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are also possible. In that case, the results imply that
0.8(

~ f ~
(2.6. It is important to note that the experi-

mental point in Fig. 10 is consistent with at least one
value of $. If the muon weak-coupling strength C„were
appreciably different from the electron weak coupling
strength C„the experimental result would not be con-
sistent with any value of $. In order that the experi-
mental result be consistent with at least one value of j,
it is necessary that 0.77(

~ C„~/~
C,

~

(1.48.
The ratio of the differential muon spectrum in

X+~ s'+ p++ v to the total rate of X+ —+ s'+e++ v

has been computed for / =+0.84. The computation and
the experimental results corrected for the detection
efficiency are shown in Fig. 1j..

The E+ +s'+ p—++v decay has been investigated in
a number of experiments. The results of the present
experiment are consistent with the results of the ex-
periments of Gidal et ul. ,"Smirnitski andWeissenberg, "
Jensen et al. ,

" and Brown et al.ss Our results are not in
agreement with various aspects of the experiments of
Dobbs et al 21 and Boyarski et al.22

"G.L. Jensen, F. S. Shaklee, B.P. Roe, and D. Sinclair, Phys.
Rev. 136, B1431 (1964~."J.L. Brown, J.A. Kadyk, G. H. Trilling, R. T. Van de Walle,
B.P. Roe, and D. Sinclair, Phys. Rev. Letters 8, 450 (1962)."J.M. Dobbs, K. Lande, A. K. Mann, K. Reibel, F. J. Sciulli,

SUMMARY

An analysis assuming a pure vector interaction with
constant form factors and equal muon and electron
weak-coupling strength has been shown to be consistent
with the experimental observations. The vector form-
factor ratio P can be real or imaginary. The probable
solutions for P are shown in Fig. 10.There is no evidence
on the basis of the present experiment that the form of
the leptonic weak-interaction current Jq in the coupling
to the current of the strongly interacting particles which
changes strangeness Jq'~'=' is different from the form
of Jq' in the coupling to the currents which do not
change strangeness.
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The interaction of a quantum system with an oscillating Geld is studied in a formalism which replaces
the semiclassical time-dependent Hamiltonian with a time-independent Hamiltonian represented by an
inGnite matrix. The formalism is developed as a mathematical equivalent to the semiclassical treatment,
and interpreted as a classical approximation to the quantum treatment of the Geld. Combined with a pertur-
bation theory for two nearly degenerate states, the formalism provides a convenient method for determining
resonance transition probabilities including frequency shifts and multiple quantum transitions. The theory
is illustrated by a detailed study of the simple case of a two-state system excited by a strong oscillating Geld.

I. INTRODUCTION

(CONSIDER a quantum system with two discrete~ states n and P. Let the amplitudes for the system
to be in these states be u (i) and ap(t); the energies,
E and Ep. Let an oscillating interaction connect these
states with a matrix element 2b cos~t, where b is real.
Then the system evolves according to the Schrodinger

*Based on a thesis submitted to the California Institute of
Technology in partial fulGllment of the requirements for the
degree of Doctor of Philosophy.

f Present address: National Bureau of Standards, Radio
Standards Laboratory, Boulder, Colorado.

equation (5=1)

d fa (/)~ f E 2b cos&A fa (t)
(1)

dt i ap(t)1 E2b cosa)t, Ep i.gp(t)

If at some initial time to the system is in state n., then

~
ap(t) ~' represents the transition probability to state P,

and is a function of t, to, 0, co, and the energy separation
E —Ep. A physical example of this simple system is a
spin one-half particle in a static magnetic field with an
oscillating magnetic field at frequency co applied per-
pendicular to the static Geld.
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If only one of the two exponentials in the cosine func-
tion is retained in the interaction (rotating-field ap-
proximation), Eq. (1) can be solved exactly. The
purpose of this article is to present some methods and
results obtained in an attempt to find the transition
probability for Eq. (1) without the rotating-Geld
approximation.

In Sec. II we develop a formal theory relating the
solution of a Schrodinger equation with a periodic
Hamiltonian to the solution of another Schrodinger
equation with a time-independent Hamiltonian repre-
sented by an infinite matrix. A physical interpretation
of the formalism is obtained by making a correspond-
ence with the theory which treats the interaction as
arising from a quantized field.

The formal theory is valid not only for Eq. (1), but
for any problem involving the interaction of a quantum
system having discrete states with a classical Geld (well-
defined amplitude and phase) of a single frequency.
Such problems arise in radio frequency and microwave
spectroscopy, especially when done by atomic-beam
techniques. For convenience we shall often refer to the
quantum system as an atom and the oscillating inter-
actions as arising from an electromagnetic field, although
nothing in the formalism restricts it to these cases. The
theory covers only the effect of the field on the state of
the atom, not the effect of the atom back on the 6eld.

In Sec. III we make a two-state approximation to
obtain transition probabilities for isolated resonances
in a form similar to the ""rotating-field" solution of
Eq. (1). The method applies to any time-independent
Hamiltonian for discrete states, such as that obtained
by the theory of Sec. II. Frequency shifts and multiple
quantum transitions are also accounted for by pertur-
bation corrections. The method is illustrated by dis-
cussing the resonance transitions of Eq. (1).

