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A model for elastic scattering near the 900-MeV #~-p resonance is proposed, consisting of a Breit-Wigner
term together with an optical background. The optical background is chosen to fit experimental data beyond
the 900-MeV resonance; the spin of the Breit-Wigner term is then adjusted to give an elastic cross section
in agreement with experiment. A distorted-wave Born-approximation calculation shows a spin-§ resonance
term to be in agreement with the data, in accord with the usual spin assignment. Parity of the Breit-Wigner
term cannot be decided from the elastic energy spectra and angular distributions alone; however, if the
elastic resonance is identified with the observed A-K resonance near 900 MeV, one finds a suitable branching
ratio only for the Dse choice. The resulting A-K angular distributions, as well as the production cross section
as a function of energy, agree generally with experiment. It is therefore proposed that the 900-MeV =~-p

resonance has negative parity relative to the proton.

I. INTRODUCTION

MODEL is proposed to account for some features

of the total and integrated elastic cross sections
as well as elastic angular distributions near the 900-MeV
7~-p resonance. The model consists of an optical term
and a single Breit-Wigner resonance.! The optical term
accounts phenomenologically for inelastic background
while the Breit-Wigner term accounts for the resonance
structure of the elastic and total cross sections.

The optical parameters are determined from very
high-energy data and the Breit-Wigner parameters are
then chosen to fit the total and integrated cross sections
at the resonant energy. It is found that a spin-§ res-
onance gives the best value for the elastic cross section
in agreement with the usual spin assignment.? The
angular distributions are in general agreement with
experimental angular distributions,® being dominated
at forward angles by the optical term and near 180° in
the c.m. system by the resonance term.

The resonance in the elastic w-p channel couples to
each open inelastic channel. If the resonance term is
taken to be Dy, the size of the 7+ p — K-4-A resonance
will have approximately the experimental value, where-
as an Fg/2 assignment leads to an inelastic resonance too
small by a factor of 10.

Assuming a Dy resonance, the energy spectrum and
angular distributions are computed for the A-K channel
using the model proposed by Hoff* (K* exchange
together with a Py, resonance) with three modifica-
tions: (a) The resonance is taken to be Dj)s rather than
Pyj2. (b) The resonance parameters are computed from
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the elastic partial width. (c) The calculations are
carried out using the distorted-wave Born approxima-
tion to include optical effects systematically. The
resulting inelastic energy spectrum and the A-K angular
distributions are in fair agreement with experiment.

It is therefore suggested that the Dg, spin-parity
assignment (although in disagreement with the usual
Fys Regge pole assignment®) does lead to a simple
understanding of the A-K resonance, as well as an
explanation of the elastic angular distributions near
the resonant energy.

II. ELASTIC =—-p CROSS SECTION

The elastic #—-p differential cross section is deter-
mined in terms of the amplitudes f; and f, by*

do/dQ= | f1|*+| f2|2+2 cosh Re(f1f2*), (1)

where f1and f;are given by the partial-wave expansions

h= g.l(f -1 — fie17) P/ (cos) ,

® 2)
fo= El( fr—fit) P/ (cosh) ;

fi* being the partial wave amplitudes for J=174-1. Each
partial-wave amplitude will be given as the sum of an
optical term and a resonant term evaluated using the
distorted-wave Born approximation:

Jut= (1/2ip) (¢**£—-1),
Iy

frrE=etitt ,
2p(W,—W—4iI'/2)

J=Jr, ()

I=1,,

=0, otherwise.

8G. F. Chew and S. C. Frautschi, Phys. Rev. Letters 8, 41
(1962) ; P. Carruthers, 4bid. 10, 540 (1963).

¢ The amplitudes of f; and f; are introduced, for example, in
G. F. Chew, M. L. Goldberger, F. E. Low, and Y. Nambu, Phys.
Rev. 106, 1337 (1957).
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¢2i%* represent phase-shift factors due to optical back-
ground alone. W and p are the center-of-mass energy
and momentum. The resonant energy W,=1688 MeV
and the total width IT'=100 MeV. The elastic partial
width T'; is determined by fitting the total cross section
at W=Ww,.

