
PH YSICAL REVIEW VOLUM E 138, NUM B ER 4B 24 MAY 1965

Photons and. Gravitons in Perturbation Theory: Derivation of
Maxwell's and Einstein's Equations*

STEVEN WEINBERGER

Depurtment of Physics, University of Culi forniu, Berkeley, Culiforniu

(Received 7 January 1965)

The S matrix for photon and graviton processes is studied in perturbation theory, under the restriction
that the only creation and annihilation operators for massless particles of spin j allowed in the interaction
are those for the physical states with helicity +j.The most general covariant fields that can be constructed
from such operators cannot represent real photon and graviton interactions, because they give amplitudes
for emission or absorption of massless particles which vanish as p&' for momentum p ~ 0. In order to obtain
long-range forces it is necessary to introduce noncovariant "potentials" in the interaction, and the Lorentz
invariance of the S matrix requires that these potentials be coupled to conserved tensor currents, and also
that there appear in the interaction direct current-current couplings, like the Coulomb interaction. We then
6nd that the potentials for j= 1 and j=2 must inevitably satisfy Maxwell's and Einstein's equations in the
Heisenberg representation. We also show that although the existence of magnetic monopoles is consistent with
parity and time-reversal invariance tprovided that I' and T are dered to take a monopole into its anti-
particle), it is nevertheless impossible to construct a Lorentz-invariant S matrix for magnetic monopoles and
charges in perturbation theory.

with H (t) the interaction Hamiltonian in the inter-
action representation

H'(t) = exp(iEPt) H' exp( —iHrt), (1.2)

where H~ is the free-particle Hamiltonian and H' the
interaction. The operator H'(t) is some function of the
creation and annihilation operators of free particles, and
we know that these operators transform according to the
various familiar representations of the inhomogeneous
Lorentz group. ' Among these representations are those
characterized by mass m= 0 and spin j= 1 or 2, and we
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I. INTRODUCTION

HK classical theories of electromagnetism and
gravitation were developed long before physicists

discovered quantum mechanics or the S matrix. For
this reason, the modern field theorist is generally con-
tent to take Maxwell's and Einstein's equations for
granted as the starting point of the quantum theory of
photons and gravitons.

However, the logical structure of physics is often
antiparallel to its historical development. For the
purposes of this article, the reader is requested to forget
all he knows of electrodynamics and general relativity,
and instead to take as his starting point the Lorentz
invariance of the S matrix calculated by Feynman-
Dyson perturbation theory. That is, we assume the
S matrix to be given by

(—i)"
5=Q dtr dt„T(H'(t ) H'(t„)} (1.1)

n=o g'f

accord these the names of photon and graviton, with no
implication intended that these particles necessarily
have anything to do with gauge invariance or geometry.
Our fundamental requirement on the form of H'(t) is

that (1.1) must yield a Lorentz-invariant 8 matrix.
The power of this requirement is only now beginning

to be appreciated. There are strong indications, "
(though as yet no careful proof) that it yields all the
results usually associated with local field theories, in-

cluding the existence of antiparticles, crossing sym-

metry, spin and statistics, CPT, the Feynman rules,
etc. The purpose of this article is to explore the con-

sequences of Lorentz invariance in perturbation theory,
for the special case of zero mass and integer spin.

We shall find within this perturbative dynamical
framework that Maxwell's theory and EAzsteie's theory

are esserttially the strtiqste Lorerrte irseariartt -theories of
massless particles with spirs j=1 and j=2. By "essen-
tially" we mean only that the conserved current ris and
ri&" to which the photon and graviton are coupled need

not be precisely equal to the electric charge current J&

and the stress-energy tensor 0&", since we can always add
Pauli-type currents which vanish in the limits of zero
momentum transfer, or of long range. In the same sense,
we shall also find that there are eo Lorentz-invariant
theories of massless particles with j=3, 4 etc., that is, no

theories which yield an inverse-square-law macroscopic
fol ce.

These conclusions have already been anticipated in an
earlier article on pure S-matrix theory. ' We showed

~ For the case m/0, see S. Weinberg, Phys. Rev. 133, B1318
(1964).

'For the case m=0, see S. Weinberg, Phys. Rev. 134, B882
(1964).

'S. Weinberg, Phys. Rev. 135, B1049 (1964). See also D.
Zwanziger, Phys. Rev. 133, B1036 (1964). For a preliminary
account of this work and that of the present article, see S. Wein-
berg, Phys. Letters 9, 557 (1964). A uni6ed treatment of Refs.
2—4 will be published in the lecture notes of the 1964 Brandeis
University Summer School on theoretical physics.
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there that the Lorentz invariance of the S matrix and a
few elementary ideas about pole structure imply that
charge is conserved and gravitational mass is equal to
inertial mass, the charge and gravitational mass of a
particle being defined as its coupling constants for
emission of soft photons or gravitons. We also showed
that the analogous coupling constants for j&3 must
vanish. But by using perturbation theory we are able to
go much further here, and will in fact derive both the
form of the interaction-representation Hamiltonian,
and the Maxwell and Einstein field equations in the
Heisenberg representation.

We start in Sec. II with a discussion of the (2j+1)-
component free fields for massless particles of integer
spin j. These fields transform according to the (j,0) or
(0,j) representations of the homogeneous Lorentz group,
and correspond for j= 1 and j= 2 to the left- or right-
handed parts of the Maxwell 6eld strength tensor Ill""

and the Riemann-Christoffel curvature tensor El""~&.

They have already been treated in detail in Ref. 3 for
general spin, but we concentrate here on the tensor
notation appropriate for integer spin, and we also show
that any covariant free field may be constructed as
linear combinations of these simple fields and their
derivatives.

However, these simple tensor fields cannot by them-
selves be used to construct the interaction H'(t), because
the coefficients of the operators for creation or annihila-
tion of particles of momentum p and spin j would
vanish as p' for p ~ 0, in contradiction with the known
existence of inverse-square-law forces. We are therefore
forced to turn from these tensor 6elds to the potentials
A»' "»'(x), from which they can be derived by taking a
"curl" on each index. But we show in Sec. III that the
potentials are not tensor fields; indeed, they cannot be,
for we know from a very general theorem' that no
symmetric tensor held or rank j can be constructed from
the creation and annihilation operators of massless
particles of spin j. It is for this reason that some field
theorists' have been led to introduce fictitious photons
and gravitons of helicity other than ~j, as well as the
inde6nite metric that must accompany them.

Preferring to avoid such unphysical monstrosities, we
must ask now what sort of coupling we can give our
nontensor potentials without losing the Lorentz invari-
ance of the S matrix? And it is here that the failure of
manifest covariance turns out to be a blessing in disguise.
In Sec. IV we remark that a Lorentz transformation will
induce on A»" '»(x) a combined tensor and gauge trans-
formation, so the only interactions allowed by I.orents
ineariance are those satisfying galge&wariance, i.e., those
in which the potential is coupled to a conserved current.

~ For photons, see S. ¹ Gupta, Proc. Phys. Soc. 63, 681 (1950);
64, 850 (1951); K. Bleuler, Helv. Phys. Acta 25, 567 (1950);
K. Bleuler and W. Heitler, Progr. Theoret. Phys. (Kyoto) 5, 600
(1950). For gravitons, see S. N. Gupta, in Recent Developments in
Genera/ Ret'utivity (Pergamon Press, ¹wYork, 1962), p. 251, and
other references quoted therein.

For example, the direct photon coupling (A„A&)' is
forbidden, not only by gauge invariance (which we do
not assume) but also by Lorentz invariance, because
A, (x) is not a four-vector. Actually, we show in Sec. V
that even gauge invariance is not sufhcient for the
Lorentz invariance of the S matrix; as is always the case
for spins j~1, we must cancel a noncovariant but
temporally local part of the propagator by adding an
extra noncovariant interaction to H'(t), which for j= 1

is the familiar Coulomb interaction, and for j=2 we

christen the Newton interaction. In Appendix 8 we

present a complete proof' that coupling A &(x) to a con-

served current and adding a Coulomb term to EP(t) does
in fact make the S matrix Lorentz-invariant for j=1.
(The propagators for photons and gravitons are calcu-

lated in Appendix A.)
Having deduced the form of H'(1), we then pass over

to the Heisenberg representation, taking care to intro-
duce extra potential components (A' for j=1;A", A",
and A'; for j=2) to represent the eBects of the direct
Coulomb and Newton interactions. In Sec. VI we show

that the Heisenberg representation AI'(z) satisfies the
Maxwell equations in Coulomb gauge, and in Sec. VII
we show that the Heisenberg representation A&"(x)

satishes the Einstein held equations, in a gauge too
ugly to deserve a name.

