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Low-Energy J"-N Scattering and SU(3) Invariance*
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Phase shifts from K+-p and E+-d scattering up to 800 MeV jc are fitted by a sum of single-particle ex-
change terms and a "background" term representing unknown short-range forces. The background is
described by a low-order polynomial in s and t in the invariant amplitudes. The single-particle states in the
z~-channel are h., Z, F~*(1385MeV}, Fo*(1405 MeV), Yj*{1520MeV), and Fj*(1660MeV). A continuum
of zf'-channel K-E scattering below 400 MeV/c is also included. In the t channel the states are p and a 6ctitious
particle x which is supposed to represent the average eRect of co and y. The F*3lE coupling constants are
known from experiment or a combination of theory and experiment. The ratio of vector to tensor pXS
coupling constants is taken from nucleon electromagnetic-structure data. The other coupling constants are
regarded as free parameters to be determined by 6tting E-Q data. For good fits it is necessary to retain
the 6rst three orders in the expansion of the background term. This entails eight free parameters. Two sets
of Gts to the data are found, one with the Fermi-type I=0 phase shifts (S~sts large and positive) and one
with Yang-type I=0 phases (8»12 large and positive). In the Fermi case the Z and p coupling constants each
diRer by more than 6ve standard deviations from predictions based on SU(3) symmetry. The Z constant
also disagrees badly with results from forward-angle dispersion relations. In the case of the Yang-type phase
shifts, the coupling constants are essentially in agreement with SU(3) predictions. In the Yang case the
p term is necessary for an acceptable 6t, in spite of the large number of parameters. The parameters for p
exchange are badly determined by the data, so there is no possibility of working with co and p coupling
constants as separate free parameters. Exchange of scalar particles is considered as a model for the eRects
« "ABC" or "0"ql--ql- interactions at 310 or 400 MeV, and the E~-El interaction at 1.000 MeV. Inclusion
of such exchange terms aRects the parameter values of the other terms only slightly, and therefore does not
change the qualitative character of the 6ts to the data. The F* terms can also be omitted without changing
the general character of the 6ts. They are not small, but they are well represented by the background terms.
Unitarity corrections are estimated to be rather minor; they do not change the main conclusions.

I. THEORY BASED ON THE CINE-FUBINI REPRE-
SENTATION OF THE SCATTERING AMPLITUDE

CCORDING to the ideas of Mandelstam, ' a theory
of K-N scattering must simultaneously take into

account the three processes that are related by the
crossing principle; viz. , E+fff~ E+X,E+it'f~E+ ftf,

and E+E'.~X+X. We describe a systematic but
partly phenomenological theory based on this view-
point. Some important parts of the scattering amplitude
are illustrated in Fig. 1.X is any particle, resonance, or
two-body scattering state with the quantum numbers of
the u channel (E+1V—&E+X). f has the quantum
numbers of the I channel (K+X &X+X).Some o—f the
coupling constants of the vertices pictured are known
from measurements or from a combination of theory and
measurements. The others we attempt to determine by
a comparison of our theory with experiment. Besides the
simplest terms of Fig. 1, one has the contributions of
complicated many-particle states in the I and t channels
and the sects of unitarity which may be visualized as

Pp Pp

FIG. 1. Feynman graphs
showing n-channel statesI and t-channel state g.
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"rescattering" in the s channel (E+E +%+K).Sta—tes
X and $ of low mass produce the singularities lying
closest to the low-energy physical region. The back-
ground produced by states of higher mass (equivalently,

by short-range forces) is not expected to be small, but at
least one can hope that in the experimental region it
will be a slowly varying function of the invariants
s= (Pt+qt)s and t= (qt —qs)s, where P, and q, are the
four-momenta of the particles as shown in Fig.
Following Cini and Fubini, ' we represent this back-

ground by low-order polynomials in s and t in the in-

variant amplitudes. Specifically, let the scattering

*Work done partly under the auspices of the U. S. Atomic
Energy Commission.' S. Mandelstam, Phys. Rev. 115, 1''41 (1959).

' M. Cini and S. Fuhini, Ann. Phys. (N. Y.'l 3, 332 (1960); see
also J.Bowcock, W. M. Cottingham, and D.Lurid, Nuovo Cimento
16, 918 (1960).
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TABLE L The states X and g of Fig. 1.

u-channel states X
X Mass (MeU) J~

1115 ~+

1190 $+
1385 ~~+

1405 —,
' ?

1520
1660 -,'?

t-channel states g
Mass (MeU) J~~

750 1 +

780 1

1020 1

amplitude for isospin I be given as'

2'("=u(ps, qs)

X —& ")(r,)')+-V (qr+qs)&"'(~, )') u(p), qr), (1 1)
2

where u is a Dirac spinor, y=Py„j is a four-vector of
Dirac matrices, and A(1& and 8&~& are the invariant
amplitudes. Then the distant singularities are repre-
sented by "remainder" functions A „,B„as follows:

(1.2)

' G. F. Chew, M. L. Goldberger, F.Low, and Y. Nambu, Phys.
Rev. 106, 1337 (1957).

4 For references to the experimental data, see, for example, R.
H. Dalitz, Ann. Rev. Nucl. Sci. 13, 339 (1963);G. Puppi, ibid. 13,
287 (1963);M. Roos, Nucl. Phys. 52, 1 (1964); A. H. Rosenfeld,
A. Barbaro-Galtieri, W. H. Barkas, P. L. Bastien, J. Kirz, and
Matts Roos, Rev. Mod. Phys. 36, 977 (1964).' L. Brown and P. Singer, Phys. Rev. 133, B812 (1964); S. H.
Patil, Phys. Rev. Letters 13, 261 (1964).

6 A. R. Erwin, G. A. Hoyer, R. H. March, W. D. Walker, and
T. P. Wangler, Phys. Rev. Letters 9, 34 (1962); G. Alexander,
O. L Dahl, L. Jacobs, G. R. KalbQeisch, D. H. Miller, A. Ritten-
berg, J. Schwartz, and G. A. Smith, ibid. 9, 460 (1962).

The terms in n, P, and n, , ~ represent the zeroth, erst, and
second orders of approximation, respectively, if orders
are assigned by dimensions of the constants.

The resonances listed in Table I are all included as
zero-width "particles. " With more effort one could
account for widths, but such a refinement might not be
worthwhile at the present stage of the theory. Besides
the states of Table I, we also make some attempt to
account for the "ABC" phenomenon, 4 which has been
interpreted as a strong s-wave m-m interaction peaking at
about 310 MeV. %e represent it by exchange of a
J"=0+ particle with mass 310 MeV. This zero-width
assumption may be questionable. However, we find that
in Gtting the data introduction of an I=O, 0+ particle-
exchange term always has a fairly small effect on the
best-6. t values of parameters, rather independently of
the mass of the 0+ particle. In fact, we have tried three
different masses: 310 MeV for the ABC, 400 MeV for
the 0+ a meson postulated by Brown and Singer, ' and
1000 MeV for the apparent 0+ E»-E» interaction ob-
served by Krwin et al. ' In each case the data fits are only

mildly perturbed by the 0+ exchange. This circumstance
leads us to think we need not worry much about I=0, 0+
states in the t channel. In the present experimental
situation this is fortunate for our analysis, since it may
turn out that none of the three states mentioned actually
exists as anything like a resonance. A recent search for
the ABC in s.-p collisions gave a negative result, " and
the 0- and E»-E» interactions are based on somewhat
limited evidence.

Some known resonances of higher mass and of un-
certain spin and parity are not included explicitly. %e
assume that their effects can be represented by the
remainder terms of Eq. (1.2), or that they couple weakly
to our system, or that their quantum numbers are such
that they cannot enter the problem at all. The firmly
established resonances which are omitted are Y()*(1815
MeV), fe(1250 MeV), B(1220 MeV), X()(960 MeV), '
Ar(1090 MeV), 4 and As(1300 MeV)."Also, one group
has reported a broad isoscalar p-m resonance at 975
MeV."The Y()*(1815MeV) couples strongly to X 1V, s-o

perhaps its effects should be considered eventually. For
the present we argue that its large mass should enable
us to represent it by the remainder terms. This point
of view is supported by our study of the other Y* terms,
which have considerably smaller mass (compare Secs.
II and III). The f(), 8, and A r have not been observed
to decay into E-X, as far as we know, which gives us
some reason for neglecting them. The A» may have
J~=2 or 1+, in which case its coupling to E-E is
forbidden by parity conservation. The A2 is supposed
to have I= 1 and J~~= 2~, and its decay into E-E has
been observed. Goldhaber et ul." have reported the
branching ratios px. gx. If%=3:1:1.The A2 has a
relatively small K-E partial width and a relatively large
mass, so we may be justified in representing A2 exchange
only by the background terms. The Xo is thought to be
a 0 + state, in which case it does not enter our problem,
because of parity conservation. If the 975-MeV p-z
resonance turns out to have quantum numbers allowing
it to enter our problem, it will complicate an already
difIj.cult situation concerning l=0 particles in the
t channel. The difhculty is that E-X scattering data
seem to be very ineffective in constraining parameters
associated with such particles (cf. Sec. II). Fortunately,

~ I. M. Blair et al. , Phys. Letters 11, 79 (1964).
8 M. Abolins, R. L. Lander, W. A. W. Mehlhop, N. h. Xuong,

P. M. Yager, Phys. Rev. Letters 11, 381 (19&);D. D. Carmony
et al., ibid. 12, 254 (1964).

9 G. R. KalbQeisch et al. , Phys. Rev. Letters 12, 527 (1964);
M. Goldberg et al., ibid. 12, 546 (1964);P. M. Dauber et al. , ibid.
13, 449 (1964).

I G. Goldhaber, J.L. Brown, S. Goldhaber, J. A. Kady, K. B.
C. Shen, and G. H. Trilling Phys. Rev. Letters 12, 336 (1964);
S. U. Chung, O. I. Dahl, L. M. Hardy, R. I. Hess, G. R. Kalb-
Qeisch, ibid. 12, 621 (1964); M. Aderholz et al. , Phys. Letters 10,
226 (1964);J.F. Allard et al. , ibid. 10, 143 (1964).A. Bettini et al. ,
Padua preprint; J. Alitti, J. P. Baton, B. Deler, M. ¹veu-Rene,
J. Crussard, et al. , Phys. Letters 15, 69 (1965}."J.Bartsch et al., Phys. Letters 11, 167 (1964}.

"G. Goldhaber et al. , in Proceedings of the international
Conference on High Energy Nuclear Physics, Dubna, USSR,
1964 (to be published).



u channel, J~=-', +: Gtt (1,ys)+P+h. c. ,

Q chRnncl, J+= 2 ~+:

(13R)

"R. H. Dalits and S.F.Tuan, Phys. Rev. Letters 3, 425 (196O).
For a discussion of the E'-A virtual bound state in the light of
recent data, see R. H. Dalitz, Ref. 4."J.Schvanger, Phys. Rev. Letters 12, 237 (1964)."P. L. Connolly gf, u/. , in Proceedings of the International Con-
ference on High Energy Nuclear Physics, Dubna, U.S.S.R., f964
(to be puMished).

"M. Taher-Zadeh, D. J. Prorvse, P. E. Schlein, %'. E. Slater,
D. H. Stork and H. K. Ticho, Phys. Rev, Letters 11,4N (1963).

'7%. E. Humphrey and R. R. Ross, Phys. Rev. 127, 1305
(1962),

the Dahtz plots of Bartsch eI, e/ "favor J"=1+ 2 etc
in which case the state does not enter our analysis.