The optical parameters are chosen so that the dif-
ferential cross section, far beyond the resonance, agrees
with experiment. At the relatively high momentum of
4 BeV/c, the elastic cross section satisfies the empirical
formula’

do/dt= (c/16m)e!?”" 4)

where ¢=32.3 mb and »=1.73 m,. The quantity
i=—2p?(1—cosf) is the square of the center-of-mass
momentum transfer. The scattering is consistent with
the assumption that the amplitudes f; and f, are both
imaginary. In fact, if we take?

Ju=i(po/4m)e!*”, ©)
J2=0, - (6)

the optical theorem gives for the total cross section,

or= (47/p)Im[ f10(0)+ f20(0) J=0. (7

This is in agreement with experiment. If the optical
amplitudes are substituted into Eq. (1) for the differen-
tial cross section, Eq. (4) is recovered.

The optical amplitudes given in Egs. (5) and (6)
are not the most general choice consistent with Eq. (4)
for the differential cross section and Eq. (7) for the total
cross section. They do provide, however, a specific
choice in accord with the notion that optical effects can
be described by a spin-independent optical potential.®

The partial-wave amplitudes f;* are determined from
f1 and f2 by

f=i f WAPW+FPa®],  ©)

-1
from which one finds
X" = o2 =1 — (512/2m) Z1(p?/20%), 9

where Z(x) = 2xe%,(x) with ¢;(x) a modified spherical
Bessel function.!

7 Aachen-Birmingham-Bonn-Hamburg-London-Miinchen Col-
laboration, Nuovo Cimento 31, 729 (1964).

8 An essentially identical choice is made by Gottfried and
Jackson, Ref. 1.

9 The replacement fip— fi0 cos?(a/2), fao—> foo sin?(a/2) gives
a total cross section still in agreement with experiment but causes
the differential cross section to be multiplied by

cos?(6/2) +sin?(6/2) cosa.

To the extent that the scattering is forward in the c.m. system
this factor cannot be distinguished from 1 and the spin-dependent
amplitudes explain the high-energy data as well as the spin-
independent amplitudes of Egs. (5) and (6).

0The dominant term in the asymptotic series forlarge positive
% is Zy(x)—e D2z,
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Substituting the resonant term from Eq. (3) into
Eq. (2), one finds

f1r+= fl,Pz_Hl (COS@) ,
fzf"“—‘ —ferz' (COS@) ,
S =—f1.Pi_1 (cosh),
f2r—.= fl7Pl’ (COS@) .
Here f1,% and fy.* represent contributions to fi and f,
due to a resonance with angular momentum J=/41.
In Egs. (10) use has been made of the fact that for the
distorted wave Breit-Wigner term fi,t= fi,”= fi,.

Combining Egs. (5) and (6), and (10) for the ampli-
tudes f; and f; the total cross section is found to be

(10)

. w@IHnr
22 (W,—W)eTY/4)

621'617 (11)

O’T(W)=O'

from the optical theorem.

Setting W=W,, Eq. (11) can be solved for I';. Table
I gives I'y/T for various choices of J and /. We use
or(W,)=>58.0 mb and determine €?%! from Eq. (9).

The differential cross section may be decomposed
into three terms: an optical term, a resonance term, and
an interference term. Calling these contributions I,(6),
1,(6), and I:(6), one determines from Eq. (1):

0'2 2
10(0) = e~ (P2/¥2) (1—cos) ,
or
I ( ) I 46 ( )
#(0)= e*0iF ;_y/9(cosh) ,
ApL(W,—Wytr2/a] " (12)
c(2J4+1)I'Ty
Ii(@) = e2181g— (p2/2+2) (1—cosb)
167 (W,—W)24-T12/4]
X Py(cosh) ,
where

Fi(w)=[Pua W) P4 P/ (W) I —2uPrys (w) P/ () .
Integrating Eqgs. (12) over angle one finds for the
elastic cross section a decomposition ¢ x(W)=co(W)

Tasre I. Elastic branching ratio and elastic cross secton at
resonance for various choices of J and /.