In Sec. IV a graphical method for finding resonances
in a time-independent Hamiltonian is discussed briefly.
Finally, in Sec. V some additional results are presented
on the solution of Eq. (1) when the exciting Geld is
strong. Detailed derivations and discussion may be
found in the author's thesis. '

II. THE FLOQUET THEORY

A. Development from Semiclassical Theory

We are interested in solving the time-dependent
Schrodinger equation in matrix form

an eigenvalue-eigenvector problem for an infinite
matrix. Lastly we express the time-evolution operator
in terms of these eigenvalues and eigenvectors. This
reveals the equivalence of Eq. (2) to an alternative
Schrodinger equation whose Hamiltonian is a time-
independent infinite matrix.

The general form of the solution of a differential
equation with periodic coeKcients is given by Floquet's
theorem. ' In matrix notation Floquet's theorem asserts
the existence of a solution of Eq. (2) in the form

F(t) =4 (t)e '&' (3)

where C is a matrix of periodic functions of t and Q is a
constant diagonal matrix. Since Xg is Hermitian, we
can in fact find a solution in which F(t) is unitary. Then

is the time-evolution operator, i.e., the solution of (2)
obeying U(tp, fp) =1. The diagonal elements q of Q are
called characteristic exponents. From (3) we Gnd
F(t+T)=F(t)e 'or. Hence the unitarity of F at all
times guarantees that Q is a Hermitian matrix, or that
the characteristic exponents are real. This is in contrast
with the case of the Mathieu or Hill equation where the
characteristic exponents are often complex.

From the formal solution of Eq. (2), one can show
that

detU(ti, tp) = exp~ —i TrK p)dt)).

By Eqs. (3) and (4), U(tp+T; tp) has the same eigen-
values as e '@~. Combining these results we discover
that the sum of the characteristic exponents becomes,
within an integral number of co's, just the time average
of the trace of Xq..

1 T

P q, =— TrÃc(t)Ch (mod a&) .
o

Thus, one relation among the characteristic exponents
may be found easily.

The next step after Eq. (3) is to expand the periodic
functions of C (/) in Fourier series. We use Greek letters
corresponding to atomic states to denote matrix ele-
ments in Eqs. (2) and (3), while Roman letters will
denote Fourier components. Then the matrix elements
of the solution F(t) can be written

p(d/Ch)F (t) =X&(t)F(t), (2) F p(~) p F pneinrute iqpt—(6)

where X~ is a Hermitian matrix of periodic functions
of t with frequency ip or period T(ppT=2pr). Our de-
velopment is in three stages. First we determine the
general form of the solution. Second we show the
equivalence of finding a solution of this form to solving

J. H. Shirley, thesis, California Institute of Technology, 1963
(unpublished).

Similarly the expansion of the semiclassical Hamil-
tonian is

(Xc).p= 2 Se p"e'""'.

' See, for example, F. R. Moulton, lNgerentiul Eqgutions
(MacMillan Company, New York, 1958) Chap. XVII, or other
works on di8erential equations.
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Substituting these expansions into the Schrodinger
equation we obtain an in6nite set of recursion relations
for the Ii p". They can be rewritten in the form of a
matrix eigenvalue equation for the q's:

2 (X.P '+~4.&~.)F.e"= CeF-e" (8)
yk

The operator is an infinite Hermitian matrix with rows

identified by the pair of indices n, e, and columns by p,
k. This operator will be denoted by X& and called the
Floquet Hamiltonian associated with the semiclassical
Hamiltonian Xq. %'e order the components so that n
runs over the atomic states before each change in e. In
the case of Eq. (1), for example, the Floquet Hamil-
tonian is

' Ep 2'

~ 0
~ 0
~ 0
~ 0
~ 0
~ 0

b

Etx M

0
0
b

0
0
0

0
0

It p
—0)

b

0
0
0
0

0
0
b

E
0
0
b

0

0 0
b 0
0 0
0 0

b E.+(o
0 0
0 0

0
0
0
b

0
0

Ee+ pp

b

0
0
0
0
0
0
b

E +2(o

(9)

Since two indices are required to identify a row or
column of the matrix, it is convenient to introduce Dirac
notation. Therefore, let Xp be de6ned by

( &~X,
~
Pm) =X.;=+~r.er„„.(1O)

The ~ne) are an orthonormal basis providing the above
matrix representation of X~. The index 0. represents an
atomic state, but the index m merely represents a
Fourier component. For the sake of nomenclature we
shall refer to ~ne) as a "Floquet state. "

From the form of Eq. (10) and the example (9) we
see that the Floquet Hamiltonian has a periodic struc-
ture with only the number of ~'s in the diagonal ele-
ments varying from block to block. This structure
endows the eigenvalues and eigenvectors of Xg with
periodic properties. The eigenvalues are in principle
found from the secular equation det(x p —Xl)=0. If Ii is
replaced by X+p~, the equation is unchanged. Hence,
if X is an eigenvalue, so also is X+p~ for any integer p.
We can thus label the eigenvalues li „=q +me, where

q =) ~ is chosen, for example, as that member of the
set having the smallest absolute value.

