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We consider two-particle scattering systems for which the crossing matrices give a good estimate of the
nature of forces. We define a bootstrap state to be an eigenvector of the total crossing matrix. It is shown that
bootstrap schemes are generally not unique. We conjecture that the physical particles manifest themselves
in a state of minimal bootstrap, that is, a scheme involving the participation of the least number of particles.
By studying meson-baryon scattering in the SU(2) and SU(3) symmetries, we find substantial evidence in
support of this conjecture. The results are not only that the minimal boostrap vectors accommodate the
observed particles in the usual way, but also that the ratio of the coupling strengths of particles in diBerent
representations and the mixing parameter (D/F ratio) of the Yukawa-type octet coupling both turn out to
agree with experiments.

I. INTRODUCTION

''N exploring the possibility that the existence of
~ - particles and resonances in strong interaction may
be understood as a self-consistent bootstrap in the
analytic S-matrix theory, a great number of investiga-
tions have been made' ' either to explain the existing
particles or to predict new ones. These studies can
broadly be classified into two categories: One involves
detailed dynamical calculations using all the machinery
of the S-matrix theory, viz. , analyticity, unitarity, and
crossing symmetry; the other is a qualitative study
involving the examination of the crossing matrices from
which is inferred the nature of the forces in the various
states of a scattering process. The former aims at
calculating the masses and coupling strengths of the
particles, but because of the complications involved the
considerations must per force be limited to simple
systems only, or be content with partial self-consistency.
The latter category deals with more complicated sys-
tems but abandons any attempt to answer questions
concerning dynamical details such as mass values, thus
permitting an understanding or prediction of the
quantum numbers of the particle spectrum without
first requiring the solutions of the complete problem.
The purpose of this paper is to give a systematic and
precise description of bootstrap within the confines of
the considerations in the second category, and to
consider in detail some aspects related to this
description.

If we do not question the masses of the particles, but
ask only in which angular-momentum state and ir-
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reducible representation of the internal symmetry group
the particles are likely to occur, it is only necessary to
examine the sign and strength of interaction in the
various channels as dictated by the appropriate
crossing-matrix elements. This has been borne out by
the success of the Chew-Low static modeP' as well as
by the qualitative results of many subsequent dy-
namical calculations. Thus the spin and the internal
symmetry of the particles may perhaps be interpreted
as a direct consequence of crossing symmetry and
bootstrap in much the same sense that in atomic physics
the multiplicity of spectral lines may be determined
from the rotational symmetry of the interaction poten-
tial without the requirement that the Schrodinger
equation must 6rst be solved.

Let us then take seriously the notion of crossing sym-
metry and bootstrap, the latter being as yet not pre-
cisely de6ned. Assuming that the particles participating
in the scattering process possess certain symmetry
properties themselves, the content of crossing sym-
metry can partially be framed in the form of a crossing
matrix relating the amplitudes in the direct process to
those in the crossed process. The nature of the force
corresponding to the exchange of certain particles in
the crossed process is then inferred from the sign and
magnitude of the corresponding crossing matrix ele-
ment. %e expect a state to bootstrap itself if the
diagonal element for that state is positive and large; in
the case of reciprocal bootstrap, two states support
each other, so that the two corresponding o8-diagonal
elements should be positive and large. These are rough
criteria that ignore the contribution of forces from other
states which are often not negligible.

More specifically, Chew' has considered the meson-
baryon system, and has shown that within the frame-
work of the static model the exchange of the riucleon
produces forces to form the (3,3) resonance and the
exchange of the (3,3) resonance produces forces to form
the nucleon bound state. In Chew's treatment and in
subsequent considerations, however, only the sub-
matrix of the crossing matrix is taken into account
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without regard to the (I,J)= (s,s), (s,s) states. Also it
has been pointed out' that this treatment within the
static model is equivalent to requiring the crossing
submatrix to have an eigenvalue of 1. But in general
the crossing submatrix need not satisfy this require-
ment; moreover, it is not consistent to ignore the
(—'„-',), (-'„-',) states, since the nucleon and (3,3) exchanges
produce certain interactions in the (-', ss) and (-', xs) states
which then must be included in the self-consistent
bootstrap for all the four states.

In order to treat the problem more completely, we
adopt a more general notion of a bootstrap state vector,
which we dehne to be an eigenvector of the total crossing
matrix with eigenvalue +1. (We shall later show that
the total crossing matrix can be diagonalized and that
the eigenvalues can only be +1.) Clearly, if a state
bootstraps itself, the eigenvector must lie mainly in the
direction of that state. If two states bootstrap recipro-
cally, the eigenvector must have large components in
these two states, and within the static model the ratio
of the two components is equal to the ratio of the
corresponding coupling constants squared. A generaliza-
tion of this is that all the large components of a boot-
strap state vector must be positive.