J I Iy/T ae(W,) (mb)
1 0 7.23 69.9
1 3.42 63.1
F 1 1.71 41.0
2 1.12 34.3
5 2 0.748 26.9
3 0.626 23.1
3 3 0.469 19.4
4 0.440 17.9
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+o,(W)+0:(W) where is the downward swing seen in the experimental data
- near 180° predicted by the model.
gy
oo(W)=8—(1—e‘””’ ) III. A-K PRODUCTION
T
. Let us now consider the decomposition given in
(W)= m(2J+ 1Ty sty (13) Fig. 3 of the 7~-+p — K+ A production amplitude into
o 2p°[(W,— W2+ /4:|° ’ a resonance of spin J and a K* exchange. The produc-
tion amplitudes f; and f. may again be decomposed
ov?(2J4+1)I, vis \ into partial-wave sums according to Eq. (2). The
oi(W)= Ly (pY/20%). production amplitudes associated with the resonance

apL(W.—W)*+12/4]

The values of I'y/T, from the third column of Table I,
are used in Eq. (13) to give the values of ¢z (W ,) shown
in the fourth column. These values seem to favor the
Dy, assignment when compared with the experimental
value 26.58+0.61 mb. This choice must be considered
in the light of the particular choice of optical amplitudes
made in Eqgs. (5) and (6). If one makes the replacement
f10¢> fao the resonance and optical contributions to
Egs. (12) and (13) remain unchanged but the inter-
ferences are changed. With this new choice of spin
dependence in the optical amplitudes the rows of Table
I corresponding to a given J are interchanged, and the
Fy,5 choice gives the value of o (W,) closer to experiment.

We give in Figs. 1 and 2 some elastic angular distribu-
tions for the Dg/s and Fy resonances compared with
experiment. The curves for Dy and Fys cases will
again be interchanged if the optical amplitudes f1o and
fa0 are interchanged. Both choices are in reasonable
agreement with experiment ; however, for neither choice

are given in the distorted wave Born approximation as

Fuyte (TT,)*
T (W—W—ir/2) "

where I'; and I'y are partial widths for the initial and
final states and D;=¢#"+i is the product of optical
phase factors for the initial and final states. These phase
shifts will be given by Eq. (9) where it is assumed that
the optical parameters ¢ and » are identical for the
A-K and the 7—-p interactions. One has

(14)

U'V2 1/2 0.,/2 1/2
Dz=|:1———Z;(p2/2v2):l [1———21@’2/21/2):] , (15)
2 2
where p and p’ are the c.m. momenta for the incident
and final particles, respectively. Equations (10) then
describe the resonant contribution to the production
amplitudes f; and f.
The K* partial-wave amplitudes can be deduced from
Fig. 3 provided a specific form of the interaction is
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given. We assume an interaction between the K* and
vector currents which are conserved in the limit of
degenerate masses. We find

JirwE=N[GQ:(B)+HQ1:1(8) 1D,
N=—gprr+g-Kkx*/4T,
L EEmE\
Cawp\ 2y )

X[ZW—m~M'+W] e

M.

1 /(E—-m) (E'—m" )\ Y2
- )
2Wp\ 2pp

X[zw+m+m,_W] ,

M
B= QEE'4+M?*—m'*—m?*)/2pp’ .

In Egs. (16), E and m are the energy and mass of the
proton, E’ and ' are the energy and mass of the A;
u, &', and M are the masses of 7, K, and K* respec-
tively. Q; is a Legendre function of the second kind.
The partial-wave amplitudes in Eq. (16) are summed
according to Eq. (2) to give K* production amplitudes

P A p A P A
= > +
"','."" RN T Y LN

Fi6. 3. Decomposi-
tion of the A-K pro-
duction amplitude.

figx and foxx. In the limit of no optical absorption,
D;=1, one has

fiks=NG/(B—cos), foxs=NH/({B—cos), (17)

which agrees with the corresponding formulas of Hoff.*

The differential cross section for production is given
in terms of the amplitudes f; and f» by Eq. (1). This
cross section may be decomposed into a resonance term,
a K* term, and an interference contribution as

11
I.00)= D
4p[(W,—W)24T2/4]
Ix+(0)= | f1rx |+ | forr| 2 cosf Re(fixsfors®) ,
(i) V2 (2T +1) (W ,— W)
2pL(W,—W)2+T12/4]
~+ forrPigp1(cosd)].

