S matrix will be Lorentz invariant if and only if the
behavior of the interaction under infinitesimal “boosts’
takes the form

(K, (O)]=—[K'OH+H'H]. (B
Here K/ is the generator of pure Lorentz transforma-
tions on the free-particle states; H” is the free-particle

Hamiltonian, and H'(?) is the interaction in the inter-
action representation

H'({)=exp(tH’t)H' exp(—iH"?).
The operator K'(¢) is unrestricted, except that it must
have the same ¢ dependence as H'(f):
K'(t)=exp(tH')K' exp(—iH"1) (B.2)

with the free-particle matrix elements of K’ sufficiently

smooth functions of energy so that, effectively,
K'(f) >0 fort— 4o (B.3)

this limit being understood in the same sense as the
usual “adiabatic switching on and off” of H'(2).

We will prove here that (B.1) is satisfied in the
simplest case, i.e., quantum electrodynamics with an
A-independent current:

H(t)=— /d% J(x,0)Ai(x,t)

1
+5 / d3xddy J(x,t) D(x—y)J(y,) (B.4)

provided that the current is a vector and conserved in

B 1001

both the interaction and Heisenberg representations, i.e.,
9, J4(x)=0 (B.5)
LH'(1),7°(x,6)]=0. (B.6)

(This is the case in spinor electrodynamics, and it can
always be arranged by introducing enough auxiliary
fields to make the free-field Lagrangian linear in space-
time derivatives.)

The interaction (B.4) is manifestly translation- and
rotation-invariant, so we need only check that it satisfies
(B.1). The product J-A=J,4* is scalar except for the
extra ® term in Eq. (4.1), which for infinitesimal Lorentz
transformations is given by (3.12) and (3.13) as

®(x) =B, () +P_(x) = —1w;oC¥(x)
Ci(e)= (2m)02 f Bp2lp| ) S esi(p)
=+

X[a(p, £1)et?-z—a*(p, F1)e~ir'=]. (B.7)

Hence J-A transforms under infinitesimal boosts ac-
cording to

[ K7, Ji(x)A%(x) ]= (xoV —x00)J +(x) A(x)

+1J,(x)9*C(x). (B.8)
Also, since J#(x) is a vector we have
i[K/,70(x) ]=J(%)+ (2o V—x80)J%(x).  (B.9)

The V terms drop out when we integrate over 3 space,
leaving us with

[K/,H'(1)]= —id / @ xT i(x,1) A(x,0)
— / d3x J ,(x,t)0*C(x,1)
— i/d%cdsy J(x, 1) D(x—y)J(y,t)

+i/d3xd3y[ado(x,t)]x®(x— y)Jy,t).

Using (B.5), and writing x in the last term as 3(x-+y)
~+%(x—y), we can put this in the form

(K%, H' (t)]=—i(dK'(t)/d)—L()  (B.10)

with

K'(t)= / d3x xTJ W (x,) A*(x,t) — 1 / d¥x JO(x,t)C(x,t)
1/d3d3 To(x,1)xD Jo B
2 xacy (X, X (X—Y) (y)t)y ( '11)

Liy=—i / Bady T DTS x—Y)Iwd),  (B.A2)
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SF,-,-(X) = 81~,~S)(x)—%6j(xiﬁ)(x)) . (B13)
Because of (B.6), the only term in K’(¢) that does not

commute with H’({) is that containing C(x), and
therefore

[K/(0),H'()]=i f Baddy T ()T,
X [AJ(X7t):C(y,t)] .

But we can calculate directly from (B.7) and (6.3) that

[4;(x,0),Ci(y,1)]

(B.14)

— (2n) f #p|p|~(55—P:5) explip- (x—)]

=8;;D(x—y)+9:0,6(x—y) = Fi(x—y) (B.15)

so (B.14) gives
[K'0),H' () ]=—L().

Also, K'(t) evidently has the ¢ dependence (B.2), so
(B.10) and (B.16) give (B.1). Condition (B.3) is satisfied
because (B.11) is as ‘“‘smooth” an operator as the
interaction (B.4).

(B.16)

APPENDIX C: DERIVATION OF FIELD EQUATIONS
IN THE HEISENBERG REPRESENTATION

Suppose the interaction representation fields ¢n(x)
have the properties

O%pa(x)=0, (C.1)
[6n(x,0),6m(y,)1=0, (C.2)
[Gm(x,0),8m(v,1)1=0, (C.3)
[a(%,),6m(y,1) 1= Dam(x—y) . (C4)

[This is the case for the potentials A(x) defined for
general j in Sec. IIL.] Suppose that the interaction
H'(f) does not involve any derivatives of ¢, higher
than the first, and define the “partial currents” 8,, $,*
by the statement

S/ (1)= — f Pa 5 [84(5,)36n(x,)
L S (x)0.00,8a(x0)] (CS)

where 8¢, and 69,¢, are arbitrary infinitesimal c-number
variations of ¢, and 8,¢.. [If H'(t) is the space integral of
a local 3¢(x), then $,=093C/d¢. and 8,#=083C/3(d.pn).]
Define the Heisenberg representation field ¢.n(x) by

bnu(X,)=U()$a(x,) U™(?) (C.6)
U(t)=exp(iHt) exp(—iH'1). (C.7

STEVEN WEINBERG

Then ¢» will obey the field equation
O*6unxi)= = [ @ Dunx—3)mas) (C8)

with Jz defined as the total current

ot (%)=8nu(x)— 0,8n*(x) (C.9)
Suu(x,0)=U(£)8,(x)U1(1), (C.10)
Sar*(X,)=U#)8,*(x) U~(t). (C.11)

Proof: We note first that
aUu@t)/dt=<U)H'(t)
aU(p)/dt= —iH' ) UY(Y).
Therefore the time derivative of (C.6) gives

bur(X,8)=U0){bn(x,0)+i[H' (1) pu(x,) JU(®) .
But (C.5), (C.2), and (C.4) give the commutator

[H'(1),9n(x,1) = +1 / @y 3 8n’(¥,1) Dum(x—y) (C.12)
SO

durr(50) = UDba(x,)U=1()
-y f 059 St () Dom(x—) .

A second time derivative gives

G (x,0)=U(){p(x,t)+i[H'(£),$a(x,t) yU(t)
~X [ty st 3 )Duntsx—). (C13)
But (C.5), (C.3), and (C.4) give the commutator

(@) ()] =—i / 05y 5 [S(,) Dun(y—3)

+ 8,4 (¥,)0:Dmaly—x)]. (C.14)

Using (C.14) and (C.1) and integrating by parts let us
write (C.13) as

(.ﬁnH(X)t) = V2¢71H(X,l)+/d3y Z [ﬁm"(y_x)‘smlf(y’l)

= Dyun(y—%)3i8mar(y,t)
Daum(X—y)68mr’(¥,)].
But differentiating (C.2) with respect to ¢ gives
Dom(y—X) = Dmn(x—y)
s0 (C.15) and (C.9) yield the desired Eq. (C.8).

(C.15)

(C.16)