In Sec. VIII we touch briefiy on an old problem: Is it
possible to construct a consistent theory of magnetic
monopoles? Within the dynamical framework adopted
here, the answer is definitely no, because the propagator
for a photon linking a charge and a monopole contains
noncovariant parts which cannot be cancelled by adding
direct terms like the Coulomb interaction to H'(1). The
behavior of monopoles under P and T is also discussed.

Although our treatment of electrodynamics is essen-

tially complete, we are not attempting in this article to
solve the really dificult problems of quantizing gravita-
tion. In particular, we do not exhibit the conserved

energy momentum tensor 0&", to which A&" is coupled,
as an explicit function of the gravitation creation and
annihilation operators, and we therefore cannot com-

plete the proof that Einstein's equations are suf6cient
and necessary for Lorentz invariance of the quantized
theory. Needless to say, we do not touch upon the
ultraviolet-divergence problem either. It is intended
that the example of our treatment of photons, together
with the beginning made here with gravitons, will serve
as the basis for future work on the hard problems of
quantum-gravitational theory.

Before setting to work, it may be instructive to com-
pare our development with that of other authors who
have also tried to derive electrodynamics or general
relativity from 6rst principles. Three diferent previous
approaches may be distinguished.

~ A similar result was obtained using a different approach, by
J. Schwinger, Nuovo Cimento 30, 278 (1963).
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~(x)-e'"'&~(x) (1 3)

[where q is the charge destroyed by iP(x) and C (x) is an
arbitrary c-number function of x~7. Then derivatives of
P(x) must always occur in the form

~A(x) iqA.—(x)lt (x) (1.4)

the field A„(x) undergoing the gauge transformation

A„(x)~A„(x)+a„e(x). (1.5)
Therefore,

i'm(x) cia(x)
4(x)

clA „(x) acids 8(B„tp(x))

and this is the conserved electric current fs(x). Re-
quiring the free 6eld Lagrangian of A„(x) to be gauge-
invariant then yields Maxwell s equations, with (1.6) as
source. A similar approach has been used to derive
Einstein's equations. ~

The only criticism I can o6er to this textbook
approach is that no one would ever have dreamed of
extended gauge invariance if he did not already know
Maxwell's theory. In particular, extended gauge in-
variance has found no application to the strong or weak
interactions, though attempts have not been lacking. In
oui RpproRcll (1.6) ls R consequence of Lol'clltz IIlval'I-

ance, and this implies that A„(x) enters in Z(x) only
in the combination (1.4), so that invariance under (1.3)
and (1.5) appeais as an incidental result rather than a
IQystel ious postulate.

2. Geometrization

Einstein's theory rests on the identi6cation of the
gravitational 6eld with the metric tensor of Riemannian
geometry. Attempts have also been made to include
electrodynamics in this geometric approach. The criti-
cism here is, again, that the weak and strong interactions
seem to have no more to do with Riemannian geometry
than with, extended gauge invariance. In our approach
the geometric interpretation of the gravitational 6eld
arises as an incidental consequence of its coupling to the
energy-momentum tensor, though we shall not go into
this here.

3. Classical Fields with De6nite Syin

A number of attempts' have been made to derive
Maxwell's and/or Einstein's equations by imposing on

r R. Vtiyama, Phys. Rev. 101, 1597 (1956), and T. W. 3.
Kibble, J. Math. Phys. 2, 212 (1961).

s W. E. Thirring, Ann. Phys. (N.Y.) 16, 96 (1961); V. L
ogievetsky and I. V. Polubarinov, Ann. Phys. I'¹Y.) 25, 358
(1963). I'or earlier work on similar lines see M. Piers and Vil.

I. Extended Gauge Invariance

We may require the Lagrangian to be invariant under
the extended gauge transformation

classical vector or tensor fields the requirement that
they correspond to de6nite spins, y=i or j=2. In
criticism of these articles we may say 6rst that they
generally seem to be based on speci6c Lagrangians, and
secondly, that there does not seem to be much point in
de6ning the spin of a 6eld without being able to tie the
de6nition to the physically relevant representations of
the inhomogeneous Lorentz group, i.e., the one-particle
states. In our work everything rests on the known trans-
formation properties of the operators which destroy and
create physical particles, and of course we make no use
of the Lagrangian formahsm.

II. THE COVARIANT FIELDS

In this section we shall show that the most general
free held for a massless particle of integer helicity +j
may be constructed from the fundamental 6eld

p [sin] "ispjl(x) =(2')—I/ssr dsp(2
) y ~

)
—III

&& [P"'e+"(P)-P"'e "'(1I)7X".

&& [p"'e+"'(p)-p"'e+"'(p) 7

X[.(p, ~~)."-+f*(p,~~) -".7, (2.1)

by taking direct sums of F+ and/or its derivatives. In
Fq. (2.1), g(y, X) and b(y, X) are the annihilation opera-
tors for a massless particle and antiparticle of mo-

mentum y and helicity ); if the particle is its own anti-
particle we of course set II(p,)i) =b(y, X). The "polariza-
tion vectors" e+"(y) are defined in Ref. 4, as

e+"(1I)=&" (P)e~" (2.2)

eg'= 1/v2, e~'= Wi/v2, cps =e~'=0, (2.3)

and Rs„(p) is the pure rotation that takes the s axis into
the direction of y. By a "general free 6eld" we mean h,ere
any linear combination iP„(x) of the II(y,X) and b*(y,X),
such that:

(1) Under an arbitrary Lorentz transformation
x&~ A"„x"+a" the field transforms according to some
representation D[A.7 of the homogeneous Lorentz group

U[A,u7iP„(x) U I[A,a7 =Q„D -[A I7tP (Ax+—a) . (2.4)

(2) The field commutes with its adjoint at space-like
separations

[iP„(x),iP„I(y)7=0 for (x—y)')0. (2.5)

Our metric has signature + + + —.(Fields satisfying

Pauh, Proc. Roy, Soc. (London) A173, 211 (1939), and. M. Fiers,
Helv. Phys. Acta 12, 3 (1939).One sometimes encounters a very
simple version of such arguments, to the effect that the current
I& must obviously be conserved if we dePee it as J"= -8@&".But-
this does not say that J& is the same as the current gl' ——bIJ' /BA„
to vrhich A„ is coupled in the interaction Hamiltonian. ln fact,
we will see explicitly at the end of Sec. VI that if g& is not con-
served than J& is not equal to gI'.
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these two conditions can be coupled together to form a
causal scalar Hamiltonian density, yielding a Lorentz-
invariant S matrix. )

In order to show that a11 such free fields may be
derived from (2.1), we shall pursue the following line
of argument:

(A) We first show that F+(x) are themselves fields,

by proving that they are tensors.
(B) We then study the algebraic properties of F~(x),

and show that they have at most (2j+1) linearly inde-
pendent components.

(C) We then use the results of (A) and (B) to show
that F+(x) and F (x) are just the simple fields X,(x)
and g (x) introduced in Ref. 3.

(D) We finally remark that any irreducible free field

may be obtained by differentiating these simple fields a
suitable number of times.

b. Algebraic Properties of F+(x)

It follows from (2.2) and (2.3) that the polarization
vectors e~I'(y) have the algebraic properties

P & "(y)=0

„() ()=0,
(2 9)

(2.10)

~""'"P.v~, (y) =~~[P"v~"(y)-P"v~"(y)], (2 11)

where &&"» is the totally antisymmetric tensor with
c""=—1. [We prefer to use a four-vector notation, even
though e~'(y) —=0.]