We denote the normalized eigenvector associated
with the eigenvalue X,„by~li„).By writing the eigen-
value equation for

~
Xe ~„),utilizing the periodic

properties of Xp and A,p, and making an appropriate
choice of phases, we find the following periodicity rela-
tion among the components of the eigenvectors:

( ~+p~X, ,)=(ne~~, .). (11)

Since both F e" and (n e
~
Xe p) are the components of

eigenvectors of X& with the same eigenvalue qp=) p 0,
they must be proportional. The unitarity of F(t) forces
the proportionality constant to have absolute value one.
Hence by an appropriate choice of phases we can
identify F e" with (n n ~) e p) and rewrite Eq. (6)

We have thus expressed the solution (3) of Kq. (2) in
terms of the solution of the eigenvalue problem for the
Floquet Hamiltonian.

We now use Eq. (12) for F(t) in Kq. (4) for U(t; tp).
With the aid of the periodicity properties and a change
of summation indices, the time evolution operator
becomes

Ue. (t; to)=Z 2 (P&l&.~)
n Vl

Xexp/ —k„(t—t,)j(li„~no)e'""'.

Since the eigenvectors
~
li~t) are complete, we can write

this more compactly as

Ue (I; tp) =2 (t +lexpL —~X@(t tp) j lnO&e'- . (13)

The matrix elements appearing in this relation are the
components of a vector (t) which satisfies the Schrod-
inger equation i(d jdt) [t)=xi ~t) with the initial con-
dition (tp)= (n0). Thus Ue (t; tp), which is the ampli-
tude that a system initially in atomic state 0. at time to

evolve to state P by time t according to the time-
dependent Hamiltonian Xe(t), can also be interpreted
as the amplitude that a system initially in the Floquet
state ~n 0) at time tp evolve to the Floquet state ~Pe)
by time t according to the time-independent Floquet
Hamiltonian Xp, summed over n with weighting factors
e'""'. The essence of our theory is that by using the
latter interpretation of Eq. (13) problems involving
Hamiltonians periodic in time may be solved by
methods applicable to time-independent Hamiltonians.

B. Relation to Quantized Field Theory

The interpretation of Eq. (13) becomes clearer when
it is derived by considering the periodic terms of Xz as
arising from the interaction of the atom with a quan-
tized 6eld. To this end we introduce the Hamiltonian

F e(t)=P (nejgp )e~~~'e *&a' (12)
XQ —Xp+Xf+Xj )
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where X, is the Hamiltonian of the atom, Xy is the
Hamiltonian of the field, and X; is the interaction
Hamiltonian, time-independent in the Schrodinger
representation. The field is to have a single frequency,
hence we use for Xy just the Hamiltonian of a single
quantum harmonic oscillator of frequency or. We intro-
duce basis states ~n I), where n refers to the state of
the atom and e refers to the excitation state of the
oscillator, or the number of photons present. In this
basis X, and XJ are diagonal.

If this matrix representation of X@ is written out for
a specific case, such as that corresponding to Eq. (1),
the similarity between it and X& will be immediately
apparent. There are only two differences. In X@,n runs
from zero to infinity, while in X&, e runs from minus
infinity to infinity. Also the o6-diagonal elements of Xq
depend on e (e.g. , proportional to ge if X; is propor-
tional to the annihilation operator), whereas those of
Xp do not. But if we consider Xq in the vicinity of some
very large photon number X, the variation of matrix
elements of X, with e will be only of order 1/X. We are
thus led to the approximate identification

Xq ——Xp+Spil, (14)

which will be good only for photon numbers near g.
In writing Eq. (14) we are also associating the basis

states for the two matrices. We are saying that the
quantum state ~n 1lr+m) is approximately isomorphic
to the Floquet state ~n m) for m&&1V. This suggests that
in using Floquet states we can interpret them physically
as quantum states containing a definite, though very
large, number of photons.

This interpretation will be strengthened if by using
it we can reconstruct the semiclassical amplitude
Ue (t; tp) from the fully quantized theory. In the semi-
classical theory the oscillating interaction is con-
sidered to have a well-dehned amplitude and phase
which is unaffected by interaction with an atom. The
state of a quantum oscillator which most closely ap-
proximates this classical description is the so-called
oscillating wave packet, ' or pure coherent state. 4 In
terms of photon number eigenstates it is

with the coeKcients

A„=Ppp exp( —-', &p')(2"e!) '"
where fp is the dimensionless classical amplitude of the
field. The semiclassical amplitude Ue (t; tp) should cor-
respond to the large photon number limit of the prob-
ability amplitude to go from the atomic state 0. and
such an oscillator state at time tp to the atomic state P
and the same oscillator state at time t:

Ue-(t tp) =(tf le% L
—iXo(t—tp)]lto) (»)

'L. I. Schi8, Quantum 3IIechanics {McGraw-Hill Book Com-
pany, Inc. , New York, 1955), 2nd ed. , pp. 67-69.