Among the states listed in Table I, two have un-
certain spin and parity; viz. , FP(1405 MeV) and
FI (1660 McV). Thc Fs Is assumed 'to bc tile Dali'tz-
Tuan" "virtual K-Ã bound state" with J~= ~~—.This
plctulc ls COIDpatlblc %'1th low-energy X-g scattering
data and also with the fact that strong attractive forces
in the ~

—E-g state result from vector meson exchange.
An alternative picture of Fss(1405 MeV) was proposed
by Schwinger on the basis of a U(3)X U(3) symmetry
scheme. '4 In Schwinger's theory, Yo* has J~= 2+. Our
discussion electively covers this possibility, for the
following reason. The -', I'() term, which we always in-
clude, turns out to be negligibly small. On thc other
hand, a, -',+I'0* is practically indistinguishable in its
CGcct on K-E scattering from the A. term. The A.-FO~

ma, ss difference has little CGect. Thus, with a reinter-
pretation of the number we call the AgÃ coupling
constant, Schwinger's I'0~ is accounted. for. The
FI (1660 McV) Is take?1 to bc R s stRtc. This RsslgII-

ment is based, on the recent experiment of Connony
et cl."%C 6nd that our results are virtually identical if
we take J~= 2+."The reason i.s that the large mass and
sma, ll E-A' branching fraction of Yy~ guarantee that its
CBect on E-E scattering ls very sInall for either parity
assignment, .

Besides the sharp resonances and particles of Table I,
we also investigate the cGect of s-wave E-J scattering
in the u channel. Vfc consider only the momentum
interval between 0 and 400 MCV/e laboratory mo-
mentum, in which the scattering is parametrizcd by
the Humphrey-Ross'~ complex scattering lengths.
Humphrey and Ross have two possible sets of scatter™
ing lengths, but that ambiguity causes us no trouble.
%1th either sct Rn cvRluRtlon of the R"channel integral
for E-Ã s-wave scattering results in a number which is
entirely neghgible. The results are tabulated in Sec. III.
Because of their smal1ness, these terms are omitted in
thC dRtR 6ts.

The various particle-exchange terms may be calcu-
lated. as the Born approximations of the following
Lagrangian densities:

t channel, J~=0+: gAt y+tNIaf tPy,

t channel, J~= j. :
(1.3c)

v"'A.kv "+(v"'/2~)%~,4(~"v" ~"v")

+&7(~.4' dt~—,4)v" (13d)

The nucleon and K-meson fields are represented by P
and p, respectively, while % and %s represent J= s and
J=-,' (Rarita-Schwinger) hyperon ftelds. Scalar and
vector boson 6elds are denoted by q and q». The
nucleon mass w ls lntI'oduccd to make coupling con-
stants dimensionless. The interactions as given in Eq.
(1.3) are for isospin zero for exchanged particles. For
exchange of isospin one in the I channel one replaces
gp by /vs in Eq. (1.3a) and Eq. (13b).For isospin one
in the t channel one replaces ~ and Ptg by iP~if and.
qV~It in Eq. (1.M)."Formulas for the partial-wave pro-
jections of the single-particle exchange terms are to be
found in the Appendix.

The single-particle exchange terms may also be cal-
culated by introducing delta functions in the appro-
priRtc Rbsorptlvc pRI'ts RppcRI'lng ln thc dlspcI'sion
relations. By COIQpRI'1Qg thc pole rcslducs obtRlncd ln
this way to those found by the Lagrangian calculation,
we may relate some of the coupling constants to meas-
ured resonance parameters. For instance, for R J=~3
state in the e channel we have

B' 3 (Mttt)' n

4s (M+m)' —p' q'
(1.4)

» Sakurai introduces g/2 rather than v (cf. Ref. 34). Therefore
bus values for y,~If.y,~y(') are four times ours, by dednitjon.

where M is the mass of the state, m and p are nucleon
Rnd E-meson massesq rcspcctlvclyq Rnd g ls thc center-
of-mass momentum of the X-Ã system at energy M.
The constant e occurs in the imaginary part of the J= ~3

K-X partial-wave amplitude: Imf= (s/2)nb(It's 3f)—
Here f is de6ned as Lexp(2ib) —1j/2iq above the E-X
threshoM. , where 5 is the complex phase shift for -a state
of de6nite isotopic spin. Above the E-Ã threshold one
has n=xF/q, where 1' is the width of the resonance in
energy units, and x is the fraction of decays into the
E-X channel. Below thrcshoM 0. is a negative number
which is Qo longer determined by the experimental
parameters of the resonance. Thus, the coupling con-
stants EP for Fo*(1520 MeV) and F (1660 MCV) are
determined by measured widths and branching ratios.
The F I*(1385MeV) lies below threshold, so there is no
direct experimental access to its coupling strength. For
the two resonances above threshold Eq. (1.4) yields the
following coupling constants:

Fs*(1520MeV): B'/kn =0.41,
FP(1660 Mev): a /4 =0.17. (1.5)

We have assumed that Fs~ decays into E-E 35% of the
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time (@=0.35)."We take x=0.25 for Y'~* decays, al-
though there is some experimental uncertainty about
this number. Alvarez et al.20 obtained x&0.05, while
Bastien and Serge" found @=0.2S&0.10 provided
J= ~. Smith et g/. "report the branching ratios hm. Zm-.

An-s". Zm~:EX= 7:6:1:(?):()3).This uncertainty does
not cause us much difhculty, since even if x is as large
as 0.5 the contribution of F&* exchange is quite minor.

The coupling constant for Fo*(1405 MeV) is deter-
mined approximately by the I'f)* mass alone, if the
Dalitz-Tuan model is assumed. In that model the I=O
s-wave E Vamp-litude f may be extrapolated below
threshold by means of a constant complex scattering
length. In the zero-width approximation for the reso-
nance one finds

Imf —(Jf
~ q ~/~)~g(NU2 ~) (1 6)

where E and &u are the (unphysical) energies of N and

E, respectively, at the energy M of the resonance; q is
the (unphysical) E cV momentum-at the energy M. By
once more equating the pole residue appearing in the
dispersion relation with that obtained from the Lagran-
gian, we have

G' m'Iq
F'p*(1405 MeV):

4n E(o 8+m
=0.32. (1.7)

"M. I'erro-Luzzi, R. D. Tripp, and M. B.Watson, Phys. Rev.
Letters 8, 28 (1962).

2'L. W. Alvarez, M. H. Alston, M. Perroluzzi, D. O. Huwe,
G. R. KalbQeisch, et al. , Phys. Rev. Letters 10, 184 (1963)."P. L. Bastien and J. P. Berge, Phys. Rev. Letters 10, 188
(1963).

~' G. A. Smith et al. , Proceedings of the Conference on Recently
Discovered Resonant Particles, Ohio University, Athens, Ohio,
1963 (unpublished).

23 R. H. Dalitz, Rev. Mod. Phys. 33, 471 (1961);see especially
Sec. IV.

~ M. Gell-Mann, Phys. Rev. 125, 1067 (1962); California
Institute of Technology Report CTSL-20, 1961 (unpublished);
Y. Ne'eman, Nucl. Phys. 26, 222 (1961)."K. C. Wali and R.L. Warnock, Phys. Rev. 135, 81358 (1964).

'6 V. E. Barnes, P. L. Connolly, D. J. Crennell, B.B. Culwick,
W. C. Delaney, et al, , Phys. Rev. Letters 12, 204 (1964).

The constant-scattering-length extrapolation may not
be accurate because of the proximity of singularities due
to exchange of light bosons. "Nevertheless, the estimate
of Eq. (1.7) leads to such a small contribution to E
scattering that variations of &100% about that
estimate have no appreciable effect on our results. This
circumstance is closely connected with the small mag-
nitude of the terms from s-wave X-S scattering, which
has the quantum numbers of Fo*(1405 MeV).

For the coupling of I'&*(1385 MeV), we can only
obtain an estimate based on SU(3) symmetry. 24 It seems
rather certain" that I'~*(1385MeV) belongs to the (3,0)
decuplet representation of SU(3), along with X,&,*(1238
MeV), ~q2*(1530 MeV), and Op(1686&12 MeV)."By
assuming that the decuplet-baryon-meson coupling
constants HQ sQ' have ratios given by strict SU(3)
symmetry, one can calculate II&,*~+' from the known

I g*(1385 MeV): EP/kr = 1.9. (1 9)

We employ Eq. (1.9) in our calculations.
The above estimates of the four F~ coupling constants

may not be extremely accurate, but it turns out that
they are quite sufFicient for our purposes. In Sec. II we
show that the interesting parameters that we try to
determine by data 6tting (e.g. , the p coupling constant)
are highly insensitive to the I'* constants. In fact, one
can omit the four I"* terms entirely, without great
changes in the best-fit values of the free parameters.
This is true in spite of the fact that one of these terms
LFO*(1520 MeV) $ is not particularly small.

Very little is known about the EEA. and EÃZ
coupling constants, in spite of the fact that the problem
of their determination has existed for a long time. The
best we can do is calculate these constants from SU(3)
and the known value of the z/g coupling. Even this
does not yield unique values, since the ratio of D- and
E-type'4 meson-baryon couplings is uncertain. Martin
and Wali" have determined a range for this ratio on the
basis of a single-baryon exchange model. In terms of
their D /mixing param-eter J, they fmd 0.15&f&0.55.
Since Gx~q'= 3(1+2f)'G -~~' and Gx~x'= (1—2f)'
&(G ~~', an f in this range implies

8.4&Gx~g /kr& 22,

7.3)Gx~x /4m )0.15.
(1.10)

We have taken G ~~'/4n to be 15. The large value of
Grr~q implied by (1.10) has been regarded with some
suspicion, since it was thought that the E-meson
couplings were significantly weaker than the pion
couplings. However, the E coupling strengths were
estimated by comparing the Born approximation for
K-hyperon photoproduction with experiment. '9 It now
seems likely that this kind of estimate is much too
crude. A recent experiment of Peck'0 on y+ p ~ K~+A
at 1200 MeV was intended to measure the EEL
coupling constant, but resulted in no conclusion at all
about its value. Peck attempted an extrapolation in
cos8 to the E-meson exchange pole, following a method
used successfully to detect the pion pole and to measure

"V. Gupta and V. Sirigh, Phys. Rev. 135, 31442 (1964).
"A. W. Martin and K. C. Wali, Phys. Rev. 130, 2455 (1963).

M. Gell-Mann, Phys. Rev. 106, 1296 (1957).
3' C. W. Peck, Phys. Rev. 135, B830 (1964).

width of S3/~~. The result is

Vl*(1385 MeV): H'/br= 2.4. (1.8)

In general, one expects large symmetry breaking in the
decuplet, and the prediction of coupling-constant ratios
on the basis of strict symmetry is risky. An idea of what
to expect may be obtained from a specidc model of the
broken decuplet by Wali and Warnock. 25 The model
agrees well with most observations and satis6es the
coupling-constant sum rules of Gupta and Singh. ' It
yields the value
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p(s&/p(1& —4 4 (1.12)

We have employed Eq. (1.12) throughout our work.
The coupling constant product ++It-.pp++p may be

estimated from SU(3) invariance, if we note that yNN p"'
has already been estimated. by obtaining p p from the p
width, and y p ~~p") from isospin-dependent s-wave
sr-X scattering. Sakurai' finds yNNp "&'/4&r=y p'/4&r

=0.55; since yKKp
——y p according to SU(3), we have

also

YKKpYNNp /4&r (1.13)

For the coupling constants involved in the q and co

exchange terms, no estimates can be made from SU(3)
invariance alone. In fact, in the picture of q-ao mixing, "
one would have to know the q-co mixing angle X, the
D-P ratio for coupling of the octuplet of vector mesons
to the baryons, and the strength of coupling of the

"R.L. Walker, Proceedings of the Teeth Annual International
Conference on High Energy Physics at Rochester, 1960 (Interscience
Publishers, Inc. , New York, 1960), p. 17.