Inspection of (2.1) and (2.9)-(2.11) shows that F~(x)
obeys the algebraic conditions:

a. Tensor Behavior of F+(x)

The behavior of the polarization vectors e+"(y) under
an arbitrary Lorentz transformation A&„was shown in
Appendix A of Ref. 4 to be

{&„~—p~&„o/ ~y ~ )e~ (&y) = exp[&iO(y /[.)]e~~(y) (2 6)

with 0" an angle whose precise definition need not con-
cern us here. Furthermore, the annihilation operator
u(y, X) for a massless particle of helicity lI, and mo-
mentum p wa, s shown in Ref. 3 to obey the tra, nsforma-
tion law

V[A]u(y, X)U '[A]
= ()Ay J/ f y I)'" exp[ice(y, A)]u(Ay, ~) (2.7)

with O~ the same angle as in (2.6). The creation operator
b*(y, —X) transforms like u(y, li). Using (2.6) and (2.7)
in (2.1) shows instantly that F~(x) are tensors,

P(A u)F [pyvll'''[Rivi](x) f/—1[A u]
Pl+ "1.. .A p/A "/F [Pl%11 ' ' ' [P/8i /(Ax+ u) (2 g)

The causal character of F+(x) can be deduced directly
from the fact that u(y, &j) exp(ip x) and b*(y, W j)
Xexp( —ip x) enter with equal coeKcients in (2.1).

(i) Symmetry. F+(x) are symmetric under interchange
of any two index pairs [/i, v„]~ [/i, v,].

(ii) Antisymmetry F. +(x) are antisymmetric under
interchanges p„~v„within any one index pair:

p f~»11" — p I&loll " (2.12)

(iii) DNuli[y F+.(x) and F (x) are, respectively, self-
dual or anti-self-dual with respect to each index pair
[/i„v,]:

&u~~»lp [ l[~»&l" =2' [~~lb»&l'''6 W&1 (2.13)

(iv) Trucelessness. The complete contraction of any
pair of indices [/i„v„], [ /iv, ] gives zero:

n n P [pl&ll [82&sl ' ' ' —0g Pl+2g~l &2

It is also true that any single trace vanishes:

P [plyll [v»al ~ "—0gal&

(2.14)

but this follows from (i)—(iv), and will therefore not be
listed as an independent condition. Conditions (i) and
(iv) are of course empty for j=1.

These four conditions imply that the F+(x) each have
at most 2j+1 independent components. Condition (ii)
lowers the number of independent values taken by each
index pair [/i„v„] from 16 to 6, and (iii) lowers it further
to 3, so under (i), (v'i), and (iii) alone the number of
independent components would be the same as for a
symmetric tensor of rank j in three dimensions, i.e.,

(j+2l
I

= l(j+1)(j+2).
[ 2)

c. Identification of F~(x)

In Sec. III of Ref. 3, we showed that the only free
fields which can be formed out of the operators

u(y, +j)e"*+b*(y,W j)e-"*
must transform under the homogeneous Lorentz group
as a direct sum of those (2A+1)(2B+1)-dimensional
irreducible representations (A,B) with

8—3=~j. (2.15)

Indeed, the irreducible fields are determined uniquely
by the representation (A,B) under which they trans-
form, as

AB(x) —(2~)
—3/2 d//p(2

( y [)2+a i/2—
XD.,-~'"'Ã(P)]D~.s"'[~(P)]
X [u(y, +j)e'v'*+b~(y, W j)e '&'~], (2.16)

But condition (iv) imposes 1V; 2 further constraints, so
the net number of independent components is at most

X, E; p 2j+1. — ——
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where D&~&LR(P)) is the usual (2J+1)-dimensional
unitary representation of the rotation R(p) which takes
the s axis into the direction of p, and the indices e and 6
run by unit steps from —A to +A and —8 to +8,
respectively. LThese remarks apply for half-integer j as
well as integer j.j

We have learned from Secs. IIa and b above that
F~(x)transfiorm according to some reducible or irre-
ducible representation of the homogeneous Lorentz
group, with dimensionality at most 2j+1.But of the
irreducible representations (A,B) satisfying (2.15), the
ones with the smallest dimensionality are the 2j+1-
dimensional representations (j,0) for helicity —j, and
(0,j) for helicity +j. Hence F (x) and F+(x) must
transform purely according to the (j,O) and (0,j) repre-
sentations, and since the representation uniquely deter-
mines the Geld they must be, respectively, just the
(2j+1)-component fields q, (x) and X,(x) introduced in
Ref. 3. That is, the components of F &»"""'(x) and
F+&»"&~'"(x) are linear combinations of those of j,(x)
and X,(x), and vice versa. LThe fields &p,(x) and Xt,(x)
can be obtained from the general expression (2.16) by
setting 8=0 or A =0.]

d. Derivation of General Fields from F~(x)

Let us examine the Lorentz transformation properties
of the 2Jth derivatives (J integer or half-integer)

F [~i it" [~' i](x) (2 17)

This object is a symmetric traceless tensor with respect
to the X indices, so it transforms according to the
representation

F+: (J J)(0»)=(J j+J)o+".O+(J
l j—Jl)) (21g)

F: (J,J) (j,0) = (j+J, J)Q+. O+ (lj J l, J) . (2.19)—
The only terms in these Clebsch-Gordan series that
satisfy (2.15) are the first, so (2.17) transforms accord-
ing to the representations (J, j+J) for F+ and (j+J, J)
for Ii . By letting J run over all integers and half-
integers we can construct any representation (A, B)
satisfying (2.15), so any free field can be built up as
direct sums of (2.17). LThe only possible flaw in this
argument would arise if one of the (J, j+J) or (j+J, J)
terms vanished, but then (2.17) would vanish, and this
is clearly impossible. j

Incidentally, the same method of proof applies for
TWO, to show that the most general (A,B) Geld can be
obtained by projecting out the appropriate part of

or
~Xi' ' ' ~iiapr(x)

Bg, a)„„X.(x),

where q, (x) and X,(x) are the (2j+1)-component free
Gelds constructed for massive particles in Ref. 2. )In
this case the (A,B) part cannot vanish because y, (x)
and X,(x) cannot obey any homogeneous Geld equations. ]

In contrast with the massive particle case, the mass-
less free fields F+(x) obey homogeneous G.eld equations
which just express the absence of those terms in (2.18)
and (2.19) which do not satisfy (2.15).The simplest such
equation may be deduced directly from (2.1) and (2.9):

P [yl~ll ~ ~ ~ —0 (2.20)

ol
p' LEwiB$= 0,

vxE= —aB/a~, vx B=aE/at,

v E=O, v B=o,

justifying the identification of E and B with the free
electric and magnetic Gelds. A similar argument allows
us to identify the Gve independent components of
F+'&"'~"&' with the left- or right-handed parts of the
source-free Riemann-ChristoGel tensor.

It should perhaps be stressed that up to this point we

have done little but put the work of Ref. 3 into tensor
notation.

III. POTENTIALS

After having shown that any free Geld can be con-
structed from F~(x) and its derivatives, we might feel
justified in trying to construct the interaction Hamil-
tonians for photons and gravitons out of P+~&"l and
F~~"""""'.Bgt this does not work. Inspection of (2.1)
shows that the amplitude for emitting or absorbing a
massless particle of spin j by a Geld F~(x) will vanish
like p~'I' for momentum p ~ 0. Hence an interaction
built out of F~(x) could never give rise to the phe-
nomena most closely associated with electromagnetism
and gravitation, i.e., long-range forces and infrared
divergences. ' [Using other free fields would be even
worse; we can see from (2.16) that the amplitudes
yielded by afield of type (A,B) would vanish as p"+a 'I'
for p —+ 0, and (2.15) gives A+8& j.This is of course
because such fields can be written as the 2A th derivative
of F+(x) or the 28th derivative of F (x).j

Instead of yielding to despair at this point, let us
ignore the results of Sec. II for a moment, and try to
strip away the objectionable factor of P' in F~(x), by
writing these Gelds as jth derivatives of other objects.
We note by inspection of Eq. (2.1) that the F~(x) can

' Sy "infrared divergence" here we mean that the amplitude for
internal bremsstrahlung of a soft photon or graviton is dominated
by a term that behaves like eu ' for co -+ 0. See e.g., Ref. 4.