R. J. Glauber, Phys. Rev. 131, 2766 (1963).

with
!t,)=Q„A„e-'""'o~n e)

( ty) =Q„A„e-'""')Pm) .

When we go to the classical limit ()p))1), the A„
coeKcients become strongly peaked about a very
large photon number X=-,'happ and extremely small else-
where. Then the only important terms in the sums in

~tp) and
~
tt) are those close to E Hen. ce in the limit it

should be ligitimate to replace Xo in (15) by the
Floquet Hamiltonian according to (14).We also replace
the quantum states by Floquet states. We can then use
the periodicity properties to transform away the
explicit appearance of X, leaving

U,.(t;t,)=P A„,„*A„
k, n

)&(Pk
~
exp) —ixp(t —tp)] ~n0)e" '. (16)

The sum over e is one plus a term of the order of
k'/1V. The matrix elements decrease rapidly enough
with k so that Eq. (16) reduces to Eq. (13) in the limit
of large X.A derivation of the semiclassical theory from
the fully quantized theory is completed by showing
that Kq. (13) satisfies Kq. (2) with the semiclassical
Hamiltonian. Thus, our Floquet theory, while mathe-
matically equivalent to the semiclassical theory, admits
an interpretation in terms of states for a quantized
6eld.

In a similar manner one can start from a quantized
Geld theory including several discrete frequencies with

photon numbers for each and evolve a Floquet theory
having several Fourier indices, one for each mode. This
many-mode Floquet theory has also been derived from
the semiclassical theory, the only tricky point being the
extension of Floquet's theorem.

C. Transition Probabilities

We can go one step further with the Floquet theory
by using it to express the actual probabilities for tran-
sitions between atomic states. Using the periodicity
properties for a bit of rewriting, we find

r. ,(t;t,)= (U,.(t;t,)('
=P (Pk ~

exp) —iXg(t—tp)] ~nO)e'"""

X(nm
~
expLiXp(t tp)5 ~Pk)—. (17)

We read this as the probability to go from the initial
atomic state n and a coherent field state (sum over m),
to the final atomic state P, summed over all final field

states (sum over k).
In actual experiments the initial time to, or equiva-

lently the initial phase of the field seen by the atom, is
not well dined, but is determined by a random process,
such as the time of a collision or the time of entry of an
atom into a radiation 6eld region. Hence the quantity
of interest is the transition probability averaged over
initial times to, while keeping the elapsed time t—to
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fixed. This average can be readily performed on
Eq. (17) yielding

I'. ,(I I,—) =P [(Pk [expL —ice, (I—I,)][no& ['. (18)

—S1
2pE +7

!Sea ——
/

—,'u* Ep+8p+ncoi'

Hamiltonian would be approximated by

Equation (18) can be interpreted as the probability to
go from a single initial Floquet state

~

n 0) (which con-
tains no phase information) to a Gnal Floquet state
~Pk), sunnned over all Gnal states of the Geld.

If we also average over t—to, we obtain the time
average transition probability

J'-s=Z 2 1(&k I
I vi&( 7il~0) I'=2 T'sP'-. (»)

where 8, bp, and part or all of I represent perturbation
corrections for the rest of the matrix. The Schrodinger
equation with X2 as Hamiltonian can be solved exactly
by elementary techniques. The resulting transition
probability is

P s(t) =
~
(Pis~ exp( —sXst) )n0) ~'= ()I~'/4q') sin'qt,

(21)
where

where the matrix T is defined to be a partial sum of the
squares of the eigenvector components

2;s=Z I& floss)I'.

and

4v'= lgl'+(~ —~ )'

&e„,= (E +8 )—(Es+hp) .
(20)

If all nonzero differences ) ~
—Xp are large compared to

1/r, where r is either t ts, or a—relaxation time, which-
ever is shorter, then I' is the transition probability
needed to compare with experiment. In other cases we
may wish to perform a weighted average of Eq. (18).

Regardless of the physical interpretation, Eqs. (18)
and (19) provide a method of computing averaged
transition probabilities which is superior to previous
methods' 7 that require a complete solution of the
Schrodinger equation for Us (I; ts), squaring, and
finally averaging away half of the laboriously com-
puted terms. We have now only to solve the Schrodinger
equation with the time-independent Floquet Hamil-
tonian. The infinite sum over k in Eq. (18) does not
cause difFiculty, since the matrix elements decrease
rapidly as k departs from 0.

III. PERTURBATION SOLUTIONS

A. General Procedure

In the usual case of a weak excitation, when the off-
diagonal elements in X,~ are small compared to most
differences between diagonal elements [in (9) b&(ra j, an
approximate evaluation of the transition probability
expression (18) is easy to obtain. We shall not use ordi-
nary perturbation theory but rather a version discussed
by Salwen in connection with resonance transitions in
molecular beam experiments. ' Salwen's technique is to
identify resonances as occurring between two nearly
degenerate diagonal elements of a time-independent
Hamiltonian. That portion of the Hamiltonian matrix
involving these nearly degenerate levels is separated out
as a two-by-two matrix with perturbation corrections
to its elements to approximately account for the rest of
the matrix. For example, if E =Es+mo, the Floquet

' F. Bloch and A. Siegert, Phys. Rev. 57, 522 (1940).
A. F. Stevenson, Phys. Rev. 58, 1061 (1940}.