3'V. Cook, D. Keefe, L. T. Kerth, P. G. Murphy, %. A.
Wenzel, and T. F. Zipf, Phys. Rev. 129, 2743 (1963)."C. de Vries, R. Hofstadter, and R. Herman, Phys. Rev.
Letters 8, 381 (1962); and two errata: ibid. 8, 466 (1962); and 9,
414 (1962}.

'4 J. J. Sakurai, Theoreti cat Physics, International Atomic
Energy Agency, Vienna, 1963 (Lectures presented at the Seminar
on Theoretical Physics organized by the International Atomic
Energy Agency, Palazzino Miramare, Trieste, July —August,
1962); Proces&lings of ihe In(ernalional School of Physics "Enrico
Fermi, " Course Z6 (Academic Press Inc. , New York, 1963).

3' S. Okubo, Phys. Letters 5, 165 (1963); J. J. Sakurai, Phys.
Rev. 132, 434 (1963); S. L. Glashow, Phys. Rev. Letters 11, 48
(1963); R. F. Dashen and D. H. Sharp, Phys. Rev. 133, B1585
(1964); Y. S. Kim, S. Oneda, and J. C. Pati, ibid. 135, 81076
(1964).

its residue in y+P -+ sr++ rs s&.The accuracy of the data
turned out to be inadequate for such a long extrapola-
tion. Also, the data show no evidence for the presence
of the pole. Cook et a/. "have attempted to determine an
average of the A and Z residues in the forward-angle
dispersion relations for E-g and X-E scattering. This
method also yields little information. The result of
Cook et a/. for the average of the two couplings is

(Gs/4&r) ..= 2.6~7.0. (1.11)

If we suppose that G~~~' is negligible with respect to
GKNs', as is nearly the case in the SU(3) scheme for the
popular value f=0.35 of the D Fmixin-g parameter,
then Eq. (1.11) implies 0(GKN«'/4&r&19.

For the coupling constants of the t-channel states,
there is no information that can be taken directly from
existing experiments. But if we assume that the p
dominates the nearby singularities of the nucleon iso-
vector electromagnetic form factor, we may calculate
the ratio p('&/y&'& of tensor to vector NXp couplings.
This procedure was followed by Bowcock, Cottingham,
and Lurie in their treatment of x-Ã scattering. ' Ac-
cording to the isovector-form-factor fit of de Vries,
Hofstadter, and Herman, " which involves only a
p-meson pole and a subtraction constant, the ratio is
given by

singlet vector meson to the baryons. Although the
mixing angle may be estimated roughly, we know
nothing about the other parameters. We are therefore
faced with the four free parameters y~~„y~~„(''),

As we mentioned earlier, the E-N
scattering data do not appreciably constrain coupling
constants of I=O, t-channel states. This means that
there is no hope of determining the four constants
associated with p and co by means of present data. In an
attempt to make the best of this situation, we have
tried to represent both the y and co exchanges by the
exchange of a single vector meson with mass equal to
the root mean square of p and + masses. The fictitious
meson is denoted by y. Representation of both y and co

by y would not be a good approximation if the data
fits were at all sensitive to what goes on in the I=O
t channel. This may be seen from the tables in Sec. III,
which show that y exchange terms decrease a good deal
more rapidly with orbital angular momentum than co

exchange terms. We find, however, that even the two
constants y„~~y„~~("' are not well determined in the
data fits. This leads us to believe that lumping of the
q and co terms is not too grave an error. As a check, we
have also performed Gts with separate p and co terms;
the results are discussed in the following section. One
can make a guess at the constant y,~~y„N~(" on the
basis of SU(3) and the (o-&o mixing theory. The physical

p and co are written as linear combinations of the almost-
pure octet state q(" and the almost-pure singlet
state co(0).

y= (cosh) (o('&+ (sin&&)&o "&

&o= —(sinl&) q ('&+ (cosh)&o('&.

Since co(" does not couple to a pair of pseudoscalar
mesons in the pure-symmetry limit, we have the follow-
ing approximate expressions for the y and co coupling
constants.

'Y pKK'Y pNN= (cosX)Y rp& &KK

Xf(cos~)P "'NN+ (»»)Y. NN]

'Y&oKK'Y&oNN= (S&n&()Y O
"'KK

X L (sinl&) y „&»NN —(cos'A) p„&o&NN7.

If M denotes the matrix element for exchange of
meson x, then the sum of p and co exchange terms may
be written

y &p&o&KKy p&o&NN~X+y p&o&KKy o
&o &NN

XL(cos'X)(M —Mx)+ (sin9, ) (M —M )7
+ (sin)& cos)&)7 p&o&KKQ„&o&NN(M „M„). (1.14)—

Provided y„«)~~ is not too large, the first term of Eq.
(1.14) should be dominant, since the other terms are
proportional to mass differences. Thus, when we have
only x exchange we may suppose that p~zzp~~z is
roughly equal to &„«)&zp~«)~z. Needless to say, this is
an exceedingly crude estimate. If the gauge theory holds,
so that vector mesons are coupled to baryons by pure-F
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vector couplings, one has p„«)»~'&=03&p» . Since
also p „«&&+=v3&, , Eq. (1.13) and the above assump-
tions lead to

vxxxv„~~t'& =3(vp~,v,NN&'&/4n) =1.6. (1.15)

This completes our survey of present knowledge of
coupling constants. Before proceeding to the data
fitting, the effects of the unitarity requirement must be
examined. The single-particle exchange terms and the
background terms of Eq. (1.2) are real functions at
physical energies. Unitarity requires that the scattering
amplitude have an imaginary part, so we must discuss
the integral over the physical branch cut which pro-
duces the imaginary part. In principle, this integral may
be evaluated from experimental data, but the data
available are actually quite inadequate to the task.
Nevertheless, one can estimate an upper bound for the
integral, and in Sec. IV we do so. We estimate that at
the highest momentum of our 6ts (810 MeV/c in the
laboratory) the real parts of the integrals represent at
most 10% of the experimental values of the real parts
of the partial-wave amplitudes. At the lower momenta
the integrals are proportionately smaller. Although
corrections of this magnitude are not strictly negligible,
they will not change our qualitative conclusions, and
will cause fairly minor changes in quantitative con-
clusions. In our main discussion of data fitting in Sec. II
we omit the unitarity integrals, since we have no reason
to believe any precise assumption about their behavior.
In Sec. IV we carry out data fits including some
"sample" unitarity integrals, in order to give some
indication of the quantitative changes that unitarity
may bring about.

II. DATA FITTING AND COMPARISON OF FITS
WITH THEORETICAL PREDICTIONS

In the I= 1 state we fit phase shifts determined by
Goldhaber et a/ ss from their .E+ Pbubble-chamb-er data
at eight laboratory momentum values between 140 and.

642 MeV/c. These data indicate that the E+pinter-'-
action is pure s wave, with a negative phase shift, up to
642 MeV/c. We also include in our 6ts an I= 1 phase
shift at 810 MeV/c as determined by Stubbs et al."
There are some ambiguities in the phase-shift analysis
at 810 MeV/c, but only one of the phase-shift sets joins
in a reasonable way with the phases for lower momenta,
Also, arguments against some of the other phase-shift
sets are given in Ref. 37. The set we choose is the one
labeled 2 in Ref. 37. It corresponds again to a domi-
nant s wave with negative phase shift. The associated

p waves are quite small: b(Pt~s)=0.5'&4.5', b(Ps~s)
= 1.5'~4.5'. The remarkable dominance of s waves up
to 810 MeV/c is a powerful constraint on the parameters

3'S. Goldhaber, W. Chinowsky, G. Goldhaber, W. Lee, T.
O'Halloran ef a/. , Phys. Rev. Letters 9, 135 {1962).

37T. F. Stubbs, H. Bradner, W. Chinowsky, G. Goldhaber,
W. Slater, D. M. Stork, H. K. Ticho, Phys. Rev. Letters 7, 188
(1961).

of our theory. In making our 6ts we have set the p and
d waves equal to zero, within assigned errors, at 355,
520, 642, and 810 MeV/c. The errors are shown in
Figs. 2(b), 2(c), 3 (b), and 3(c); they represent what we
think is a liberal guess at the maximum tolerable
amounts of p and d waves. Note that the graphs in
Figs. 2 and 3 are of q Ref= sin5 cosh, the quantity to
which our theoretical amplitudes are to be compared.
The errors of all of the I= 1 data shown in Figs. 2 and 3
are treated as uncorrelated.

In the I=O state we employ phase shifts computed
by Stenger and collaborators" from deuterium bubble-
chamber data on the reactions

E++d ~ E's+p+p,
E~+d -+ E++d,
E++d +E++r-l,+p.

Stenger et a/. have found phase shift 6ts involving s and

p waves only, and also 6ts with s, p, and d waves, at
350, 530, 642, and 812 MeV/c. With reasonable values
of the coupling constants, our theory indicates sub-
stantial d waves at the higher momenta, barring
"accidental" cancellations of the type that seem to
occur in I= 1. For this reason we have used the s, p, d
phase shift sets. There are two sets, corresponding to
the Fermi-Yang ambiguity. They are shown in Figs.
2d—2h and 3d-3h, in terms of sinb cosh.39 The Fermi-
type set P(Pt~s) large and positive) is labeled SPD-1,
while the Yang-type set $5(Et~s) large and positivej is
called SPD-2, The errors are strongly correlated, so the
phase shifts are more strongly constrained than the
diagonal error matrix elements shown in the 6gure would
lead one to believe. The error matrix given in Ref. 38
has been incorporated in y' Qts of our theory to the data.

We shall not discuss the theoretical uncertainties in-
volved in using the impulse approximation to extract
the I=O phase shifts from the E+-d data. These
questions are treated in Ref. 38. One hopes that
eventually a E2' beam can be used to gather directly
accurate information on the I=0 interaction.

We make a x' 6t to the 45 pieces of data shown in
Figs. 2 or 3. Because of the large number of degrees of
freedom and the correlations of errors in the I=0 phase
shifts, the computation of p' requires a great number of
arithmetic operations. Because of the consequent round-
oB error we found it necessary to use double precision
arithmetic on the IBM 7090 computer; that amounts to
carrying approximately 16 significant figures. The prob-

O' V. J. Stenger, W. E. Slater, D. H. Stork, H. K. Ticho, G. Qold-
haber, and S. Goldhaber, Phys. Rev. 134, 31111 (1964).

3' The treatment of errors at the two highest momentum points
of Fig. 3(e) requires some explanation. Here the phase shifts are
almost 45', so sink cosh is near its maximum. Therefore, the un-
certainty in sinb cosh is entirely in the downward direction. For
the x' tit ting procedure and for the error bars of Fig. 3 (e) we have
taken the standard deviation to be one-half the downward un-
certainty. This amount of constraint in the upward direction does
not prevent the theoretical curve from overshooting slightly the
unitarity limit.
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lem was transferred later to the CDC 3600, which
carries about 25 significant figures in double precision.
The results from the two computers were identical,
which proved that the trouble with round-o8 error had
been cured.