For instance, for j=1 the algebraic properties noted
under Sec. IIb let us write

F~~"~= e i(E'a"iB')
F t'"~=+i(E~+iB'),

so (2.20) gives
a

~x LEaiBj=ai—[EaiB],
Bt
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be written as generalized curls of the potentials

A &' » ("x)'= (2—rr) 'i d'p(2 I pl) 'I'e+"'(y) .e+»'(y)

X [a(y, &j)e'&' +(—)'b*(y, +j)e 'r 'j. (3.1)

This can be written

U[A]A "'"»(x)U'[A]=A "' ~ A»A~"'""&'(Ax)

+g c)»c+si" »-»~i" »'(x i1) (3.11)

That is,

P [» ]—gvA

P fyv] [X17] /PE'AA vs gyg11A vX

—c)"8 A»+r)"c)rA (3.3)
f+(y 1+oi)=ops'e+'(y)/Iyl (3.12)

We will fortunately not need the rather complicated

(3 2) explicit formulas for C'~. However, for an infinitesimal
Lorentz transformation A&„= 3"„+o&"„ the functions

f+(y,A) are infinitesimal

and so on. The potentials A~(x) which are symmetric in
their p, indices, vanish if any one p, index is zero and C+ is then given by the simple expression

(3 4) C'+"'"(»'1+~)=s(2~) '" d'p(21 y I) '"A~o»" »=0

and have zero trace

g A Islam'' Pg —0

They satisfy the free-field equations

it4X" .ej—(}

(3.5) Xf+(y, 1+~)e~"i(y)".
X [a(y, &j)e'"'—(—)'b*(y, Wj)e "*j (3.13)

(3.6)

~r', en»rsc) A ss "s&—c)~rA+»ss» c)siA riss" »' (3 7)

and of course Asi" »(x) =A+ui »(x)"+A» sr(x)"(3.14)

i B»" »(x)=A+si "»(x) A»" »(x). —(3.15)
(3.8)[ ]2A»"'&i=0

We will 6nd it convenient from now on to shift our
attention from A~(x) to the potentials A (x) and B(x),
dined by

The discussion of Sec. III makes it clear that the
A~(x) cannot be fields, in the sense of (2.4) and (2.5).
Indeed, we can see that they are not even tensors,
because their time-like components vanish; if they were
tensors then they would transform according to the
(—,'j, j) representation of the homogeneous Lorentz
group, and this representation does not satisfy the
fundamental condition (2.15) for fmlds constructed from
the operators a(y, &j) and b*(y, W j).

But F~(x) are tensors, so the noncovariance of A~
must be manifested in the appearance of gradient terms
in the Lorentz transformation law for the potentials, "
which do not show up when we take curls to obtain
F~(x). In fact, this is the case. A simple calculation using
(3.1), (2.6), and (2.7) shows that

UP.]A~sr" "(x)U '[Sj-
=s„,» i1„,.s (2~)-»' d'p(2

I y
I)-»s

with

X [e~"'(y)—p" f,(y, i1)j. [e~"'(y)—p" f~(y,&)j
X[a(y, &j)e'"'s +( )'b*(y, Wj)e '&'s~j—(3.9)

f+(y,~)=~,'e+'(y)/I ~-'y
I
. (3.10)

is See e.g., J. Schwinger, Phys. Rev. 74, 1439 (1948); 127, 324
(1964).

A particle that interacts with left- and right-handed
particles with the same coupling constant will be coupled
only to A(x), while one that has coupling constants of
opposite sign to left- and right-handed quanta will inter-
act only with B(x). Hence an ordinary charge will

couple only to A&(x), while a magnetic monopole will

couple to B&(x).The two fields can be distinguished by
their different behavior 'under parity (P) and time-
reversal (T):

PA "r' "»(x)P i= (—)rA"' "»(—x, 1), (3.16)

P»B' "»'( )xP'= —(—)'B»"'»(—x, 1), (3.17)

TAsi'"»(x)T '=(—)' As'i»'( x 1)—(3.18)

"These are derived using the E and T behavior of the operators
u(p, ) ) and b*(p,X), as worked out in Sec. IX of Ref. 3. In order to
obtain the particular sign changes given here for I' it is necessary
to adjust the relative phases of a(p, +j) and u(p, —j), while the
sign change under T can be obtained by adjusting the over-all
phase of both operators. The important thing is that the I' and T
sign changes are both opposite for A(g) anti B(r), because P
interchanges helicities &j, and because T is ahtiunitary.

TB»"'» (x)1 '= ( )'B»"''»(x, —
&) .—(—3.19)

In Sec. VIII we will discuss reasons why nature has not
made use of B(x) in forming the interactions of massless
particles.

Since the photon and graviton are both purely neutral,
we will surrender a little of our extreme generality, by
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restricting ourselves to the case of particles identical
with their antiparticles. It mill be convenient to dehne
phases so that

(3.20)

We note that eg&*= eel", so now we have

W "Vg —++I1".Vj

Therefore (3.14) and (3.15) give A(x) and B(x) as
Hermitian operators:

A"'""'(x)=A"'"""(x)=(2x)-'" ~'p(2lpl)-'" 2 s+"'(p) ".~+"'(11)L0(p, +j)~'"'+0*(p, ~j)~ '" *~ (3.22)

B"'""'(*)=B"'"""(*)=—i(2x) '" d'p(2lpl)-'" 2+c+"'(p)" c+"'{11)L0(u,+j)s'"'+0 (p, ~j)~ '"'3 (3 23)

The potentials A(x) and B(x) are not tensors, and
cannot be made into tensors by redeiniton of the
polarization vectors, because condition (2.15) does not
allow us to construct (-',j;,' j) tensor fields of rank j for
massless particles of hclicity ~j.On the other hand, the
true tensor 6elds F~(x) of rank 2j (and any other truly
covariant 6elds) give amplitudes for emission and ab-
sorption of soft quanta which vanish at least as fast as
p~ I fol' momentum p~ 0) 111 coll'tl'Rdlctloll to Gill'

everyday experience with photons and gravitons. There
sccDl to bc just two ava1lablc methods fol the cir'cum-
vention of this diKculty:

1. The traditional approach' is to introduce operators
for 6ctitious particles of helicity other than +j (some
wltll llcgatlvc probab111tlcs) 111 sllcll R WRy that A(x)
and B(x) become true tensor fields.

2. Alternatively, we can resign ourselves to the non-
tensor character of A(x) and B(x), but construct the
interaction Hamiltonian so that the 5 matrix is never-
theless Lorentz-invariant.

I will follow the second path. One reason is that no one
likes unphysical particles, or the indeinite metric and
subsidiary state-vector conditions that they entail. But,
more signiicant, the la& of manifest Lorentz covariance
in the second approach means that we must impose
powerful restrictions on the interaction Hamiltonian in
order to obtain a Lorentz-invariant 5 matrix. This
fcaturc 18 a minor nuisance 1f wc alc sure wc Rlx'cady
kno%' thc correct theory of photons and glavltons, but
it becomes all-important if what we want is an 0 priori
derivation of electrodynamics and general relativity.

So we must ask what sort of couplings we can give
A (x) and B(x) without violating the Lorentz invariance
of the 5 matrix. For the moment, wc mill assume that
only A(x) enters in the interaction, (e.g., no magnetic
monopoles) and will return to the more general case in
Sec. VIII.

A Lort:ntz transformation A~„ induces on the potential
A(x) a combined tensor and "gauge" transformation

UfA)A"' ""'(x)U I)Aj=A„"' A„"&A"'""&'(Ax)
4

+p g»@»" v~ixws »(x I1) (4 1)".

B»&II„, „,(x) =.0.. . (4 5)

%e will remove most of the guesswork in the next sec-
tion, but let us accept (A) and (B) for the moment as
necessary requirements for Lorentz invariance.

Thclc are two famlhar types of conserved syxQmetric

tensor: for j= 1 there are th, e currents JI' of additively
conserved quantities such as char ge and baryon number,
and for j= 2 there is the symmetric stress-energy tensor
8I'". In addition, it is easy to construct conserved currents
of the "Pauli"-type for any j:

I.»" »'(x) —g„.. .g,gua~jI "bi&il(x) (4 6)

where Z is any tensor antisymmetric within each index
pair LII,I j and symmetric between different index pairs.
A familiar example for j= 1 is the Pauli-moment current

However, coupling the potential A(x) to the current
(4.6) is equivalent to coupling the tensor Geld P(x) to
Z(x), and cannot by itself give 6nite amplitudes for
producing or absorbing very soft massless particles. In
particular, the "charge" carried by {4.6) vanishes, i.e.,

d'x gp..l;0»" »(x) =0.

with C=C++C . LSce Eq. (3.11)j. The potential

appears in the interaction Hamiltonian H'(i) coupled
to a current

(x)=—S.H'(—t)jbA'i "(x), (4.2)

but when we sum to all orders of perturbation theory the
matrix elements for creation or annihilation of real or
virtual massless particles are determined by the current
in the Heisenberg representation

g~;,...;,.(x)—=exp(iBx') g„...;,.(0) exp( —iHx') . (4.3)

The form of the two terms in (4,1) then leads us to
guess that the Lorentz invariance of the 5 matrix re-

quires g to have the properties
(a): g;,...;,.(x) is the spatial part of a symmetric

tC11801 g» p (X)y

UI A)g„,...„,.(x)U II A)=h„,"' ~ A„,."&P„...,,(&x) . (4.4)

(b) ' g» p ls collscrvcd
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The only currents which avoid this criticism are the
charge (or baryon number, etc.) current J& and the
stress-energy tensor 0&". Hence we conclude that Lorents
ineariance forces the photon potentia/ A "(x) to be coup/ed

to J"(x), and the graeiton potentia/ A""(x) to be coup/ed

to e""(x),except that in both cases there is the possibility
of adding extra terms like (4.6) to J& and 8"", or equiva-

lently, of adding interactions involving the covariant
fields Fi&"'(x) or F'&"'i"'t'(x).