In our analysis we find that, in general, bootstrap
schemes are not unique. In the language that we have
adopted, this corresponds to the fact that there are
generally more than one independent eigenvectors of
the total crossing matrix having eigenva, lue +1.It may
be argued that this nonuniqueness is due to the approxi-
mations made in the analysis, such as the use of the
static model and the pole approximation, which give
the eigenvectors undue significance. It is reasonable to
expect that a complete dynamical calculation can
eliminate some of the arbitrariness. More specifically,
one expects that among all possible linear combinations
of the independent eigenvectors, a set of discrete eigen-
states may emerge as consistent bootstrap solutions of
the dynamical equations. Now, if the static model has
any approximate validity at all, this set must contain
more than one element when the crossing matrix has
more than one eigenvector with positive eigenvalue. It
is therefore very probable that bootstrap schemes are
not unique even if relativistic effects are taken into
account.

At this point we conjecture that the particles ob-
served in nature correspond to a state of minimal
bootstrap —i.e., a bootstrap scheme which involves a
minimum number of particles. In other words, the
eigenvector associated with a minimal bootstrap has
large components in the least number of physically
realizable states. We shall test this princip]e by applying
it to the problem of pseudoscalar meson-baryon scatter-
ing in SU(2) and SU(3) symmetries, and show that the
state of minimal bootstrap, in fact, has major com-
ponents only in the usual irreducible representations
which can accommodate the observed particles. It is

where C is the crossing matrix, which can be determined
in a variety of ways. "'~ For certain processes there are
crossed channels that are not spanned by the same
number of independent amplitudes as are the direct
channels; in such cases the crossing matrices are not
square. We consider here only those crossed channels
for which C is a square matrix.

The general properties of C are that its elements are
real and that

C'= i. (2.2)

As we have set forth in the previous section, we define
a bootstrap state to be an eigenvector of C correspond-
ing to a positive eigenvalue. In general, a real matrix
that is not symmetric cannot always be diagonalized.
We show here that the condition (2.2) guarantees that
C can always be diagonalized.

It is a theorem in matrix theory" that any real,
square matrix A of dimension e can, by a similarity
transformation, be brought to a block diagonal form
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assumed that the state of minimal bootstrap obtained
by applying the principle directly to the eigenvectors
of the crossing matrix is the same as the minimal scheme
which the principle selects from the set of discrete boot-
strap solutions of the complete dynamical problem'
where relativistic effects are fully taken into account.
The eigenvector thus selected by the principle of
minimal bootstrap also predicts the ratio of coupling
strengths of particles in different representations and
the mixing parameter of the Vukawa-type octet cou-
pling (the D/F ratio), which agree well with the experi-
mental numbers, thus lending greater credibility to the
principle.

II CROSSING MATRIX

We consider the scattering of two sets of particles,
each corresponding to an irreducible representation of a
simple Lie group. The direct product of these two ir-
reducible representations can be reduced to a direct
sum of irreducible representations, which are m in
number, say. There are then at least m independent
scattering amplitudes. If a representation of a certain
dimension occurs r times, r&1, in the reduction of the
direct product, then there are, in. addition, r(r 1)/2—
"reaction" amplitudes. I et the total number of inde-
pendent amplitudes be e,, so that we have T, o.=1,

~ ~ 0 fg

By crossing symmetry the amplitudes T„in the direct
process are related to the amplitudes in the crossed
process, Tp", P = 1, , I, by

(2.1)
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pAi, A2, ,A„$, where 3;,f=1, ~, p, are the square
matrices of dimensions d; along the diagonal having
the form

0
0

A-=
0

«

0
0 0 ~ 0

0 ~ 0

0 0 0 0 1
~ 0 0 g]

d;&e. (2.3)

The dimension d; is the degree of the reduced character-
istic equation of the matrix A:

3"s—a A" '—u A" '—~ - ~ —uqI=O (2.4)

which can obviously be diagonalized. This completes the
proof that C can always be diagonalized.

Again, on account of (2.2), the eigenvalues, X„ofC
must be either +1 or —1. If TrC=/, which is neces-

sarily an integer, then there are (n+l)/2 positive eigen-
values and (m f)/2 ne—gative eigenvalues.