We first tried a Qtting procedure based on a minimal
representation of the background due to short-range
forces. This corresponds to keeping only the two
parameters o.(", o.('} out of the eight parameters of
Eq. (1.2). By computing a single-particle exchange term
in the limit of infinite exchanged mass, one can see that
this means a strictly zero-range background. Besides the
two a&1}, we allowed the seven free parameters G~~q',
G~~~', y,~~('},y~~~('}, y„~~"}.As explained in Sec. I,
y represents the average eGect of y and co. The two
Fo*'s and the two I'~*'s were included with coupling
constants given by Eqs. (1.5), (1.7), and (1.8). The
resulting seven parameter amplitude could not be htted
to the forty-6ve pieces of data with an acceptable y'.
The p' values were extremely large: for phase shifts
SPD 1 g 344' and for SPD-2, y' =401. Also, it does
not help to take separate q and + terms and ABC and
E~-E~ exchanges. In that case we have eleven free
parameters and y'= 195 (SPD-1), g2=327 (SPD-2). It
seems clear that the pattern of forces in X-g scattering
is really quite complicated. This raises some doubt about
earlier work in which only part of the data was 6tted,
and without estimates of the statistical signi6cance of
Gts. The comparison of our calculations with earlier
work is discussed further in Sec. VI.

The next systematic approximation for the back-
ground forces involves n'r' and P&i'. Allowing these four
parameters and five free coupling constants LA,Z,p,

y "i, y "i1 we find that the fits are still not satisfactory:
x'= 81 (SPD-1), g'=305 (SPD-2). Passing to the next

approximation by adding o,,& ~ and o.]( }, we find the
good Gts reported in the following. If only n,, ( ' or n&( }

terms are added, the 6ts are on the borderline of

acceptability, but are not very good. With n, &~} only,
x'= 69 (SPD-1) x'= 62 (SPD-2); with n& &ri only,
y'=70 (SPD-1), x'=65 (SPD-2). One might argue
that the o.& term is of higher order than the n„ term in
the sense that the former contributes to J=+ states,
while the latter does not (cf. the Appendix). In that
case one might consider stopping the expansion at o,,& }.
However, it should not be forgotten that the data are
very poor in some of the I=O states; with better data
we should almost certainly have to go beyond n, &~} to
get acceptable Gts. With present data it does not seem

wise to improve borderline Qts by allowing separate co

and q parameters. In all such 6ts the g coupling con-
stants are already badly determined.

A. Phase Shifts SPD-1

We discuss 6rst the 6ts to the Fermi-type phase shifts
SPD-1. Table II shows the parameter values obtained
in a series of Gts corresponding to different hypotheses
about the single-particle exchange terms. The param-
eters are constrained more than the diagonal error
matrix elements indicate, since there are some strong
error correlations. To illustrate, we list the correlation
coeKcients for Gt 1-A in Table III. The 6ts labeled
1-8, 1-C, 1-E, 1-F, and 1-G all have G~~p=O. The
vanishing of Gz&z is a result of applying the constraints
Gx~z'~&0, G~~~'~&0. The unconstrained best 6ts re-

TABLE lI. Parameter values of fits with Fermi-t~e phase shifts SPD-1. A dash indicates that the term in question was not include
in the fit. The 0+ notation means that the best-fit value of the parameter was zero, because of the constraint G'& 0 (see text). The
asterisk indicates that the parameter value given was taken as input. Fit 1-G is like fit 1-J3, except that it omits the P' terms.

Fits with phase shifts SPD-1

x'
&(x')

1-A

28
0.98

1-13

35
0.85

1-C
76

&0.005

1-D
141
&0.005

1-8
47
0.41

1-F
34
0.88

1-G
39
0.72

Best-fit values of parameters

6
7

8
9

10
11
12
13

GKNgn/4m

GxNs'/4~
ypNN~ iypKK/4n'

7~NNi iygxx/4m'

7~NNiniyqKK/4n'

gh/4m (ABC)
gh /4m (EI-EI)

~(I)
~(0)

~ (&)

~ (0)

«(I)
0 ](o)

P(1}
p(0)

—38~14
51+9

—0.46~0.20
3.8~3.2

—4.0~5.1

~ ~ ~

—6~38
340~50
0.23+0.30
—2.2a0.4
0.47%0.33
—2.1~0.4
—1.1+3.3

30~4

p+

58+9
—0.54+0.20

3.1&3.2
—3.4~5.1

~ ~ ~

86+17
301+48

-0.44~0.18
—1.9&0.3

—0.22&0.20
—1.8+0.3

6.2+2.0
27a4

0+

—0.86+0.19
—2.3+3.0

6.7+4.8

~ ~ ~

—8.4~8.7
4+12

0.02+0.16
—0.21~0.21

0.14+0.20
0.01+0.21

—1.7+1.5
4.3+2.3

14.4*

0.55*
4.0&2.0

—2.3~4.7

~ ~ ~

23~9
—80~8

—0.14~0.16
1.0~0.1

0.26&0.19
0.70&0.19
4.1~1.5

—11&1

p+

60+8

~ ~ ~

102~16
303+48

—0.69+0.11
—1.9&0.3

—0.46+0.11
—2.1~0.3

8.4~ 1.3
24~4

0+
57&9

—0.44~0.21
3.3&3.2

—1.1+6.7
—0.15+0.15

12~10
71&22

277&52
—0.51+0.22
—1.9~0.3

—0.43&0.27
—1.9&0.4

7.4~2.6
27~4

0+
56+9

—0.54~0.20
4.8~3.2
6.5w5. 1

~ ~ ~

80+17
290&48

—0.35~0.18
—1.8a0.3

—0.37+0.21
—1.4~0.3

5.9~2.0
27a4
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TABLE III, Matrix of error correlation coeKcients for fit 1-A of Table II.

1 2 3 4 5

1 1 0.26 —0.14 —0.08 0.04
2 1 0.21 0.24 —0.28
3 1 0.35 —0.32

1 —0.76
5 1
6
7
8
9

10
11
12
13

0.89
0.61—0,03—0.11
0.13
1

—0.28
0.83
0.11
0.12—0.10
0.16
1

—0.81
0 44
0.09
0.37—0.46—0.93—0.09
1

9

0.26—0.67
0.16
0.18—0.25—0.17—0.92
0.21
1

10

—0.78—0.37
0.21
0.55—0.50—0.88—0.06
0.97
0.22
1

0.27—0.68—0.04
0.29—0.22—0.17—0.91
0.23
0.95
0.26
1

12

0.80
0.57
0.11
0.03
0.20
0.94
0.16—0.91—0.16—0.78—0.14
1

13

—0.25
0.72—0.15
0.12
0.04
0.15
0.94—0.12—0.95—0,07—0.84
0.18
1

suited in G~~q'+0. It follows that the constrained best
fits have G~Ng=0. This is because g' is a bilinear,
inhomogeneous function of the parameters, and thus
has only one extremum, which is a minimum. p' must
increase monotonically with the distance from the
minimum point. Label the parameters (X~,X2, X„) and
suppose that the unconstrained best Gt is at the point
3'= (X~',4', ~ X„'), where XP(0. Suppose that the
constrained best 6t is at X'=(X~'X2' X '). It is
clear that X~'=0, because if X~')0 then the point
2'= (O,X&', ~ X ') lies closer to 2' than 2' does. Similarly,
if there are several negative parameters in the un-
constrained best 6t, say P g&0, X2&0, ~ ~, Xg(0, then
the best 6t subject to the requirements Xj ~&0, X2~&0,
X„~&0 involves ) ~=X2= ~ ~ ~ =XI,=O.

The fit i-A, listed erst in Table II, is given as an
example of an unconstrained fit leading to a negative
G', viz. , Gx~q'/4~= —38~14.Fit 1 Bis similar to-1-A,
except that G~~~ is set to zero. It is interesting that the
Z, p, and y couplings are rather similar in these two
fits, despite the large change in G~~g. This marked in-
sensitivity of the Z, p, and p terms to the A coupling
constants is illustrated also by the matrix of correlation
coeKcients given in Table III, which shows that A.-Z,
A-p, and A-p correlations are relatively weak. We
have Cg ~=C~2=0.26, Cg, =Cga= —0.14, Cg „(~)=C~4
= —0.08, Cg „(2)=Czar=0. 04. Table III is informative
in other respects. For example, it shows that A and Z
correlate strongly with the background terms, but
weakly with the vector meson exchange terms. This is
no surprise, since we know that the A and Z exchanges
correspond to forces of very short range, as do the back-
ground terms. On the other hand, the p and y-co

exchanges may produce the most important long-range
forces of the problem. The tensor and vector y exchange
terms are strongly correlated: C„(&~ „~2~=C4s= —o.76.

The relatively small error for the Z coupling constant
G~~g' in Gt 1-8 suggests that the Z term is essential to
the Gt. This is con6rmed by 6t 1-C, in which Z is
dropped, but the other terms included are the same as
in 6t 1-8. The y' rises to an unacceptable value. Ap-
parently the main role of the Z term is to produce
the strong attraction in the I=O, I'g~~ state which

is characteristic of phase shifts SPD-1. Here we are
dealing with the same sort of force that is thought
to be mainly responsible for $3~2*(1238MeV). The ratio
of the Z contributions to the two isospin states is
3(I=O):1(I=1), so given the possibility of cancellation
with background in I= 1, the Z can produce the desired
effect.

The p term is much less essential in the 6ts than Z,
although it shares with Z the property of having a
coupling constant that is relatively stable to changes in
other terms. In Gt 1-8 we omit the vector mesons
entirely and the 6t remains good. The g terms, particu-
larly, seem to play no significant role. According to fit
1-8 the y coupling constants may be taken to vanish
within the errors, and the errors are huge.

In fit 1-J3 both the Z and p coupling constants differ

by about 6ve and one-half standard deviations from the
SU(3) predictions of Eq. (1.10) and Eq. (1.13). Since
the p term is not very important to the Gt, the most
serious discrepancy is the disagreement of Gzzz' with
Eq. (1.10). Of course, Eq. (1.10) is not a prediction of
SU(3) invariance alone; it was derived from the single-
baryon exchange model plus the assumption that —,'+
meson-baryon resonances occur only in the 10 repre-
sentation. Nevertheless, a phenomenological study of
hyperfragment data by Dalitz~ yielded a D-Il mixing
parameter in the range corresponding to Eq. (1.10).We
should be surprised if Kq. (1.10) were strongly con-
tradicted. This leads us to the conclusion that the phase
shift set SPD-1 is probably not the correct one. Even
without bringing in SU(3) arguments it seems dificult
to accept phases SPD-1, since the implied large value
of Gz&z' would probably be very hard to reconcile with
data on Z photo production. "This value also does not
agree with the result from forward-angle dispersion re-
lations, Eq. (1.11).

In fit 1-D we take as input some "SU(3) values" for
the A, Z, and p coupling constants. Speci6cally, the p
constant is given the value of Kq. (1.13) and the A and
Z constants the values corresponding to 0.35 for the
mixing parameter f and 15 for G ~~'/4m. The X' of run

4'R. H. Dalitz, Phys. Letters 5, 53 (1963).
4' J. Dufour, Orsay report (unpublished).
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ALE IV. Parameter values of fits with Yang-type phase shifts SPD-2. Notation is explained in the caption of Table II.

Fits with phase shifts SPD-2

2-A

52
0.27

2-B
55
0.16

2-C
64
0.034

2-D
94

&0.005

2-L~

87
(0.005

2-P
49
0.32

2-6
54
0.094

Best-fit values of parameters

6
7

8
9

10
11
12
13

GxNg'/4n.

GENT'/4w
+~NN(~) +~KK/42I.