In fact, nature does not seem to take its option of
using terms like (4.6) in the interaction currents of
massless particles. For the photon we have clear evi-

dence of this in the success of Dirac's calculation of the
magnetic moment of the electron. And also, the very
absence of massless particles with j~3 is symptomatic
of nature's abhorrence of Pauli-type currents, since
these are the only currents with which such particles
could interact. For photons the absence of Pauli cou-

plings is sometimes referred to as the "principle of
minimal electromagnetic coupling, " but it remains a
mystery nonetheless. Perhaps the solution will be found
in considerations of high-energy behavior, since the
Pauli currents are worse in this respect than J& and 8&",

and, in particular, can never give renormalizable
interactions.

It seems fairly obvious that the statements that A&

couples only to J& and A&" couples only to t/&" (except in
both cases for possible Pauli terms) are equivalent, re-

spectively, to gauge invariance of the second kind and
to Einstein's equivalence principle. We will not pursue
this point further here, as it would lead us into the
Lagrangian formalism, which we have been so far suc-
cessful in avoiding. Instead, we will give a direct deriva-
tion of Maxwell's and Einstein's equations in the
Heisenberg representation, in Secs. VI and VII.

V. LORENTZ INVARIANCE OF THE
FEYNMAN RULES

In order to understand better what conditions are
actually necessary and sufhcient for the Lorentz in-
variance of the S matrix, we will now examine the
Feynman rules generated by formula (3.22) for the
potentials A(x). We have already remarked in Ref. 4
that the requirements (4.4), (4.5) for a conserved tensor
current are sufhcient for the Lorentz invariance of
S-matrix elements with external massless particle lines
(provided that the covariance of matrix elements of J~
is not spoiled by the internal massless particle lines) and
that these conditions are also necessary at least on the
light cone in momentum space. Our remaining task is to
examine the Lorentz transformation properties of the
internal massless particle lines.

The coordinate-space propagator of the field A(x) is

easily calculated as

(2'{A"'""'(*)A"'""'(y)})e

=(2s.) ' IIP1' ' tv'vl' '' 'vi(p)

with

&& Ce(x—y) e'&' &»+0(y —x)e'&' &r-*&j (5.1)

1191~ ~ iv v'v 1 ~ ~ ~ vi(.p)
=Z+ e+"'(p) "'+"'(p)e+"'(p)*" '~"'(p)' (5.2)

In momentum space the propagator is

6 ~~"' "~" "v(q)=—i d4xe-'s'(T{A»"'(x) A "i 'v(y))),

For j= 1 we easily calculate (in Appendix A)

II""(«)=g""+n"q "+n"q"—q"g
n~= {0,0,0,1)

(5 3)

(5.4)

In order to express (5.4) in terms of a non-light-like q&,
we set

q"= Cq"+n" (I «I —q') 7/I «I (5.5)

~""-.(q) =g""/(q' —ie). (5.8)

The second term ~""graa is not covariant, but it is pro-
portional to factors q" or q" which give zero" when
multiplied into the conserved currents connected by
g,&". The final term 6/'"~„ is also not covariant, but it is
characterized by the absence of the pole at

I q'I =
I «I:

6 "i„(q)=n n"/I«I'. (5.9)

Hence it gives a coordinate-space propagator that is

» This is easy to prove in electrodynamics, where the current
does not involve the potential; see R. P. Feynman, Phys. Rev.
101, 769 (1949), Sec. 8. LThis result is also implicit in the theo rem
proved here in Appendix B.g The situation is enormousiy more
complicated in the case of gravitation, where the "current" must
involve the potential A&"; we will not attempt a treatmqgt gf this
highly nontrivial problem here.

and we obtain

11""(q)=g""+((n"q"+n"q")q'/
I «I ')

—(q"q"/I « I')+(q'n"n"/I «I ') (5.6)

Hence the propagator may be written as the sum of
three terms

~.""(q)=~""-.(q)+~""".e(q)+~""i-(q) (5.7)

The first term Ai'"„(q) is the usual covariant tensor
propagator
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local in time:

(29r) 4
d'qe'0 &»aP"1.,(q)

= tI (x' y—') $(x y—)n"n" (5.10)

$(x)=(2m) ' d'qexp(iq'x)lql '=1/4 Ix—
yl (511)

and it may therefore be cancelled by the addition to
E1'(t) of the familiar Coulomb interaction

1
Hc«1'(t) =— d'x d'y g(x, t) X)(x—y)4i0(y, t) . (5.12)

2

jp(t) —eiHf tgp(p)e iH&—t (5.13)

In particular, 6P"~,4(q) does not have a temporally local
Fourier transform so it cannot be cancelled by adding a
term to H'(t), and it must be eliminated by requiring
the current tip' to be conserved.

All this is familiar for j=1, and it works out much
the same for j~ 2, because the general polarization sum

II(q) is built up out of the IIP". For example

Note that this cancellation is only possible because
(5.12) is temporally local; the interaction must be local
in time because of its deinition as

j=2 Lsee Appendix A$
11»PSVIVS(q) lt PIVI(q)IIPSvS(q)+IIPIVS(q)IIPSVI(q) 11»PS(q)ilvIVS(q)] (5.14)

IIPIPSP3 I 9 3 1 I 11» IIIPR SIIP3 3+IIPI SIIPR 3IIPS I+IIPI SIIPR IIIP3 ly IIPI SIIPS IIIP3 44+.IIPI SIIPI RIIP3 I3L
+IIPI lIIPvS SIIPv3 S] V—I IIPIVIIIPSP3IIvSV3+IIPSVIIIPIPSIIvSv3+IIPSvIIIPI IPIS3v+$411»VSIIPSPSIIVIVS6L

+IIPIVSIIPIPRIIvlvS+IIPSVSIIPIPSIIvIVS+IIPIVRIIPSP3II"lvs+IIPS"SIIPIPSII"IVS+IIP3331IPIPSII"IVS j (5 15)

and so on. Evidently the propagator for any integral j
can be decomposed as in (5.7), into a covariant part

built up out of the g„„plus a noncovariant part
A~,q proportional to one or more factors of q„, plus a
noncovariant part h~„which lacks the pole at q'=0.
The last term is to be cancelled by adding a temporally
local term to 8'(t). The second term 6„,0 is not tem-

porally local, so it must be eliminated by requiring that
A(x) be coupled to a conserved current.

For instance, Eqs. (5.3), (5.6), and (5.14) give the
three parts of the j= 2 propagator as

PIPSVIvS(q) = fgPlvjgPSvS+g44lvSgPSvl —gPIPSgvlvS j/
2(q' —i0), (5.16)

nPlqvl+nvlql41 q2nPlnvl

4PIPSVIVS(q) gPlvl+ q0+
lql'-

(n44$qv2+ nv2qP2)

X q' (5.17)

+ Gve similar terms.