7 J. H. shirley, J. Appl. Phys. 34, 783 (1963).
H. Salwen, Phys. Rev. 99, 1274- (1955).

Clearly only one term in the k sum of Eq. (18) can be
resonant for a given range of parameters, so we neglect
the others and use Eq. (21) as our perturbation approxi-
mation to Eq. (18).

Equation (21) is simply a generalization of the Rabi
formula long used by workers in atomic and molecular
beam resonance spectroscopy. '" It divers from the
usual perturbation transition probability" by the
occurrence of e in tf. This simple change makes Eq. (21)
valid for large times, whereas the usual perturbation
formula is good only so long as it is much less than one.
We have no averaging over a continuum as is required
for Fermi's "Golden Rule. "

The total procedure for finding resonance transition
probabilities by the Floquet formalism and perturbation
theory then reduces to three steps, each of which can
be practically done by inspection: (1) write down the
Floquet Hamiltonian, (2) write down Xs, the 2X2 per-
turbation approximant to the Floquet Hamiltonian
covering the transition of interest, and (3) write down
Eq. (21) with I and &e„,appropriately evaluated. The
usefulness of Eq. (21) breaks down only when reso-
nances appreciably overlap. In such cases a larger than
2&2 matrix must be diagonalized exactly, which is in-
convenient to do analytically.

B. Application to Two-State System

To illustrate results of the procedure just outlined we
consider the simple two-state problem given in Eq. (1).
The Floquet Hamiltonian is given by (9). Suppose that
the applied frequency co is nearly resonant with the
energy separation of the two states E =Es+&v. If we
take for 3'.2 just the two-by-two submatrix involving

N. F. Ramsey, Mo1eellar Beams (Oxford Vniversity Press,
London, 1956), pp. 115—155.

P. Kusch and V. W. Hughes, in Handbuch d'er Physik, edited
by S. Flugge (Springer-Verlag, Berlin, 1959), Vol. 37/1, pp.
54—73."L.D. Landau and E. M. Lifshitz, QNantum 3fechanics, Eon-
Eelativistic Theory (Addison-Wesley Publishing Company, Inc. ,
Reading, Massachusetts, 1958), p. 146, Eq. (42. 3).
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these levels with no perturbation corrections, we obtain
for the transition probability Eq. (21) with x=1,
N=2b, and co„,=E —Ep, i.e., the usual Rabi line-shape
formula. " This formula is the exact solution of Eq. (1)
when the cosine is replaced by one exponential (in mag-
netic resonance, when the oscillating field is replaced by
a rotating field).

With both exponentials of the cosine present we have
a nonresonant interaction of the states Ia 0) and

I p 1)
with the states IP—1) and In 2) through the "anti-
rotating" component of the oscillating field. We can
incorporate this interaction into K2 by perturbation
theory:

!

b

Ep+u& —f s/2re)

where 8 —Ep has been approximated by co in the correc-
tion terms. Our solution is the same as before except for
a shift of the resonance frequency: re„,=E Ep+P/~—.
This shift was first derived theoretically for magnetic
resonance by Bloch and Siegert' and is often referred
to as the Bloch-Siegert shift. However, the present deri-
vation of it is much easier than previous ones. ' " "

From the present derivation we see that the Bloch-
Siegert shift arises in exactly the same way as the shifts
due to couplings with other levels derived by Salwen.

They are due to a small intermixing of levels coupled
by the interaction. In the language of quantum elec-
trodynamics the shifts arise from virtual (energy-
nonconserving) transitions to the additional state and
back again. In the Bloch-Siegert shift the additional
state just happens to be distinguished by its photon
number rather than its atomic state.

In quantum field theory the matrix element

(p 1IR@Irr 0) is nonzero. An energy shift occurs by a
spontaneous virtual transition in the absence of an ex-
citing radiation field. This kind of shift occurs for all
possible frequencies of the radiation 6eld and has been
the subject of much investigation in the theory of
quantum electrodynamics. We are here assuming that
all such shifts, like the Lamb shift in hydrogen, have
been included. in the Hamiltonian of the atom. The
shifts we are describing here are increases to such shifts
due to the increased probability of the virtual transition
when quanta are present in the field, i.e., due to stimu-
lated virtual transitions.

By a careful application of perturbation theory in
diagonalizing the Floquet Hamiltonian and the reten-
tion of two terms in the k sum of Eq. (18) instead of one,
a solution of Eq. (1) can be obtained to second, or even
third order in i)/co without excessive labor. We consider
the Bloch-Siegert solution to be 6rst order. The second-
order solution is

$2 ( $2) $2 $2 — $2 ps+ +2

p(t) =—
I

1——
I
sinsqt+ — —+

p2 l ~2j 2~2 4~2 ps ps
cos2qt

I
cos2at+2 —sin2qt sin2~t

p
(22)

where

6= s ((0—res —bs/(o) (1—b'/4(os), &es =E —Ep,
p'= b'+6' and q= (1—b'/4'') p.