7XNN a~y~xx/43
xNN(2)~xKK/4

off/4 (AaC)
gh/4m (Ei-EI)

~(I)
~(o)

Ol (&)

~ (o)

~,(i)
ng«)

pO)
p(0)

13a16
—24~ $4
0.62&0.23
6.1~3.4

—20&5

~ ~ ~

—58w38
—225~92

0.76~0.30
2.0~0.63
1.0+0.3
1.6~0.8

—6.4~3.3
—22~6

7a16
0+

0.92a0.15
4.8+3.4

—21+5

~ ~ ~

—26+33
—80+35
0.53+0.27

1.1~0.3
0.77+0.30
0.44~0.38

—4.0+3.0
—13+2

14.4*
1.3*
0.52*

1.3&3.1
—22w5

~ ~ ~

—13~9
—76~11
0.47~0.17
0.93+0.19
0.52+0.21
0.32a0.24

—5.5~1.2
—12%1

59+13
0+

—0.3&1.9
—23+4

~ ~ ~

71&29
—167%32
—0.07%0.26

1.5~0.3
—0.16%0.26

1.0~0.4
—0.6~2.9
—17&2

15~15
0+

1.2+0.1

~ ~ ~

32+31
—62+32

—0.34+0.22

0.58+0.22

0.04+0.23
—0.05+0.26

5.3~2.4
—9~2

3&17
0+

0.88+0.15
4.6&3.4

—23&7
—0.19~0.15

10~11
—49+38
—86~39
0.62&0.37

1.0~0.3
0.70+0.43
0.28+0.42

—5.3~4.4
—12+3

—2~16
0+

1.0~0.15
6.1~3.4

—24&5

~ ~ ~

—47~33
—58+35
0.72~0.27

1.0+0.3
0.72~0.30
0.59~0.38

—5.6+3.0
—12+2

1-D is even much larger than that of i-C, which further
illustrates the apparent incompatibility of SU(3) and
phases SPD-1.

In 6t 1-Ii the ABC and E~-E~ terms are introduced.
The resulting changes in other parameters are mostly
not very great. In fact, Gts i-8 and j-F are rather
similar. The ABC coupling constant assumes a value
such as to make the ABC term relatively small. This is
shown in Sec. III, where some matrix elements are
tabulated. The E~-Ej exchange term is not so small.
If ABC is replaced by the 0 meson, the 0 coupling
constant turns out to be of the same order of magnitude
as that of ABC; viz. , gh/47r(0)= —0.40&0.40. Other

parameters are within 5% of the values of fit 1 Il, -

except for gh/4r (E&-E&) which increases by 30%.
In ht 1-G the four I'* terms are omitted. Again the

6t is quite similar to 1-13.This cannot be interpreted to
mean that the sum of the I"*contributions is small. The
I'0~(1520 MeV) term, in particular, is quite large (cf.
Sec. III). It seems that moderate changes in the back-

ground parameters compensate easily for the absence of
the Y~ terms. This gives us some con6dence in our
procedure of neglecting the Fo*(1815MeV) state. Be-
cause of its greater mass, this state should be even more
amenable to representation by the background terms.

B. Phase Shifts SPD-2

In the erst trial with the Yang-type phase shifts
SPD-2 a violation of the constraint G~~~'&~0 occurred.
This is shown in fit 2-2 of Table IV. Fit 2-8 is the
corresponding best constrained 6t, with G~~y=0. The
A and Z coupling constants of fit 2-8 are consistent
with the inequalities (1.9) suggested by SU(3). How-
ever, these constants are not at all well determined by
the data; the error of the A constant is very large, and
the g' increases by only 6% when G&»'/4n is changed
from —24 (Fit 2-A) to zero (Fit 2-8). This situation is
apparently due to the strong correlations between the
A and Z terms and the background which are evident in
Table V. It seems that no distinctive sects of the A

TAmz P. Matrix of error correlation coeKcients for fiit 2-A of Table IV.

1 2 2 4

1 1 —0.23 —0.51 0.17
2 1 0.77 —0.22
3 1 —0.02

1
5
6
7
8
9

10
11
12
13

0.01—0.16—0.11—0.73
1

0.69
0.50
0.12—0.17
0.12
1

—0.56
0.93
0.81—0.35—0.03
0.19
1

—0.58—0.44—0.13
0.42

—0.45—0.94—0.21
1

0.56—0.87—0.73
0.52—0.16—0.19—0.98
0.28
1

10

—0.52—0.44—0.06—0.60—0.48—0.88—0.25
0.97
0.34
1

0.56—0.87—0.75
0.53—0.14—0.19—0.98
0.28
0.99
0.34
1

12

0.66
0.42
0.21—0.01
0.18
0.94
0.12—0.90—0.12—0.77—0.11
1

—0.55
0.91
0.76—0.38
0.04
0.19
0.99-0.24—0.98—0.27—0.97
0.14
1
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and Z pole terms are visible in the data, just as in the
earlier attempts at determining the A and Z coupling
constants mentioned in Sec. I.

Fit 2-8 is also quite indifferent to the value of the g
(vector) coupling constant, judging from the large
error (y~zN&'&y„zz/4z=4. 8&3.4). The result 4.8&3.4
is consistent with the rough SU(3) estimate of Eq.
(1.15).The large error is partly due to the strong corre-
lation with the other t-channel I=O term, y (tensor).
The y (vector) term also shows fairly large correlations
with the n, and n& background terms.

The p coupling constant happens to be relatively well
determined for phases SPD-2.The value&»&&'&p pzz/41I
=0.92&0.15 of 6t 2 Bdisagre-es with the SU(3) pre-
diction Eq. (1.12) by two and one-half standard devia-
tions. The discrepancy may have to do with the neglect
of unitarity corrections. In Sec. IV a data 6t is reported
which is similar to 6t 2-8, except for the inclusion of
some sample unitarity integrals. The p coupling con-
stant in that Gt is y,zz&'&y, zz/4m=0. 60&0.16, in
excellent agreement with Eq. (1.12). One should not be
too satis6ed with this result, however, since some
doubts about the place of the p meson in the SU(3)
scheme have been raised by recent experiments. For
example, preliminary results from the "missing mass
spectrometer" at CERN show a resolution of the p peak
into two peaks. 4' Possibly only one of these peaks can
be associated with a vector octet, in which case Eq.
(1.12) would not be correct.

To show that 6t 2-8 is not so very remote from the
requirements of Eqs. (1.9) and (1.12) we present fit
2-C. Here the A and Z coupling constants are given
SU(3) values corresponding to f=0.35, and the p con-
stant the value of Eq. (1.12).The x' rises from 55 to 64.
The similar run for phases SPD-1 gave x'= 141.

It is interesting that the p exchange is quite essential
in the fits to phases SPD-2. This is demonstrated by
run 2-D, in which p is omitted. The y rises to the un-
acceptable and surprisingly large value of 94. Run 2-E
shows that the p exchange terms are also quite neces-
sary. The y' becomes 87 when both y (vector) and

g (tensor) terms are omitted. In fit 2 Fthe ABC and-
K~—Ey exchanges are introduced, in addition to the
terms of fit 2-8. The 6ts 2-F and 2-8 are qualitatively
similar, just as the corresponding 6ts 1.-8 and 1-Ii to
phases SPD-1 were similar. It is curious that the ABC
and E&-E& coupling constants are nearly the same for
phases SPD-2 as for SPD-1. For SPD-2 it is also note-
worthy that the coupling constants for vector meson
exchange are hardly affected by the introduction of ABC
and K~-E~ ', the main di6erences between the 6ts 2-8
and 2-Ii are in the A and background terms. Since the
ABC exchange represents a force of long range, one
might have thought that the long range vector meson
terms would have been most perturbed by its introduc-

4' B.Maglic, Invited Paper at the Argonne National Laboratory
Symposium on Symmetries in Particle Dynamics, October 1964,
Chicago, Illinois (unpublished).

tion. In the last 6t 2-G of Table IV the four I"* terms
are dropped. Again, the 6t has a strong resemblance to
6t 2-8, in the same way that the corresponding 6ts
1-8 and 1.-G resembled each other.

In acceptable 6ts to phases SPD-2 the background
parameters do not show highly pronounced isospin
dependence, in spite of the striking differences between
I=O and I=1 scattering. In fit 2-8 the isospin de-
pendences of n &I', a, &r&, and p&r

& are consistent with that
arising from an I=1 state in the I channel; viz. ,
(I=1)/(l=0)= ~~. The n&&r& isospin behavior could be
explained as the result of superposition of I= 1 and I=0
states in the t channel.

In an attempt to assess the effects of combining the
or and q contributions in the g exchange term, we have
performed a 6t to phase shifts SPD-2 with separate

p and or terms. This may not be very meaningful, since
the coupling constants for the y terms are already badly
determined. The following 6t is obtained, with g'=46,
~(e)=0«:

Gz~~2/4z= —3a17, Gzzx'/4m=0,

y pzzy p~z & "/47& =0.72+0.16,

y.zzy. zz&'~/4' = 13~5,
V,zzV, ~z& "/4z= 23+11, —
y„zzy„Nz &2&/4z = 9.6+3.8,

y,zz7,zz"'/4r = —23+8,
( ) = —193a67, n~o&= —197~59,

&,(»=3.2w1.0, &,«&=3.3~0.9,
~ (i)= 2.2a0.6, o.g

&'& = 1.6&0.6,
P&'& = —43m 14, P &'& = —47a12.

As usual, the constraint G~~g'&~0 was imposed. With-
out constraint the Z constant had the value Gzzs'/4z
= —20&15. The conclusions about the A, Z, and p
couplings in this 6t are roughly the same as those of 6t
2-8. On the other hand, the or and y terms together
apparently do not approximate the x term very well,
since the background parameters have shifted consider-

ably from their values of 6t 2-8. We suspect, however,
that is represents a statistical artifact resulting from too
many parameters associated with I=O vector mesons.
One indication that separate or and q terms should not
be included is that the correlation coefFicients between
the q and or terms are practically unity: C„(» „«~
= —0.90, C„&» „1»=—0.99. Also, the values of the
separate y and or coupling constants seem unreasonably
large. There is a sort of dipole effect; the y and or terms
are separately enormous, but their opposite signs result
in a close cancellation. The background parameters in
this 6t have the curious property of being almost
independent of isospin. In a similar 6t to phases SPD-1,
the q-or dipole e6ect does not occur. The inclusion of
separate q and or terms is even less justi6ed for phase
shifts SPD-1, since we have shown that even the g term
is superQuous in 6tting those phase shifts.
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III. BEHAVIOR OF SEPARATE TERMS OF THE
SCATTERING AMPLITUDE

In this section we describe the separate constituents
of the scattering amplitudes. Tables VI, VII, and VIII
show the various single-particle exchange terms and
background terms as functions of energy. Formulas for
the functions tabulated are given in the Appendix.
Coupling constants and isospin factors are omitted in
the tables. To specify isospin factors, we denote by LA]
and PZ] any terms representing E=O and I= 1 states
in the N channel, respectively. Similarly, fy] and Pp]
denote contributions from I=O and I= 1 states of the
t channel. The E-g scattering amplitudes are as follows:

f(/= 1)=L~]+L&]+L~]+Lp]
(3.1)

fV = o)= —L~]+3L~]+Lp]—3Lp].

From Tables VI through VIII, Eq. (3.1), and the
coupling constants given in Sec. I and Tables II and IV,
the interested reader may evaluate approximately the
various contributions to the amplitudes. The exact
graphs plotted in Sec. II cannot be reproduced with the

information tabulated, however; many more significant

figures than we have stated would be necessary.
The graphs of Fig. 4(a)—(j) show an analysis of the

amplitudes into constituents for the case of Yang-type
phase shifts SPD-2. The amplitudes are from Gt 2-8 of
Sec II, Table IV. In each graph the dashed curve
represents sinb cosh, and is equal to the sum of the solid

curves. Thus, the dashed curves are the same as the
curves of Fig. 3, but plotted on a different scale. When
the dashed curve does not appear, sinb cosh is simply too
small to show up on the same scale with its constituent
terms. Note that the scale varies from one graph to the
next in Fig. 4. The curve labeled F* represents the sum

of the four V* contributions. As one can see from the
tables, this sum is dominated by the I"~*(1385 MeV)
and I"0*(1520MeV) terms, with the latter term usually
the larger. The curve labeled 8 represents the sum of
the background terms. All four background terms
contribute to states with J=-,', while only the 0.& term
appears in J= ~3 states. The background terms do not
contribute at all to J=-', . This fact illustrates the short-

range character of the background forces. The curve

TAar, z VI. Partial-wave amplitudes for exchange of N-channel particles. Powers of ten are suppressed, except at column heads.