PIPSvlvS(q) —[gPlvlnPSnvS+gP9vSnPlnvl

+gill v9nPSnv1+ gPSvlnPInv9 gl41PSnvlnvS—

g»vSn»nP—$5/2l q l
2+n»n"InPw"Sq2/2

l q l

4 (5.18)

(29v) 4 d4q e'40' i«»44II PIPRvlv2(q)

—I r «PlvlnPSnvS+gPSVSnPlnvl+gglv2nPSnvl2'
+gl4$vlnPlnv2 gPIPSnylnvS gvlv2nPlnP2

+n»n InPw"$]g(x' —y') m(x —y)
+1nPlnvlnPSnv2t)(XO y0) b(X y) (5.19)

The gradient term (5.17) does not contribute if we

require the "current" /PE(x) to be conserved. "The
term (5.18) gives a temporally local contribution to the

propagator

where $(x) is given by (5.11), and

@(x)—= (29r) ' d'q exp(iq x) lql '= h(0) — . (5.2p)
Sx

LWe will see that the divergent constant h(0) gives no
trouble. ) In order to cancel (5.19) we must add to the
Hamiltonian a "Newtonian" term:

1
B'N, (t) =— d3xd3yf 2gPo(x, t)g„(y,t)

:AP.(x,t)8o—o(y,t) lgoo(x, t)8P-.(y, t)

+la o(*,t)Ao (y, t) j&(x—y)

+ d'xd'ytl00-(x, t)j 00(y, t) 8(x y) . (5.21—)
2

In Sec. VII we shall see that this term, ugly as it seems,
is precisely what is needed to generate Einstein's 6eld
equations when we pass to the Heisenberg representation.

The conclusion suggested by the above is that the
conservation and covariance of the current plus the
presence of direct-interaction terms like H'g, ~ and
H'N, ~, are together the necessary and suficient con-
ditions for the Lorentz invariance of the S matrix. In
Appendix B we show that these conditions do in fact
imply the Lorentz invariance of the Smatrix in quantum
electrodynamics. ' Our proof of their sufIiciency makes
their necessity rather evident, and can also obviously
be extended to any massless particle theory in which the
potential does not itself appear in the current. The
rigorous treatment of Lorentz invariance in cases like
the gravitational or the Yang-Mills ield where the
potential must appear in the current requires a much
more elaborate discussion, and I reserve this for a future
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paper. [The problem has lost some of its urgency, be-
cause wehave already seen in Ref. 4 that very simple and
general arguments insure that any Lorentz-invariant
theory of massless particles with j=i or j=2 must
possess the most striking dynamical features of photons
and gravitons, to wit, the conservation of charge and
the equality of gravitational and inertial mass. )

c-number current hg&(x) is, to first order in hg

Se =i d'x(p out~Air'(x) ~uin)8g;(x)

dt d'x d'y(P out
~
g&'(x, t)

~
n in)

VI. DERIVATION OF MAXWELL'S EQUATIONS X n(x —y) Sg(y, ~). (6.»)
ere ore we invent a ourth component of A~~ xThe space-components of the vector potential A ii"(x)

in the Heisenberg representation are defined, as usual, by

A ir*'(x) —= U(xo) A '(x) U '(xo) (6.1) A '(x,r)—= d'y X)(x—y)g o(y, t) (6.12)

U(t) =—exp(iHt) exp( —iIPt) (6 2)

~f th f t' l H 'lt '
d ~ ~f+~ which enables us to write an expression like (6.11)

compactly as
the total Hamiltonian. The interaction-representation
potential A'(x) is explicitly given by

Se =i d~x(p out~Air"(x) ~n in)bg„(x). (6.13)

A*(x)=(2n.) 'i' d'p(2~p~) '"P e+'(p)

&( [g(p, +1)e'"' +a*(p, W 1)e 'i") (6.3)

The 6eld A&' obeys the Poisson equation

V'Air'(x) = —pic'(x) . (6.14)

so it satis6es the field equations

'A'(x) =0

B.A'(x) =0

and the commutation reltions

[A'(x) A&(y) j='0,

[A'(x) A. '(y) j=0,

[A '(x),A. '(y) g'= iS"(x—y),
with

~'i(x —y) = (2x) d3p II'~'(p) exp[ip (x—y)j
=8; P(x—y)+8 8 $(x—y).

(6.4)

(6.5)

(6.6)

(6 7)

(6.8)

Also, (6.12) and the current conservation condition
(4.5) let us write (6.10) as

&'A~'(x) =-a~'(x)+~0~;A~o(x). (6.15)

Together (6.14) and (6.15) yield Maxwell's equations

a„F "(x)=-g„(x) (6.16)

F~""(x)=8"Air"(x) 8"A —
i&r( x)—. (6.17)

The particular form of (6.14) and (6.15) arises because
(6.1) and (6.5) impose on AIr"(x) the Coulomb gauge
condition

a,A '(x)=0.

+ 'A ~'(x) =—g~'(x)+ 808 'A rP(x)

(6.18)

It may be of interest to note that in the absence of

(6.9)
current conservation (6.15) would become

The lemma proved in Appendix C thus allows us im-

mediately to write down the 6eld equation for A' in the
Heisenberg representation:

p~A„'(x, &)

—8; d'y $(x y) B„pic—~(y, t)

and Maxwell's equations would read

d'y &"(x—y)8~'(y, ~) a„F&~'(x)=—g&&'(x)+ a; d'y n(x y) a„pic~(y,t)—
g~'(x, ~) g;8; —d'y K)(x——y)ga'(y, t). (6.10)

However, the response of one system of charges to
another system cannot be described solely in terms of
the three-vector field A~'(x), because there is also a
direct Coulomb interaction (5.12) between the two
systems. For instance, it is easy to show that the S
matrix for a transition n -+ P caused by an infinitesimal

~ F~"'(x)= —8 '(x).

The crucial importance of current conservation for
Lorentz invariance is apparent again in these field
equations.

VIL DERIVATION OF EINSTEIN'S EQUATIONS

The traceless part of the spatial components of the
gravitational field A ~&"(x) in the Heisenberg representa-
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i gigkhfi+ l9 8+2
~„~ih' jg)(x—y)

(7.9), ;&;~igito(x y—)2

( ) 1/4gl»l

«)=g(0)-I»it'x.
Qa"C thais gm.a of App

s satisfie (7.1)

z l-A~"(xt) —' "'~ 'tg Aa"(»t)
LA't(x), A "(y)j=0,

l
A "(x) A "(y)j=0

—'gy'j, kl(x y)

(7.5)

(7.C)

7.7) or more exp
' '

x licitlyLA "(*)A "(y)j

II', ' "y, t)8oB'~"(y,t)~A'+le" y, t o
v A~&i' AH"(x, t) ,'b'&bi, iA~—- -'~"4iga (», — d y(8

y; — 7.11)

xt)]= —g '(x, t)+-,)

—28'8~8oB[ d y JJI—-' ir"'(, t)b"BiBijn(x y ———, ', '
y;oy'~z—~(y, t)~'~t ,'ga-—
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ravitationa al
can be written

(»t)8«(y, t)j (—--' «(x,t)8"(y,t)-o «,* y
' ' y, t —,'e';(, t)a-(y, t)—', zoo,d'*d'yL2a'. (,t)a'. (y, t —,',H'N. i(t) =

'
n is relate tdtoteth interaction per representation

'

ent to

rre „, '
the Heisenberg rep

'
n

' t
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the vector p
w to inven

k,l

1, ,. . . P
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A I'"(x) in order toreprresentation g
This interaction

t) 8(x y) . —+- xd' d'y 8oo(x,t)8 o(y,
2

Therefore, viee deGne

d' 8~"(y,t) &(»—y,Airio(» t)= d y (7.12)

f a transition+ mati'ix or aWith these defi
' '

nitions, t e
x lsto an infinitesima cn~P ue o

3
Aii (x,t)= ~'y ~"(y,t) &(»—y), (7.13)

A ~"(x)
l
n in)Sg„„(x).5 ~= —7 d x(p Out

nts obey the Geldic Geld components o eyThese synthetic e
eq

Air«(x, t)—=— ~"(y,t) &(x—y)jd'yLga (y, t e

"( t)h(» —y). 7.14)~'y g~ y,
2

(7.15)V'AII' x —— '0 x

(7.16)a, = —a a«(x),
' x —-' «(x)+-'A Jrj(x) 7 1V'Ail«(x) = —-', pic, '(x)——, Il -,'' x . 7.1
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Using the current conservation condition (4.5) let us
write (7.11) as

CI'A~"(x) = r)H—'&(x)+'', 8"g-rr&„(x)+8s8'A~"(x)
+asa'Arr&'(x)+8'8& (A Jr'"(x) ', A—rr-' s( x)j. (7.18)

To the field equations (7.15)—(7.18) we must append
two 6rst-order equations, which remind us that we
have defined the traceless part (7.1) of AIr" to be
divergenceless

8 A ir"(x) = g'8 A Ir' (x) (7.19)

and have defined Air+ and Air'; in (7.12) and (7.13) so
that the conservation of rirrs" relates them by

q,A„,s(,) —-', aoAa';(x) . (7.20)