When b/a& is small and we are close to resonance, the
second line of Eq. (22) oscillates very rapidly compared
to the 6rst line and may be disregarded as not observed.
The first line is essentially of the form of Eq. (21)
except for a small decrease in amplitude and the addi-
tion of a constant term representing the nonresonant
background transition probability due to overlap with
other resonances. The third-order solution includes the
next higher correction term to the resonance frequency
shift and also some asymmetric distortion from overlap.
Similar results are encountered when other problems
are solved to higher order. Since the most pronounced
eGect is the resonance frequency shift calculated in 6rst
order, we can use 6rst-order solutions with increased
confidence in their usefulness, even when b/oi is as large
as 3.

In analogy with Salwen's method' we can 6nd tran-
sition probabilities for multiple quantum transitions
occurring between atomic states not directly connected

"S.Autler and C. H. Townes, Phys. Rev. 100, 703 (1955).

and
I=3, u= bs/2oP

re„,=E —Ep+ 3b'/2&a.

This result has been obtained previously by Winter"
and the transition has been observed by Marjerie and
Brossel. '4 Strong exciting 6elds are required to observe
it, since all three photons must impinge on the atom

1 J. Quainter, Compt. Rend. 241, 375, 600 (1955); Ann. Phys.
(Paris) 4, 745 (1959).

r4 J. Marjorie and J. Brossel, Compt. Rend. 241, 373 (1955).

by matrix elements of the interaction, but indirectly
connected through one or more intermediate states.
With the Floquet Hamiltonian we are not restricted to
distinct atomic states for intermediate states, but can
use the same atomic state as the initial or 6nal state,
but with a diGerent number of photons present. For
example, suppose E =Ep+3re. The states In0) and

I p 3) are not directly connected in the Floquet Hamil-
tonian (9), but are indirectly connected through I p 1)
and In 2) as intermediate states. A nonzero matrix
element between

I
n 0) and

I p 3) appears in third order
of the perturbation theory. Using it we find by our
general procedure a triple quantum transition proba-
bility of the form of Eq. (21) with
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before its virtual intermediate states decay back to the
original state. The lifetimes of the virtual intermediate
states are very short because of the large amount of
energy nonconservation (2~). Well placed atomic inter-
mediate states may require much less energy non-
conservation and lead to multiple quantum transitions
which are much easier to observe (larger I for a given
value of b).

As Winter" noted, the single two-state system de-
scribed by Eq. (1) shows resonances when E =Es+mv
for n any odd integer. " Perturbation theory on the
Floquet Hamiltonian enables us to easily 6nd a tran-
sition probability of the form of Eq. (21) for all of these
transitions. The results are (p is an integer)

a=2p+1,
I= (b'~+')/2'~-'(p!)'~'~ (p~0) (23)

~-.=~-—~s+I(2p+I)/EP(p+1)3I&'/" (p&o)

Keeping b and co 6xed and observing the transition prob-
ability as a function of coo

——E —Ep, we find resonance
near coo

——co, 3&v, 5', 7~, . The shifts are all towards
smaller ~s and decrease with increasing p. The widths I
decrease rapidly to the point where the transitions are
unobservable, both because of the powers of b/co, and
the factorials in the denominator.

In Salwen's work a time-independent Hamiltonian
was obtained by assuming a rotating-field type of inter-
action and then making a quantum-mechanical trans-
formation to a rotating coordinate system. The Floquet
theory makes this transformation unnecessary. On the
other hand, the rotating coordinate transformation on
Eq. (1) results in a periodic Hamiltonian with frequency
2~ instead of co, and the Floquet Hamiltonian cor-
responding to it has a simpler structure than (9),
although a somewhat confused correspondence with the
quantized field Hamiltonian.

Workers in magnetic resonance have often obtained
solutions for spin-Qip transition probabilities by solving
the corresponding classical problem of a spinning dipole
in a magnetic 6eld using a rotating coordinate system. "
Feynman, Vernon, and Hellwarth' have in fact shown
that the semiclassical Schrodinger equation for a two-
state system is mathematically equivalent to the classi-
cal vector equation dr/dt=~)(r. Hence the Bloch-
Siegert shift and all the multiple quantum transitions
derived above should appear in classical arguments.
Ramsey' has shown how the Bloch-Siegert shift may
be obtained by considering the problem in rotating
coordinate frames. The multiple quantum transitions

'5 Transitions with e even become allowed if cos~t terms appear
in the diagonal elements of the semiclassical Hamiltonian, e.g., if
in magnetic resonance the oscillating Geld has a component paral-
lel to the static Geld.

'6 I. Rabi, N. F. Ramsey, and J. Schwinger, Rev. Mod. Phys.
26, 167 {1954).

R. P. Feynman, F.L. Vernon, and R. W. Hellwarth, J. Appl.
Phys. 28, 49 {1957).

's N. F. Ramsey, Phys. Rev. 100, 1191 (1955).

can be derived by several successive transformations to
rotating coordinate frames whose axes are slightly tilted
with respect to each other. This procedure has been
successfully carried out for m= 3, 5, and 7, giving values
of u and &u„,in agreement with (23). But it is clear that
this method rapidly becomes much more complicated
than perturbation theory on the Floquet Hamiltonian.