Plab
(MeV/c)

S1/2

235
385
505
611
710
805

PI/2

235
385
505
611
710
805

P3/2

235
385
505
611
710
805

A/2

235
385
505
611
710
805

~S/2

235
385
505
611
710
805

—0.06201—0.09597—0.1189—0.1367—0.1513—0.1638

—0.3198X10 '
—1.444—2.733—4.139—5.598—7.082

0.08484X10~
0.3086
0.5778
0.8669
1.163
1.460

0.03039X10 '
0.2656
0.7653
1.521
2.505
3.693

—0.01393X10 '
—0.1191—0.3370—0.6598—1.073—1.563

—0.05920—0.09186—0.1141—0.1314—0.1457—0.1579

—0.3329X10 '
—1.234—2.348—3.574—4.855—6.167

0.06965X10~
0.2564
0.4848
0.7337
0.9916
1.253

0 02278X10 4

0.2012
0.5853
1.174
1.949
2.894

—0.009832X10 '
—0.08586—0.2473—0.4917—0.8099—1.194

I o*(1405)

0.09595
0.1387
0.1611
0.1742
0.1820
0.1863

—0.2379X10 '
—0.8647—1.615—2.416—3.229—4.037

—0 07894X 10~
—0.2754—0.4948—0.7129—0.9191—1.110

0 02087X10 3

0.1826
0.5264
1.046
1.720
2.531

o.o7793x io-4
0.6563
1.824
3.498
5.565
7.927

Z *(1385)

0.06381
0.09437
0.1119
0.1232
0.1307
0.1358

0.12'?9X10 '
0.5039
1.015
1.628
2.325
3.096

0 2956X10 '
1.109
2.116
3.267
4.462
5.690

0.02530X10 '
0.2378
0.7320
1.547
2.697
4.191

0 03008X10 4

0.2722
0.8085
1.649
2.'?78
4.178

z,*(152o)

—0.1290—0.01533
0.2178
0.5313
0.9068
1.335

—0.2623X10 '
—1.015—2.010—3.168—4.450—5.824

—0 2494X10 '
—1.013—2.099—3.456—5.051—6.872

-0.005175X10-2
—0.05114—0.1649—0.3634—0.6593—1.063

0.02090X 10~
0.2050
0.6605
1.455
2.636
4.246

v,*(166o)

—0.1788—0.2122—0.1798—0.1077—0.006534
0.1184

—0.0967X10 '
—0.3759—0.7469—1.182—1.666—2.188

—0.08259X10 '
—0.3358—0.6963—1.148—1.679—2.288

—0.01394X10 '
—0.1389—0.4513—1.003—1.830—2.970

0.005709X10~
0.05674
0.1840
0.4077
0.7426
1.203
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TAaLz VIII. Partial-wave projections of the
Cini-Fubini polynomials.

&&ab

(MeV/c)

~1/2

235
385
505
611
710
805

Pl/2

235
385
505
611
710
805

Pe/2

235
385
505
611
710
805

0.05514
0.08541
0.1060
0.1220
0.1354
0.1468

—0.0003492—0.001337—0.002620—0.004095—0.005702—0.007410

0.04257
0.1661
0.3315
0.5278
0.7481
0.9894

6.082
10.08
13.31
16.27
19.08
21.82

—0.03851—0.1577—0.3291—0.5458—0.8035—1.101

—0.1280—0.5008—1.003—1.601—2.276—3.018

0.04338
0.1739
0.3561
0.5809
0.8426
1.139

—0.0002696—0.002599—0,008196—0.01771—0.03151—0.04992

0.2086
0.3538
0.4757
0.5890
0.6975
0.8034

0.006013
0.02350
0.04696
0.07479
0.1060
0.1401

a very big repulsive effect, which is partly canceled by
the large, attractive I'* term and an even larger back-
ground term. Since the A, p, and g&" terms are more or
less in accord with SU(3) predictions, the SU(3)
scheme provides a partial explanation of the repulsive
character of the I=1, s&~2 state. (Admittedly, the
repulsive character of the x&'& state is not a clear pre-
diction of SU(3); it will follow if the remarks preceding
Eq. (1.15) serve to justify that equation. ) In passing
over to the I=0, s~~s state plotted in Fig. 4(b), the A and

p terms are multiplied by —1 and —3, respectively,
according to Eq. (3.1).The Y'* term remains attractive,
because the isospin factor of 3 causes YP(1385 MeV) to
dominate Fo*(1520 MeV). The peculiar energy de-

pendence of the Yo*(1520 MeV) term evident in Table
VI results in a pronounced downward turn of the total
Y* curve at the higher momenta. The larger p term
levels oG at the higher momenta, because of its compo-
nent from the tensor rho-nucleon coupling. The experi-
mental amplitude shows the opposite tendency from
the p and F* terms; it curves upward at high momenta.
The background term is able to compensate for p and
V* and to produce the necessary rise. The background
term has a surprisingly strong variation with energy.
This behavior is possible because of close cancellations
between the four large terms that make up the 8 curve.
For example, at 805 MeV/c the separate I=O back-
ground terms are as follows: B(n)= —11.6187, B(n,)
=23.5130, B(n,)= —1.32400, B(/3) = —10.2603. Their
sum is 8=0.3100. Although the background terms
represent short-range forces, in the sense that they do
not contribute to angular momentum states with J&-,',
their sum may nevertheless show a highly nonlinear

energy dependence in the s waves. These terms contain
some high powers of momentum, which can become
prominent in the sum if the low powers of momentum
cancel each other. As we remarked in Sec. II, the back-
ground strength parameters have reasonable isospin
dependence. This means that there are fairly close
cancellations between four large terms in I= i also.
At 805 MeV/c in I=1 we have B(u)= —3.81242,
B(n,)= 11.6434, B(n,)= —2.31931, B(j9)= —3.23530,
8=2.2764. A comparison of the I= 1 and I=O states
shows that the p exchange has an important role in
determining the isospin dependence of the s j/2 scattering.
The possibility of such an effect was pointed out by
Sakurai" in connection with his gauge theory of vector
mesons. In fact, Sakurai's suggestion was one of the
motivations for our work. However, it turns out that the
A and background terms are just as important as the p
exchange in determining the isospin dependence. Thus
the analogy with s-wave vr-3l scattering that Sakurai
attempted to make is not quite complete. In the m.-X
problem the p exchange seems to be more prominent.

In the I=1, pq~2 state of Fig. 4(c) we have the
interesting situation of a strongly attractive p&2) ex-

change cancelling all of the other terms, which are
repulsive. The cancellation is so perfect that the scatter-
ing amplitude is too small to plot on the same graph.
Here the 8 term is much less prominent than in the
other s- and p-wave states. In the I=O, p~~2 state
of Fig. 4(d) the x&'& term is, of course, the same as
in I=1. It is joined by the p term, which is equally
strong and attractive. Because of the dominance of
Fo*(1520 MeV) in pq~2, the F* contribution is also
attractive. These three attractive terms are partly
cancelled by x&'& and a substantial background term.
Again we see that SU(3) provides a partial explanation
of the situation. It implies an attractive p exchange
term of roughly the magnitude shown in Fig. 4(d); i.e.,
more than enough attraction to explain the data. As
in sj/2, the p term is important in explaining the isospin
dependence of the scattering, but it is not dominant in
this respect.

In the I= 1, p~q, state )Fig. 4(e)] we once again have
a nearly perfect cancellation between large terms, as
in I= 1, p~~2. The situation is rather different, however,
since the B term is much bigger in pa~2. In the I=O, p3/2

state the data are poor, but they vaguely suggest an
attractive interaction. The A, p, g&'&, and y&'& terms all

give repulsive contributions in I=O /Fig. 4(f)7; the
theoretical amplitude is also repulsive. Improvement of
the data in this state would be quite helpful for future
work along these lines.

In the d waves, the p, g &", and p t:" terms are generally
the largest. In contrast to most of the lower angular
momentum states, the background terms do not play
a major role. Of course, this situation is in accord with
the long-range character of the vector-meson exchange
forces, and the short-range character of background
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P lab $1/2
(Mev/c)

P 1/2

forces. Improved data on the I=O d waves would
naturally be valuable in studying the long range forces.
It seems quite reasonable in principle to allow d waves
in the phase shift analyses above 400 or 500 MeV/c,
since some of the separate single-particle exchanges
produce substantial d-waves at those momenta. For
example, the p term in our /=0, d3/~ amplitude is non-
negligible in magnitude, and it is also a term which
must be taken seriously, since it has a magnitude
roughly as prescribed by SU(3).

An important characteristic of the graphs of Fig. 4 is
the large magnitude of the y&" and y&" terms. Un-
fortunately, present theory does not make it possible
to say whether such large effects from y and or exchange
are reasonable or not. It may be that the best way to
learn about q and co exchanges is to take information on
the pXi7 and co3lS couplings from analysis of other
experiments —for example, X-31 scattering or nucleon
electromagnetic structure experiments.

In the data 6ts tabulated in Sec. II the I-channel
contribution of low-energy E-X scattering has been
omitted. For E-E scattering between threshold and
400 MeV/c this omission is well justified. Table IX
shows an evaluation of the relevant dispersion integrals
based on the Humphrey-Ross' description of K-S
scattering. Expressions for the integrals evaluated are
to be found in the Appendix. Table IX indicates that
p- and d-wave integrals are entirely negligible, for either
set of scattering lengths. The s-wave integrals are also
practically negligible; they are smaller than the un-
certainties arising from experimental errors and uni-
tarity corrections (cf. Sec. IV).

TABLE IX. Integrals representing the effect of s-wave E-S
scattering. Solutions 1 and 2 are the two Humphrey-Ross K-E
scattering length solutions. The I values of the table refer to theI channel. Powers of ten are suppressed, except at column heads.

Here s = s'~' is the center-of-mass energy, and waco= m+ p
is the threshold energy of E-E scattering. The partial-
wave amplitude f(s) is defined so that f(w+i0)
=Lexp(2ib) —1j/2iq(ic), w)rco, where 5 is the phase
shift for a particular choice of angular momentum,
parity, and isospin. The center-of-mass momentum is
denoted by q(w). The term g(s) of Eq. (4.1) includes
integrals over unphysical cuts, as well as an integral
over a left-hand physical cut from —~ to —m 0. In our
theory, g is represented by a sum of partial-wave
projections of single-particle exchange terms, and
partial-wave projections of the background terms of
Eq. (1.2). Of course, this representation is expected to
hold only in a low-energy physical interval mo~&~&m,
and its immediate neighborhood. Ke are concerned with
the real part of the integral over the right-hand physical
cut. If this rea1 part can be represented accurately by
the background terms over the range of energy of our
work, then the unitarity integral can be simply for-
gotten, and the theory is nevertheless effectively unitary.