The complicated form of (7.15)—(7,18) just arises from
the fact that we happen to have de6ned A~&" in the
peculiar gauge characterized by (7.19) and (7.20). We
might have avoided some algebra along the way had we
chosen a diGcrcnt polRlizRtlon tensor in foI'Inlng the
potential (7.2), but the choice we made was the most
obvious generalization of the Coulomb gauge used for

j= 1, and at any rate has brought us safely to our goal.
Equation (7.21) can also be put in the familiar form

Rrr "(x)--,'g "Rrr"i(x) = —g~ "(x). (7.23)

If g&&"(x) were proportional to the energy-momentum
tensor of matter alone then (7.23) would be identical
with Einstein's equations iLl the weak 6eld limit, where
we set the Einstein metric tensor equal to the Minkow-
ski g&" plus our A~&", and keep only terms of 6rst order
in A~&". However, such a theory would not be Lorentz
invariant, because I orentz invariance requires that
B„grr""=0, and this condition is fulfilled only if the
current gird'" contains terms involving A rr~", representing
the energy and momentum density of gravitation. If we
therefore identify g&"" with the full-energy momentum
tensor 8""of matter plus gravitation, Eq. (7.23) becomes

highly nonlinear. As remarked by Gupta, " there ls

obviously one choice of a conserved 8&" which makes
(7.23) equivalent to Einstein's nonlinear equations,
namely that obtained by identifying the nonlinear terms
on the left-hand-side of Einstein's equations with the
negative of the gravitational part of 8&". In fact,
Feynman'4 has shown that this is the only choice which

"S.N. Gupta, Proc. Phys. Soc. A65, 608 (1952).
"R.P. Feynman (private communication). I am indebted to

Professor Feynman for a discussion of this point.

Equations (7.15)—(7.20) can be P««geth«comPactly
as

R «"(x)= g~s"(x)—+ 'g""Aa"~(-x), (7.21)
where

R~s"(x)=Z'A ~s"(x) &"~~A~"—'(x)
—a"ai,Aa""(x)+&"&"Ae"),(x) (7 22)

works. In Feynman's Lagrangian approach, Lorentz in-
variance is built in, but other desiderata of perturbation
theory such as unitarity can be lost by making the
wI'ong choice of 8~

~ while ln our RppI'oRch unltRrlty Rnd
the particle interpretation are built in, and only Lorentz
invariance can go wrong; therefore we may presume that
the sort of covariance proof given in Appendix 3 for
photons will only work for gravitons if we choose 8I'" in
agreement with Einstein's theory. However, this still
leaves an ambiguity in the matter part of 8&", because
we can always add Paul1 terms such as (4.6).

VIII. MAGNETIC AND OTHER MONOPOLES

V(e saw in Sec. III that the particle operators for
mass zero and integer spin j can be used to construct
two different Hermitian potentials, a norxnal one
A»"'»(x) with parity and time-reversal-phase (—)',
and an abnormal one B»'"»(x) with P 'and T phases
equal to —(—)'. /See Eqs. (3.14)—(3.19).j Both A(x)
and B(x) must be coupled to conserved tensor currents.
However, the Hermitian current J"of charge (or baryon
number, etc.) and the Hermitian energy-momentum
tensor 0&"(x) both have normal P and T phases, by
which we mean that their spatial components obey the
same P and T transformation rules (3.16) and (3.18) as
for A'(x) and A "(x).Therefore, both P and T invariance
do not allow B&(x) and B&"(x) to be coupled to jl'(x) or
0&"(x). We could, of course, couple B(x) to a Pauli
current (4.6), but such interactions can be rewritten in
terms of A(x); for instance the coupling B"8"Piyso„„fJ
is equivalent Lusing (3.7)j to A&B"go„„gl.Hence, we
would normally conclude from I" or T invariance that
all interactions may be expressed in terms of the normal
potential A(x), and in particular that there can be no
magnetic monopoles. '5

But there is one way that magnetic monopoles can
occur without violating I' or T. Suppose there is a
particle which turns into its antiparticle under the
operation of either parity" or time-reversal, and that
the number of such particles is conserved. Then the
Hermitian current M'&(x) of the particle would undergo
an extra sign change under I' and T, and hence could be
coupled to Bl"(x). Note that in this case P or T would
forbid A&(x) from being coupled to M&(x); that is, a
magnetic monopole cannot also carry a normal charge.
Note also that we are defiN&sg P and T s'o that they act
as usual on familiar particles like electrons and photons,

'5 The apparent violation of time-reversal invariance by mag-
netic monopoles has been noted by L. I. Schi8, Am. J. Phys. , M,812 (1964).

"This is sometimes expressed in the statement that thy true
symmetry is not E but I'3E, sphere 3f changes the sign of all
magnetic monopole moments. See ¹ F. Ramsey, Phys. Rev. 109,
225 (1959). We would prefer to say that 3II takes magnetic
monopoles into their antiparticles, and include this in the de6nition
of C, I', and T. (The product CRT takes all particles into their
antiparticles, including magnetic monopoles. ) This rede6nition of
T resolves the contradiction noted in Ref. 15.
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and it is these ordinary inversions that take magnetic
monopoles into their antiparticles; if all particles ha,d
this abnormal behavior under I' and T we vrould just
interchange the definitions of I' and CI', T and CT,
A~(x) and B~(x),charge and magnetic pole strength, etc.

In contrast, E or T do not allovr the abnormal gravita-
tional potential BN"(x) to interact with anything. Even
if there were magnetic monopoles vrhich ment into their
Rntiparticles under I' and T, they would still make a
contribution to the energy-momentum tensor 8~"(x)

which behaved normally under I' and T, and vrhich

therefore could only be coupled to the normal potential
A~"(x).

Since magnetic monopoles are a,llowed by C, I', and 7,
but a,lc not obselved ln QRtUlc, wc must Rsk lf thclc ls

any other reason vrhy they should not exist. Zvranziger'~

has noted that their existence vrould give the charge-
monopole scattering amplitude A(s, t) two very peculiar
branch points in s nea, r 3=0. This suggests that ficM

theories of photons, charges, and monopoles might be
UQRvoldRbly Rcausal, Rnd thcl cfox'c Qot LoI'cntz lIl-

vaxiant. %'c novr shovr that this is the ca,se, at least
within the interaction-rcpresentation dynamicaj. frame-

work used here.
The trouble arises in diagrams in which a photon is

exchanged betvreen a charge a,nd monopole. Since the
charge current J„(x) is coupled to 2"(x) and the mono-

pole current 3E,(y) is coupled. to B'(y), the photon
plopRgRtox' will bc

—&g»~ (~)= 84' s- ~ &»(T(A~(x),B"(y)})&. (8.1)

This can be easily calculated using (3.22) and (3.23) and

the results of Appendix A vre 6nd

This may be compared vrith one-photon-exchange be-
tween two charges (or two monopoles)

In both cases the matrix element is invariant for q&

precisely on the light cone (n=0) but not otherwise.
The great difference between (8.4) and (8.6) is that the
o. term in (8.6) can be cancelled by a temporally local
interaction JOJa/I «I', while no similar cancellation is
possible iu (8.4).

Incidentally, the square root in (8.4) would yield
Zwanzigcr's branch points'~ if vre set e=o. . But the
failure of analyticity is academic if the theory of mono-
poles isn't even Loxentz invariant.

Thclc ls onc posslblc Ilopc fol sRvlng Lorcntz lnvRll-
ance. According to Dirac,"the coupling constant ge for
charge-monopole interactions must be an integer or a
half-mteger. Perhaps the exact 5 matrix ls Lorentz-
invariant for these particular large values of ge, though
not in any 6nitc order of perturbation theory. Hovr ever,
preliminary examination of the ladder series by A. Gold-
haber indicates tha, t this is unlikely.