The Floquet theory has the additional advantage that
it can be used with systems involving several levels
where the rotating coordinate transformation fails. For
example, suppose we have a three-level system with one
level nearly midway between the other two. The oscil-
lating 6eld has nonzero matrix elements only between
the rniddle level and each of the two end levels. For a
rotating field interaction Salwen's theory would predict
a double quantum resonance between the end levels.
For an oscillating 6eld interaction the Floquet theory
predicts and gives, solutions for not only the double
quantum transition, but also a quadruple quantum
transition and in fact a whole series of resonances in-

volving an even number of photons.

IV. INTERPRETATION OF EIGENVALUE PLOTS

When the radiation field is too intense for the per-
turbation solutions of Sec. III to be adequate, or when
resonances overlap, resort must usually be made to
some form of numerical computation. It is possible to
evaluate Eqs. (18) or (19) numerically since the sums
and the in6nite matrix can be truncated with negligible
error. Much information can be learned, however, just
from the characteristic exponents or eigenvalues of the
Floquet Hamiltonian. In the first place they represent
physical energy levels of the atom-radiation field system
in interaction and may be observed experimentally by
exciting transitions between them with a second very
weak field.""Also, a plot of the characteristic expo-
nents as a function of a parameter can be very useful in
locating resonances and guiding further numerical work.

Suppose in our time-independent Hamiltonian we
write the diagonal elements as linear functions of a
parameter y: a„y+b Following . Salwens we may plot
all the diagonal elements as a function of y on the same
graph and look for resonances where the lines cross.
Alternatively, we may plot the eigenvalues ) of the
Hamiltonian as a function of y."Besset et ul."describe
resonances as occurring where the curves for two eigen-
values approach each other closely but do not cross.
Their description can be verified by considering the first
and second derivatives of X (y).

By differentiating the eigenvalue equation for a time-

"W. Happer, Phys. Rev. 136, A35 {1964).
20 Such plots for a Gve-level system with y proportional to the

static magnetic Geld may be found in Happer's paper {Ref. 19).
Figures 1 and 2 of Ref. 12 and Fig. 1 of this paper are also of this
type.

» C. Besset, J. Horowitz, A. Messiah, and J. Winter, J. Phys.
Radium 15, 251 {1954).



JON H. SH I RLEY

independent Hamiltonian one obtains the relations": 0.5

N, /By =P„l Bx/By l
X ),

B9,. l(~. l we/By[a, )l2
-=2

jy yp'-a

(24)

0.2

(25) IU

Fze. 2. Time-
average transition
probability as a
function of ~0 with
b/44 = 4

If we assume that the eigenstate lX ) is composed
almost entirely of one unperturbed state l42), Eqs. (24)
and (25) tell us that ), is approximately a linear func-
tion of y with slope u . If we assume that the eigenstate
lX ) is composed ahnost entirely of two unperturbed
states, (24) and (25) tell us that X (y) is approximately
a hyperbola. Since Eq. (21) was also derived on the
basis of a two-state approximation, we can associate
with a hyperbolic region of an eigenvalue plot a tran-
sition probability between the two states of the form of
(21). In fact, the minimum separation of the two
branches of the hyperbola is equal to the width parame-
ter I and the position of minimum separation gives the
position of the resonance. Thus a perusal of an eigen-
value plot gives information about the location and
strength of resonances and whether a one- or two-state
approximation can be made or not, independent of per-
turbation criteria for such approximations.

V. TWO-STATE SYSTEM IN A STRONG
OSCILLATING FIELD

In the simple case of only two atomic states in the
Floquet Hamiltonian we can determine the time-
average transition probability completely from the
characteristic exponent. From Eq. (5) we have

q +qp=E +Ep, hence only one characteristic expo-
nent, which we call q, need be determined. Instead of
plotting q as a function of ~, as was done by Autler and
Townes, "we plot it as a function of cop =—E —Ep using
&o as a scaling parameter (see Fig. 1).Let E = 22&op and

E&———-,'~p. Then the diagonal elements of the Floquet
Hamiltonian (9) are linear functions of cop with slopes
+—,

' determined by the atomic state and independent of

photon number. Equation (24) becomes

where the T matrix was defined by Eq. (20). But the
normalization of the eigenvectors gives three other re-
lations among the four components of T. So all four
components, and hence the proportion of atomic state
42 or p in the corresponding eigenvector, can be expressed
in terms of the derivative of the eigenvalue Bq/B~2
Substituting such expressions for T into Eq. (19) we

find for the time-average transition probability

~.-p=-:[1-4(Bq/B-.) j
This remarkable result permits us to sketch the time-
average transition probability directly from a plot of
the characteristic exponent. Unfortunately, no such
simple relation exists when more than two atomic states
are involved, but to the extent that all but two atomic
states can be neglected, Eq. (26) should be approxi-
mately true.