We attempt to calculate the second term of Eq. (4.1)
from experimental data. For orbital angular momentum
l~&1 we have the difhculty of meeting the threshold
condition that Ref should behave as g" near io= wo. In
our approximation the function g(ic) satisfies the thresh-
old condition. It follows that the second term of (4.1)
must also satisfy it. Of course, the evaluation of this
integral from experimental data is not likely to meet the
threshold condition even approximately. Even in a
complete theory, in fact, the integral is not expected
to vanish at threshold. 4' Instead the term g(w) is non-
zero at threshold, cancelling against the integral. To
remedy the situation in our incomplete theory, we
write a dispersion relation for the quantity

&(s)= L(s—a)/(s —~o)j'f(s) (4.2)

where a(wo is a real constant. In this way Eq. ($.1) is
replaced by

Solution No. 1, I =1
235 0.57 &(10 2 —0.13 &(10 3

520 0.47 -0.48
810 0.38 —0.79

-0.42 &(10 & 0.11 )(10 & 0.37 &(10 6

-1.4 1.5 . 4.8
200 4.6 14

1 (s—wo
f(s) =g(s)+

s.k s-a
Solution No. 1, I =0

235 1.8 —0.42
520 1.5 —1.5
810 1.2 205

Solution No. 2, I =1
235 1.2 —0.29
520 1.0 —1.0
810 0.82 —1.7

Solution No. 2, I =0
235 1.1 —0.27
520 0.96 -0.97
810 0.77 —1.6

103—4.3—6.5

—0.86-2.8-4.2

0.33
4.6

14

0.23
3.2
9.9

0.21
3.0
9.3

1,2
15
43

0.81
10
30

0.76
9.9

28

IV. CORRECTIONS FOR UNITARITY

We assume a partial-wave dispersion relation for
E-N scattering of the following form:

1 "Imf(ic+i0)die
f(s) = g(s)+- — (4.1)

%00

/ w —a ) ' Imf(w')
x

e o ~ic ico/ ic —s

The second term of (4.3) now has a threshold behavior
like &2i at m=mo, but it also has a pole, in general, a
mr = u. In a complete theory this pole would be cancelled
by a pole of opposite residue in j. In fact, we have
g(s) —g(s) =b/(s —a) ', while the difference between the
integrals of (4.3) and (4.1) is b/(s a)' I—n orde—r to.
get the right threshold behavior of f, we drop the pole
term in j; i.e., we take j=g. Thus, the price of correct
momentum dependence at threshold is the introduction
of a new singularity at s= a. This singularity should not

"G.Frye and R. L. Warnock, Phys. Rev. DO, 478 (1963).
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7l p

dw'(w' —wo)

w )' w( w

I V (w')- —,I

— —

I v (w)
w wo/ w kw —wp)

w ) ' "dw'(w' —wp)'"
+w~(w) —

I
I', , (4 4)~ ~

w —wp), w'(w' —w)

Since the integral in the last term may be evaluated
analytically, we avoid numerical evaluation of a
principal value integral. After mapping the region of
integration onto the interval L0,1j by the transforma-
tion w=wo/I', we find

~p~ p

du w'(w' —wo)'/'

w' ' w
v (w') —w =

I V(w)
w —wp w —wo)

(
(4.5)

kw —wo/

The reason for factoring out (w —wo)'/' is to keep the
integrand finite; otherwise, the square bracket would

be infinite at I=m'= 0 in the 1=0 case. The integral of
Eq. (4.5) was evaluated by Simpson's rule with 100
intervals. Thus, nine points at which the integrand is
evaluated lie in the experimental region 0-810 MeV/c.
At these points the integrand is given values correspond-
ing to the curves of Figs. 2 or 3. At the remaining 92
points outside the experimental region we must make
some hypothesis about the behavior'of the integrand.
Above some energy it is common to assume that any
particular partial wave is "completely absorbed"; i.e.,
that Imf = 1/2q. We take this energy to correspond to

be too close to the physical threshold, since the single-
particle exchanges are supposed to account for nearby
singularities. We choose a=0, since the background
terms already have poles at m=0. In fact, the m-plane
singularities of the background terms are poles of orders
one through four at m=0, and poles of orders one and
two at infinity. Ideally, the background constants will

adjust themselves so as to compensate properly for the
pole of the unitarity integral. The singularity to be
desired at m= 0 in a complete theory is unknown, even if
the Mandelstam representation is postulated. The
question depends on the asymptotic behavior of double
spectral functions. ~

In evaluating the real part of the second term of
Eq. (4.3), the following method proved useful in
handling the principal value integration. Define q by
Imf(w) = (w —wo)U'y(w), and subtract and add a term
so that the principal value integral becomes

u= 0."/5, where I is the integration variable of Fq. (4.5).
The laboratory momentum corresponding to u=0.75 is
2.82 BeV/c. In the region 0.75 ~& u ~& 0.90 we try various
hypotheses about the behavior of Imf. Specifically, we
take the six diA'erent curves for q Imf= sin'8 tabulated
in Table X, and we use the same six curves for all

ThsLz X. Randomly chosen high-energy curves for sin'8 =q Im f.

0.90
0.89
0.88
0.87
0.86
0.85
0.84
0.83
0.82
0.81
0.80
0.79
0.78
0.77
0.76
0.75

0.45
0.40
0.35
0.30
0.25
0.20
0.25
0.30
0.35
0.40
0.45
0.50
0.45
0.40
0.40
0.45

0.40
0.30
0.20
0.10
0.05
0.10
0.20
0.30
0.20
0.10
0.05
0.10
0.20
0.30
0.40
0.50

0.40
0.20
0.00
0.20
0.40
0.50
0.40
0.30
0.20
0.30
0.40
0,50
0.45
0.40
0.45
0.45

0.50
0.40
0.30
0.20
0.20
0.10
0.10
0.20
0.40
0.50
0.50
0.50
0.50
0.50
0.50
0.50

0.40
0.50
0.60
0.80
1.0
0.90
0.80
0.60
0.50
0.40
0.40
0.30
0.30
0.40
0.50
0.50

0.50
0.70
1.0
0.70
0.60
0.40
0.30
0.50
0.30
0.50
0.30
0.20
0.10
0.10
0.20
0.40

scattering amplitudes considered. The curves of Table X
are chosen more for their disparity than for possib1e
resemblance to reality. Curves 5 and 6 involve reso-
nances, although there is no reason to think that
resonances exist in the states we deal with. The states
for which we calculate the integrals are l=1, s~~2 and
I=O, p3/2 (for phase shifts SPD-1) or I=O, p]/Q (for
phase shifts SPD-2). These states involve the largest
phase shifts, so if the unitarity corrections are small for
these states they should be negligible for the others.
The values of the integrals for the six different high-
energy behaviors are shown in Table XI. The last
column of the table shows an estimate of the uncertainty
in the unitarity integral due to uncertainty in the high-
energy behavior of Im f.The estimate is very crude; it is
merely one half the difference between the largest and
the smallest of the six integrals. The uncertainties in-
crease sharply at the higher momenta. Most of the in-
tegrals decrease rapidly between 640 and 810 MeV/c.

We have performed two fits to the data including the
integrals of column 1 of Table XI. The fits are like fits
1-B and 2-B of Sec. II, except for the addition of the
integrals and an increase of the experimental errors by
amounts corresponding to the uncertainties listed in
Table XI. The parameters of the two fits, labeled 1 -BU
and 2-BU, are shown in Table XII. The parameters
are fairly close to the parameters of fits 1-B and 2-B.
We take this as justification for the omission of unitarity
integrals in the exploratory work of Sec. II. The g'
values for the fits with unitarity integrals are y'=35,
P(y')=0.85(1-BU) and g'=47 P(y')=0.41(2-BU).
Without unitarity integrals (consequently, with smaller
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TABLE XI, Values of unitarity integrals, Powers of ten are suppressed, except at column heads.
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Plab
(MeV/. )

I=i, S1j2

235
355
520
640
810

I=O, P / (SPD-1)

235
355
520
640
810

3.0SX10~
4.32
5.02
4.62
1.95

0.233X10 '
0.622
1.54
2.08
0.648

2.75X10~
3.83
4.21
3.48
0.05

0 211X10~
0.549
1.32
1.66—0.345

2.98X10 ~

4.20
4.78
4.24
1.10

0.224X 10~
0.589
1.44
1.85—0.035

3.02X10~
4.27
4.93
4.50
1.77

0.229X10 ~

0.611
1.51
2.02
0.539

3.49X10 '
5.02
6.18
6.25
4.61

0 272X10~
0.752
1.94
2.84
2.30

3.34X10~
4.80
5.86
5.89
4.41

0 265X10~
0.731
1.89
2.78
2.44

0.004
0.006
0.010
0.014
0.023

0.0003
0.001
0.006
0.012
0.014

0.393X10~
0.925
2.14
0.991—5.10

I=0, P1/2 (SPD-2)

235
355
520
640
810

0.371X10-2
0.851
1.92
0.565—6.09

0.383X10~
0.892
2.04
0.760—5.78

0.389X10~
0.913
2.11
0.927—5.21

0432X10 '
1.05
2.54
1.74—3.45

0425X10 2

1.03
2.49
1.69—3.30

0.0003
0.001
0.003
0.006
0.014

TABLE XII. Parameter values for two 6ts to the data including the unitarity integrals of the 6rst column of Table XI. Except for the
unitarity integrals the Gts 1-BU and 2-BU are like the 6ts 1-B and 2-B, respectively, of Tables II and IV.

GEE'/4s.
Gpss/4s.

AN(1)+ pKK/4~

/ANN( ygKK/4'
y„NN&'&7„xz/4s.

1-BU

0+
52~10

—0.53~0.21
2.9~3.3

—2.2~6.5

2-BU

1.6&16
0+

0.60a0.16
5.7~3.5

—22w6

~(1)

0 (o)

~ (1)

a, (0)

~ (1)

ag«)
p(1)
p(0)

75~21
269~55

—0.39&0.24
—1.8&0.4

—0.17a0.25
—1.6~0.4

5.7w2. 6
25a5

2-BU

—43~38
—60+35
0.70~0.36
0.86~0.32
0.91~0.36
0.40+0.38

—5.7a3.9
—8.8~2.7

data errors) the corresponding values were g'=35 and
g'= 55.

Finally we note that the 1V/D method is a possible
alternative to our method of handling unitarity correc-
tions. However, the E/D calculation is considerably
more dificult, and it has the serious disadvantage of
developing ghost poles in s waves more often than not.
Also, it cannot be directly applied to the mini-Fubini
representation, since the polynomial background terms
have poles at in6nity. The background terms would
have to be approximated over the low-energy region by
some functions with better asymptotic behavior.

V. COMPARISONS WITH EARLIER
WORK AND CONCLUSIONS

Without pretensions of completeness, we mention
some of the earlier work on E-1V scattering. In 1957 and
1958, Yamaguchi~ and Barshay" suggested that ex-
change of two pions in a nonresonant state might be an

44 Y. Yamaguchi, Proceedings of the Padua-Venice Conference,
1957 (unpublished); Progr. Theoret. Phys. Suppl. 11, 37 (1959)."S. Barshay, Phys. Rev. 110, 743 (1958).

important eGect. Although this eGect is now thought to
be of minor importance, the work of Vamaguchi and
Sarshay did call attention to possible interesting
features of boson exchange. In 1959, Warnock" cal-
culated E Escattering by an-lt//D formula, taking the
A and Z Born terms for the Ã function. Pseudoscalar
E1ll'Y coupling gave the best fit to the available IC+p-
total cross sections, but the energy dependence of the
data was 6tted only by virtue of fairly strong ps~a
scattering coming in at the higher energies. Later data
suggest that p waves are almost absent below 810
Me V/e.