There is a possibility that time-reversal as well as
parity is viola, ted by the weak interactions. In this case,
soInc of thc coQchlsloIls reached cRI'llcx' ln this scctloQ
might need revision. In particular, CI'T alone vrould
not prevent a particle from carrying R magnetic mono-
pole InomcQt Rs well Rs RQ ordinary chargcq OI' ln othcI'
words, of coupling with diferent strength to the left- Rnd
and right-handed parts of the electromagnetic 6eld.
And in the same way, all particles might respond with
di8erent couphng constants f~ (the ratio of gravita-
tional to inertial mass) to the left and right-handed
parts of the gravitational 6eld. However, this still vrould
Qot produce observable anomalies ln gra, vltatlonal inter-
actions, for Lorentz invariancc tells us4 that all particles
must have the same f~ and the same f (perhaps W f+).
The. contribution of virtual graviton lines in Feynma, n
diagrams vrould therefore be proportional to

This is not covaria, nt, but more important, it cannot be
spll't lip Rs 1I1 (5.7) lllto R coval'1RI1't pal't R 110IlcovR1'1RIlt

gradient part vrhich vanishes between conserved cur-

rents, and a noncovariant "local" part which can be
cancelled by adding a temporally local term to H'(t).

To see that this crucial decomposition is impossible

for (8.3), note that the one-photon-exchange matrix
clement for scattering of R charge, with conserved

current J„„and a monopole, with conserved current 3f„,

and this has the same form as if the coupling constants
f~ for right- and left-handed gravitons were the same.
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II&& —D22 —$

+1111—@2222—@1212—@2112—+2121

(A.4)

(A.5)

—I11221—. 111122— 112211—1/2 (A 6)

For j=k, (A.4) agrees with (5.4) or (5.6), so it agrees
with them for all j, because II&"(j) is related to II""(k)
by the rotation R&i(j) which takes k into q:

II&"(g)=E&i,(g)E" (j)IP&(k) . (A.7)

A similar argument veri6es Eq. (5.14) for 11»&'"'"'(j)
and veri6es Eq. (8.3) for &"(j).

APPENDIX B: LORENTZ INVARIANCE OF THE
QUANTUM-ELECTRODYNAMICAL S MATRIX

We shall show in a separate paper that if the inter-
action is translation and rotation invariant then the
S matrix will be Lorentz invariant if and omly if the
behavior of the interaction under infinitesimal "boosts"
takes the form

[K&,H'(t) j= —[K'(t),IP+H'(r)].
Here K~ is the generator of pure Lorentz transforma-
tions on the free-particle states; H~ is the free-particle
Hamiltonian, and H (/) is the interaction in the inter-
action representation

H'(3) =exp(iHrt)H' exp( —iHrt) .

The operator K'(t) is unrestricted, except that it must
have the same t dependence as H'(t):

K'(t) =exp(iHrt) K' exp( —iH~r) (8.2)

with the free-particle matrix elements of K' sufficiently
smooth functions of energy so that, effectively,

K'(t) ~0 for t ~+~ (8.3)

this limit being understood in the same sense as the
usual "adiabatic switching on and off" of H'(i).

We will prove here that (8.1) is satisfied in the
simplest case, i.e., quantum electrodynamics with an
A-independent current:

These are the numerators, respectively, of the photon
propagator linking two charges or two monopoles, the
photon propagator linking a charge and a monopole,
and the graviton propagator.

First take j=k, defined as the unit vector in the
s direction. Then the polarization is

e~'(k) = 1/v2, e+'(k) = &i/K2, e+'(k) = e+0(k) =0,
so the only nonvanishing components of (A.1)—(A.3) are

both the interaction and Heisenberg representations, i.e.,

a„J~(z)=0 (8 5)

C'(x)—= (2~)
—'i' d'p(2~p~ ) 'i'P e+'(p)

X [a(p, &1)e'"'—a*(p, %1)e '"' j. (8.7)

Hence J A transforms under infinitesimal boosts ac-
cording to

i[K~,J;(x)A'(x)] = (x,V xa,)—J;(x)a'(x)
+iJ„(x)a~C(x). (B.g)

Also, since J&(x) is a vector we have

i[K~,J'(x)]=J(x)+(x,V xa,)J—o(x). (8.9)

The V terms drop out when we integrate over 3 space,
leaving us with

[K,H'(/)]= —iBo d'x xJ,(x,t)A'(x, t)

d'x J„(x,t) 8&C(x,t)

i d'x—d'y J(x,t) X)(x—y)J'(y, t)

+i d'xd'y[BOJ (x,t)7x5)(x—y)J'(y, &) .

Using (8.5), and writing x in the last term as i~(x+y)
+,'(x—y), we -can put this in the form

[K',H'(t) $= —i(dK'(t)/dt) —I.(t)
with

(8.10)

K'(t)—= d'xxJ„(x, t)A&(x, t) —i d'x Jo(x,&)C(x,()

[H'(t), J'(x,r)$=0. (8.6)

(This is the case in spinor electrodynamics, and it can
always be arranged by introducing enough auxiliary
6elds to make the free-6eld Lagrangian linear in space-
time derivatives. )

The interaction (8.4) is manifestly translation- and
rotation-invariant, so we need only check that it satisfies
(8.1). The product J.A= J„A& is scalar except for the
extra 4 term in Eq. (4.1),which for infinitesimal Lorentz
transformations is given by (3.12) and (3.13) as

c(*)=e,(~)+c (*)= —i~;,c'(*)

H'(t) = — d'x J;(x,t)A'(x, t)

+— d'xd'y J"(x,t) $(x—y)J'(y, t) (8.4)
2

d'xd'y J'(x,t)xS(x y)J'(y, &)—, (8.11)
2

provided that the current is a vector and conserved in
I;(I)= i d @day—J,(x,t)P; (x—y)—Jo(y, t), (8.12)
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equation13) Then y will obey t

g &002

(» y)J a(y~ h) (C.g)( t) d y st

p', ;(x)=—'t ( ) ig, (x,.g)(x) .

the total curren
.

h J de6ned as "

(c.9)

(C.10)

(C.11)

( ) S (x)—goSaH (JII x

( h) U(t)S„(x)U '(t)

( ) U(h)S„(x U ' " .
te 6rst that

C,,do& y,.(x,t)P(y, hg('(h) H (h)

xL~(") ("' (8.14)

8.7) and (63) thatculate directly from . a . tBut we can calcu a e

min K'(t) "a6) the only ™n;n
C(x), and

Because of ( ',
that conta'"'"git H'(tcommute

therefore

LW, (x,h),C,(y, h)j
—' ) e»pLip (»—y)3= (2ir)-' d plpl- (~;,-S'; ~

=8;;S x-8"n x y)+—8;B,h(x y)=—r,,( x y—

so (8.14) gives

[I (t),H (t)j=-L(t .

(8 15)

Proof. We n

d U(t)/Ch = iU(t)H'(t)

dU '(t)/Ch= —iH'(t)U '
h .

time derivative of (C.6) gives

But C.S), (C.2), and (C.4) give t e co

x— (C.12)H . . . = i d'y P S '(y, t)n„„(x—y)H'(t), y.(x,t)j=+i d'y, x—

nteraction ,8.4).

D EQUATIONSTION OF FIELD E
E HEISENBERG R IIN THE H

t tion fields p„xre resenta ionthe interaction p t ionSuppose t e
'

have the properties

Z&y (x)=0,

L4-(x, h) A-(y, t)3= o,

(C 1)

(C.2)

h de endence (8.2), soAl K'(t) e ide yntl has the t epe
o) ( ) g' ( . . o B

because (8.1 ) is as "smoo
i

d'X S-~o(y, t)&-(»—y .

ond time derivative gives

t = U(t) f&(»h)+~IH'(t)Aj„~(»,h) =

Co& goS Ho(y, t) S„„x— . .13x—y) . (C.13

C.4 give the commutatorBut (C.S), (C.3), and (C.4 give

) 0 (yt)] &-(

h h
otentias A xLThis is the ca

higher
neral j in Sec.

H'(t) does no
the "partia curt fi t and define t e 'rs

—x . (C.14)+S '(yt)8;n .(y—x

arts let usand integrating by pUsing (C.14) and (C.1 an
write (C.13) a,s

+

. IfH'(t) tht ns of Q„and 8„$„.

tation field p„e eisenberg represen a
'

Define the eisen e

(y—x)8;S„(y,t)
x— „o t . (C15)&-(»—y) ~oS.~o(y,h)$.

al of

(C.2) with respect to t givesBut differentiating

(y—x)= &ma(C.6)

ield the desi~ed Eq. (C.S).(C.7) so (C.15) and (C.9) yield the esir

H

Qne X~ =—= U(t)y. (x,t) U-'(t)(,
e» iHrt) . —U(t) —=exp(iHt) exp —'

(c.16)

ban the
b the statement

' na x, ' S „(y—x)S rr(y, h)a, = ' a», t)+ d'y
'x

t S„(x,t)by„x,