Because of the existence of Eq. (26) the characteristic
exponent q for Eq. (1) ['eigenvalue of (9)j was studied
in detail as a function of b and ~p with co fixed as the
scale parameter. The following analytical approxima-
tions indicate the complexity of the function q. For cop

much less than the larger of ro, (ba&)"2, an expression in

terms of a Bessel function was found:

q=22[E +Ep+4d 4dg J2(4b/cd)] —. (2'l)

For s&2 much greater than the larger of co, (b~)'", an
expression in terms of a complete elliptic integral was
found:

where

q=2 (E +Ep)+(4b/ k)2rE(k),

k2 = 16b2/[16b2+ (&4
—o) )2j

(28)

Pro. i. Sm
branches of the char-
acteristic exponent
g as a function of ago

with b/co = ~~.

For b small compared to co and ~p, a power series with
rational functions as coeKcients was found:

2(a2b2 2400(aP+34022)b4
q= 2 (44—44O)+

~2 ~ 2 ~2 ~ 2 3

32442 (6) +(dp )b 8(opb'
+ + (29)

(~2 ~ 2)5 (~2 ~ 2)2(9~2 ~ 2)

ss Compare with the results of K. Aizu, J. Math. Phys. 4 762 Near cop=~ the expansion for q' is nonsingular and more

(1963). rapidly converging. It canbe used to And thehigher-order
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Fio. 3. Time-
average transition 0.3

robability as a 02
unction of cop with

b/a) =-', . 0.I—
0

terms in the Bloch-Siegert shift. We set Bq'/BoIO ——0 and
solve for cv to find the resonance condition

c0 =oro+b'/oIO+ b4/4cd0' —35b6/32oI o'—

The asymptotic position of the resonance is found from
Eq. (27):

where the numerical coeKcient is 4 divided by the first
zero of Jo.

Numerical integration of the Schrodinger equation by
a digital computer was performed over a sufEcient range
of values of b and coo to reveal the general behavior of
the characteristic exponent q. In Fig. 1 we have plotted
six of the characteristic exponents as a function of coo

with b= ~~. At the right of Fig. 1 the curves should not
actually cross, but their minimum separation is too
small to be shown in the figure. The close approach of
two brRnclies neRr coo= 3M~ Sco~ Rnd 7(d indicates the
presence of resonances which can be adequately de-
scribed by (21).

For the broad resonance near ~0——au the time-average
transition probability of Eq. (19) gives an adequate de-
scription since all frequencies in the time dependence
are of the order of co and not observed. In Fig. 2 we have
p1otted the time-average transition probability corre-
spoIldlIlg 'to Flg. 1 by llllIIlel Ical evalllatloll of (26) .Tile
vertical lines represent resonances whose width is too
narrow to be shown in the Ggure. The relative widths
(2N/cd) of the four peaks shown are 1.2, 1.6X10 ',
6X10 ', and 10 ~, respectively. The higher resonances
with so little area under them cannot be seen experi-
mentally because of the finite resolving power of the
apparatus.

As we increase b each resonance in Fig. 2 broadens
and shifts toward smaller values of c00 (see Fig. 3). The
curve is symmetric about coo ——0, hence the large tran-
sition probability there arises from overlap with the

0.5

+0= —co resonance. As we increase b further the slope of

q at oIo=0 changes sign t see Eq. (27)j.As this happens
the twin resonance peaks from ~0= ~~ coalesce into a
large broad background, while the three quantum reso-
nance rides up on this background to appear dominant
(see Fig. 4). As we increase II still further each resonance
in turn shifts in and broadens until it becomes lost in
the ever widening background, but at any given value
of b probably only about two resonances are broad
enough to be observable.

As b increases, the time-average transition proba-
bility for fixed ~ and ~0 increases to —',, and then Quctu-
ates closer and closer to ~~, hitting it repeatedly. %hen
b is large compared to ~0 the external oscillating field is
much stronger than the static or atomic Geld producing
the energy separation coo. Hence the state, defined rela-
tive to the weaker Geld, is no longer signi6cant and
merely averages out to about one half.

In Figs. 2—4 we have plotted the transition proba-
bility as a function of oIO keeping the ratio b/oI fIxed. In
magnetic resonance observations are often made this
way by varying the static magnetic Geld. But sometimes
one records resonances by varying ~ and keeping b and
~0 constant. Figure 5 shows such a plot. As b is increased

IIA —,,

)lIc

0.3—
0.2—

I I I I I I

0.5cIIo @o l 5coo 2.0' 2,5' 30ctfo 3.5ctio 4,0ctio 4.5oIo

Fzo. 5. Time average transition probability as a
function of c«with ic/coo =

the single quantum resonance in the plot will broaden
and shift outward to larger ~ indeGnitely. The other
resonances also broaden and ride along behind.

The Gelds required to achieve the situations just de-
scribed are uncommonly strong. To make b/oI=1 we
need a peak oscillating Geld strength of roughly 10'
V/cm at radio frequencies, 106 V/cm at microwave fre-
quencies, and 10' V/cm at optical frequencies. Such
strong fields can cause ionization or other eGects not
considered in the preceding theory. Any experimental
test would best be done at radio frequencies.
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