In 1960 and 1961, when the existence of the p meson
was predicted but not yet confirmed, Lee4~ and Ferrari,
Frye, and Pusterla" investigated the long-range part
of the p contribution, taking m, =500 MeV. Lee was
able to 6t the available effective-range formulas for I= 1

46 R. L. W'arnock, PhD dissertation, Harvard, 1959 (un-
published).

4~3. W. Lee, PhD dissertation, University of Pennsylvania,
1960 (unpublished); Phys. Rev. 121, 1550 (1961).

48 F. Ferrari, G. Frye, and M. Pusterla, Phys. Rev. 123, 315
(1961).
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and 1=0 scattering by a combination of a subtraction
constant (or a distant pole) representing the short-range
forces and. a nearby pole representing the p. Both Lee
and Ferrari et e/. worked out much of the formalism of
double-dispersion relations as it applies to K-E scatter-
ing. Lee suggested the application of the Cini-Fubini
representation to the problem. Islam, "in 1961, allowed
A. and Z as well as p, and was able to get rough,
qualitative agreement with /=1 and I=O data by
adjusting the A and 2 coupling constants. He invoked a
cancellation between the p and A, Z terms to eliminate

p waves in the J= 1 state.
Between 1961and 1964, a number of papers appeared

in which various single-particle exchanges were included
(e.g. , p, co, A, Z, F*).A bibliography may be found in
Ref. 50; see also Ref. 51.These studies are all incomplete
in view of present knowledge; they omit some known
particles which might be important, or they do not 6.t
all recent scattering data, or they are unsatisfactory in
principle because of the presence of nearby ghost poles
in the scattering amplitude. In our opinion they also
give insuQicient attention to the part of the amplitude
not represented by single-particle exchanges; i.e., the
part we ha.ve called the background.

Recently Martin and Spearman" have carried out a
more careful and thorough analysis of E+ pscatteri'ng-.
They give particular attention to exchange of a bght
two-pion state —say ABC state. All other forces are
represented. by two poles in each partial-wave ampli-
tude. One pole is very distant; it should. have the same
c6ect as our background terms. The other pole is at a
location appropriate for representing a medium-range
force. It is located at a point which would be the begin-

ning of a branch cut due to a t-channel state of mass
880 MeV. There is also a singularity (not mentioned
explicitly by Martin and Spearman) due to extraction
of a "kinematical factor" Lcf. their Kq. (4.2)j.In their
notatloll, lt ls a bl'Rllcll polIlt of tile form C(v+~ )
in the scattering amplitude f(v). The parameter M' is
chosen so as to make this singularity fall near the
beginning of the p and au cuts. The constant C is not
ad)ustable lndcpcndeI1tly of thc pole residues. In addj-
tion, there may be a ghost pole (i.e., a spurious zero of
the D function) in the I=1, sos amplitude of Martin
and Spearman. Apparently the question has not been
investigated. Roys' and Costa, Zimerman, and Gluck-
stern" found ghost poles near the physical region in
calculations quite similar to that of Martin and Spear-
man. It is not clear to us a priori that the combination
of singularities used by Martin and Spearman repre-
sents adequately the effects of p and a exchange.

49 M. M. Islam, Nuovo Cimento 20„546 (1961).
50 A. D. Martin and T. D. Spearman, Phys. Rev. 136, 31480

(1964).
~' D. P. Roy, Phys. Rev. 136, 8804 (1964}.
» Q. Costa, A. H. Zimerman, and R.L. Gluckstern, Proceedings

of the Eastern Theoretical Physics Conference, 1962; Gordon and
Breach, Science Publishers, Inc., ¹vrYork, 1963.

However, Martin and Spearman report in a private
communication that their results are stable against
large changes in 3P and the pole positions. This may
be construed as an argument in favor of their model.
In any case, they are able to determine the strength of
the singularity associated with the low-energy two-pion
interaction. They find that this term is relatively small,
in qualitative agreement with our conclusions.

Feshbach and Lomon" have applied their "boundary-
condition model" to s-wave E+ pscat-tering. Here the
force of longest range is represented by a two-pion
exchange potential, while all forces of shorter range are
accounted for by placing an energy-independent bound-
ary condition on the wave function at some interparticlc
distance ro. 2 priori estimates of ro can be obtained by
looking at Feynman graphs. "The arguments employed
are closely related to those of Cini and Fubini. ' It seems
tllRt tile VRllle Of vo used 111K+-p SCRttCrlllg 1S collSlstCllt
with an important role for p and cu exchanges.

To conclude, we comment on the prospects for future
progress. From the work of Secs. II and III it seems
that our picture of E-Ã scattering is acceptable if the
correct J=O phase shift set is the Yang-type set labeled
SPD-2. On the other hand, the parameter values in the
fits to Fermi-type phases SPD-1 are entirely out of line
with theoretical predictions and with the earlier
determination of the average of A and Z coupling con-
stants by forward-angle dispersion relations. Thus, a
resolution of the Fermi-Yang ambiguity wouM provide
a clear test of our theory. Such a test is interesting for
its implications beyond the K-g problem, since one
would like to build up a general con6dcnce in the
representation of the scattering amplitude as single-
particle exchange terms plus background. Such a
representation, which can be viewed as a generahzcd
CQective-range expansion, is expected to become more
and more valuable as the quality of data improves.

Aside from the resolution of the Fermi-Yarjg ambi-
guity, the experimental progress that would help most
would be improved accuracy for the I=O phase shifts
below 800 MCV/c. Data above 800 MCV/c in both
J= 1 and J=O are potentially useful, but in this region
one has the difhculties of multiple phase shift solutions,
inelasticity, and the need for careful unitarity correc-
tions. Whatever the difhculties, 5=1 and J=O phase
shifts at the highest possible energies would be interest-
ing, either as data points to be fitted or as an aid to
estimating unitarity integrals.

In our fits with the Yang-type phase shifts SPD-2, we
have some doubt about the treatment of the + and q
exchanges, Since the average ~-q term is quite promi-
nent in the its, it is essential to clarify the situation. It
seems unlikely that the necessary ~ and y coupling
constants can be determined from E-g scattering
alone. It may be more feasible to take information on

"H. Feshbach and K. L. Lomon, Ann. Phys. (¹Y.) 29, 19
(1964).
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For the reader's convenience we collect the formulas
for partial-wave projections of single-particle exchange
terms and background terms. The partial-wave ampli-
tudes are related to partial-wave projections of the
invariant amplitudes A and J3 by the following standard
formula for f= sinb e'~/q'4:

16' f~~(w) = (8+m)gd q+ (w —m)BE]
+ (8+m)$ —A )~q+ (w+m)B(~g]. (A1)

f~ and f~ are the two amplitudes for a given J; f~+
has l= J ,', while f~—h—as l=J+—,'. The nucleon and E
meson masses are denoted by nz and p, , respectively, and
m denotes the total energy in the center-of-mass frame.
The nucleon energy E is given by the formula

&~m= L(w+m)' —
t ']/2w (A2)

The total momentum in the center-of-mass frame is
labeled q; thus, q'= (8+m)(E m). —

For exchange of a J=—,
' particle I" in the I channel,

the projections of the invariant amplitudes are well-
known":

A i
———G'(m+ prmr) Qi(x)/q',

B(——G'Q((x)/q',

~= 1+LZ —s—mr' ]/2q'

Z=2(m'+u') s=w'.

(A3)

G is the coupling constant of Eq. (1.3a), and mr and pr
are the mass and parity of the exchanged particle;

~ S. Frautschi and J. Walecka, Phys. Rev. 120, 1486 (1960);
%. Frazer and J. Fulco, ibid. 119, 1420 (1960).

the coEE and yXÃ coupling constants from 3l-g and
e-E scattering. In a following paper we intend to try out
that procedure.
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APPENDIX

A &= mghQ&(y)/q'; B&——0,
y= 1+@,'/2q',

(A8)

where g and h are the coupling parameters of Eq. (1.3c).
For exchange of a 1—particle with mass p, and vector
coupling to the nucleon we have

At=0' B~= 2'"'Qi(y)/q', —
y —1+@ '/2q'

(A9)

with y and y &'& as defined in Eq. (1.3d). For 1—exchange
» E. Jahnke and F. Kmde, Tables of Factions with Formulas

and CNrees (Dover Publications, Inc. , New Yorlr, 1945).

pr= —1 for F=A, Z and pr=1 for F=FO~(1405
MeV). Qq is the Legendre function of the second kind:

1 ' P((t)dt
Q~(&) =- (' 4)

2 y S—t

Qg may be expressed in, terms of logarithms. «
In the case of a J = 2+ particle F in the u channel,

we begin with a fixed-t dispersion relation for E-Ã
scattering'.

1 "Ag(s', t)ds' 1 "A2(u', t)du'
A (s,t) =- +-

VI 80 S —S Ã tto I —II

+ (single spectral integrals) . (A5)

A similar relation holds for B(s,t) We r.etain only the
term proportional to Imfr+(u') in the partial-wave
expansions'4 of A2(u', t) and B2(u', t), and set Imf~+(u')
= (~/2)nb(u"" mr—) Afte. r some calculation the follow-
ing expressions are obtained:

A ~ 2bb~o——Pa+—b(Z s —m'r)—]Q~(x)/q',

B,= —2db„+ Lc+d(Z —s—m, ')]Q, (x)/q',

mr+ m mr —m
a=4snmr .3 +

Er+m Er m—
(A6)

3 mr+ m
b= 4xnmy

-2qr Sr+m

3 1
c=4n-envy

Br+m Er m-
d =b/(mr+ m) .

Here Z and x are defined as in Eq. (A3); Er and qr are
the nucleon energy and the E-X momentum at energy
ms~. The ElV I' coupling parameter n is related to the
coupling constant II by Eq. (1.4). The amplitudes given
in Table VI represent f&+ divided by EP/4~. Equation
(A6) and Eq. (A1) yield the amplitude f&~'"+(w m&)
for exchange of a ~+ particle of mass my. For ~ ex-
change one may apply the identity

kg'"—
(w; mr) = —ft~"+(w; ™r). (A7)

For exchange of a 0+ particle of mass p, in the t
channel the formulas are
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8irwfo ——(E+m)(n+ (w —m)P+sn, ]
2q'fE—+m+ (E—m)/3 jng,

87rw fi —(E———m) Ln —(w+m)P+sn. ]
+2q'[E —m+ (E+m)/3 jn„

12~wfi+ q'(E+m——)n„
12swf2 = —q'(E —m)n(.

(A11)

with tensor coupling, both A i and 8~ are nonzero:

~ i= —bv"'/m) E(~/2 —s '/2 —s)Qi(y)/q'+bioj, '
(A10)

&i= 2v—v"'Qi(y)/q'

where Z and y are defined in Eq. (A3) and Eq. (A9),
and y, y('& in Eq. (1.3d). We found that in one version
of zoRx'RAN the logarithm subroutine was not accurate
enough for evaluation of the Qi's in vector-meson
exchange at low energies. The asymptotic expansion of

Qi(x) for large x solved the problem. "
To indicate the partial-wave projections of the back-

ground terms of Eq. (1.1), we write out the partial-
wave amplitudes in full.

The contribution of s-wave E-X scattering in the
u-channel is given by the following integrals:

—4 ' w'+m
ds' Qi(x') Imfo+(s'),

q' „E'+m

ds' Q (x') Imf (s'),
E'+m

(A12)

x'=1+(&—s' —s)/2q'; so=m+a.

b+ q (a'+ b')
Imfo+(s) =

(1+qb)'+ q'a'
(A13)

In our calculations, the upper limit s corresponded
to 400 MeU/c laboratory momentum, and the K 1V-
scattering amplitude was calculated in the com-
plex-scattering-length approximation q cotb= 1/(a +ib).
Thus,