The factor Fs_ys(cosf) is defined in Eq. (12). The
differential cross section is integrated to give (W)
=g,(W)+oxx(W)+o:(W) where

7I'P 1F2 D
2L (W,—W)+T%/4] |

12FJ.__1[2 (C050) )

(18)
Dl[flx*Pz (COS@)

Ix6)=

2
’

o (W)=

"K*(W)ié Q@U+2) (| firet |+ | fasmm[2), (1)

20 (T4T) V22T +1) (W, — W)
pL(W,—W)*41?/4]

aiE(W)= *

LJIK*™ .
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F1G. 4. Comparison of the D;/» model calculation with experiment,

In Egs. (18) and (19) I's is a parameter which can be
determined once, I'y is given by the branching law

Ty (E'dm’) ()

Ty (BExm)(p)¥ 0

J=1+3,

where it is assumed that the coupling for the resonance
to the #=-p and K-A systems is identical, gn+rp= gn+xa.
Using the values of I'y/T given in Table I we find

P1F2/P2=664X 10—3 fOI' D5/2, (21)
=6.20X10* for Fs/z.

Interchanging the columns of Table I as discussed in
Sec. IT does not appreciably change the numbers in
Eq. (21). The contribution of the resonance to the cross
section at W=W, is 0.23 mb for Dgs and 0.025 mb for
Fy/5. The experimental data indicate a rise above
background of about 0.3 mb which favors the Dg
assignment independently of the choice of optical
amplitudes.

Assuming a Dy, resonance, angular distributions at
several energies and the integrated production cross
section are computed from Egs. (18) and (19). The
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results are given in Fig. 4, together with the correspond-
ing experimental values.!* ‘

To obtain reasonable comparison with experiment it
was necessary to increase the value of (grxx+?/4m)
X (gpar+?/4r) to 1.2 from the value of 0.115 quoted by
Hoff.# This increase can be understood if one notes that,
at the energies considered, the parameter 8 in the Born
amplitudes of Eq. (17) is larger than 2 and the K*
contribution to the amplitude is dominantly s-wave.
The s-wave amplitude is strongly absorbed since the
corresponding optical parameter Dy<<1; consequently,
the coupling must be increased.

As a result of the rather large K* coupling constant,
one tends to doubt polarization calculations based on
interferences between the diagrams of Fig. 3 alone.
For this reason, no attempt is made to explain the
polarization data using this model.

IV. SUMMARY

A definite prescription has been given for subtracting
back-ground from the =—-p total cross section in the
vicinity of a resonance. This procedure is similar to the
usual method of subtracting the constant high energy
cross section from the experimental total cross section
and interpreting the remainder in terms of a Breit-
Wigner formula. The major difference is that a specific
model is proposed to account for the constant high-
energy cross section; the elastic cross section and the
angular distributions computed from this model are
found to agree, generally, with experiment. The spin
of the resonance is found to be § by comparing the model
calculations with experimental elastic cross sections.

To determine the parity of the resonance a simple
two-channel problem is considered. It is shown that a
Dy resonance couples to a resonance in the AK
channel of approximately the correct strength to
account for the observed AK cross section. The res-
onance model for AK production proposed by Hoff is
therefore modified by replacing the Py/s resonance by
a Dgs term and computing the distorted-wave approx-
imation. The production cross section and angular
distributions are again found to agree generally with
experiment.

11 Joseph Keren, Phys. Rev. 133, B457 (1964); L. Bertanza,

P. L. Connoly, B. B. Culwick, F. R. Eisler, T. Morris et al.,
Phys. Rev. Letters 8, 332 (1962).