III. MESON —BARYON SCATTERING IN
8U(2) AND SU(S)

As a simple example we consider first the p-wave
pion-nucleon scattering in SU(2). Bootstrap in the
static model is then a simple eigenvalue problem which

involves solving the equation

(3.1)

where C p is the total crossing matrix given by the
direct product of the isotopic spin and J-spin crossing
matrices. Since pole approximation is consistent with
the static-model approximation, the amplitudes T and
Ts" in (2.1) are here replaced9 by the residues y and

yp, which must therefore be positive. If the states
characterizing the rows and columns are labeled by
(I,J)=(-,',—',)(-', ,—,'), (-,',-',), and (-', ,2), respectively, then
the well-known crossing matrix is

That is, for a given vector I;, we can form a chain of
linearly independent vectors: I;, I;3,eQ', , I;A "' '.
If d~&e, other chain. or chains may be formed. Since
the crossing matrix C satisfies (2.2), no submatrix C; in
the block diagonal form can have a dimension greater
than two; moreover, a~=0, and a2 ——I. Thus, if C; is not
a number, it is at most

pO 1y

&1 0)
'

be represented by

2
«

2
0 +)«
0 5

&XI=1+27+10*+10+8,+g, (3.4)

that the eight-dimensional irreducible representations
occur twice in the reduction, we have, in addition to
the six "elastic" scattering amplitudes, a "reaction"
amplitude T@.8 8,. In an obvious notation we denote
them, respectively, by T~, T2~, Tyo+, Tyo, Tg, T8, and
Tq. The corresponding crossing matrix CU has been
given by Cutkosky'; we reproduce it in Table I.

Since the trace of CU is +1, there are four eigen-
vectors with eigenvalue +1 and three with eigenvalue—I. The J-spin crossing matrix for scattering in the
p wave is

(
which has eigenvalues +1 s,nd —1. Thus

TABLE I. Crossing matrix C„p for octet-octet
scattering in SU(3).

We see from (3.3) that, if X=O, the bootstrap vector
has two components, namely, in the states (-,',2) and
(2,2). Although the general vector does not preclude
possible interaction in the (2«$) and (g«2) sta'tes fol'
nonzero values of X, there is no value of X for which
any pair of states, other than (-'„-,'), (x3,~), is the only
pair of states that has large components. That is, non-
vanishing X leads to at least three large components.
Thus, by the principle of minimal bootstrap, the vector
corresponding to X=O is preferred. %e therefore obtain
the result that the (—',,-,') and (~3,-,') states form the
physical bootstrap vector in agreement with the original
reciprocal bootstrap scheme of Chew' which involves
only E and S~. Note that for X=O the ratio of the
rcslducs py to p4 ls about 2 wh1ch checks with thc
experimental result on the ratio of lVEx to S*Ex
couplings.

Consider now the scattering of pseudoscalar mesons
and baryons in the octet model of SU(3). In this case
the isotopic-spin crossing matrix is replaced by the
unitary-spin crossing matrix. Since we see from the
decomposition of the direct product of two octets

1/9 —4/9 -4/9 16/9
2/9 —1/9 8/9 4/9 . (3.2)
2/9 g/9 —1/9 4/9
4/9 2/9 2/9 1/9&

Since TrC=O, and since the eigenvalues can only be
&1 as is shown in the preceding section, there are two
independent eigenvectors which have eigenvalues +1.
Thc gcncrRl clgcnvcctol of arbitrary nolIQRllzRtlon may

1 2'I I*
i/8 27/8 -5/4

27 1/8 'I/40 1/12
10~ -1/8 9/40 1/4
10 -1/8 9/40 1/4—1/8 9/8 0
8 1/8 27/40 1/2
Q 0 0 ——,'QS

i0
—5/4 —i 1

1/12 i/8 1/S
i/4 0 2/5
i/4 0 2/5
0 1/2 —1/2
i/2 —i/2 -3/i0

l+S 0 0

Q

—2/v'S
2/+S
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(9r—Ss)/2
(—5r+s)/6

r—s—t

s
(+5) (r—s—2t)/4

2.

where x, y, s, r, s, and t are independent real parameters.

Let the states, in terms of which this vector is expressed,

be denoted. by the pair assignments (U,J), where U= 1,
27, 10*, 10, 2, S, Q, and J=-,', —',. Thus, for example, the
component of this eigenvector in the state (10,$) is

1—r/2.
To reduce the number of free parameters we observe

that the amplitudes T~, T8, and Tq, which correspond
to the processes 8 8, 8, S„and 8 S„respectively,
must satisfy the property of factorization of residues

under the approximation of a single degenerate pole in

all the three amplitudes. This implies the following

constraints:

[z+ (g5) (r—s—2t)/4/= (x+r) (y+s),
[s—(g5) (r—s—2t)/8j'= (x—r/2) (y —s/2),

(3.6)

for the J=—', and —,
' states, respectively. The 2X2 octet

scattering matrix can be diagonalized, and because the
determinant now vanishes, the matrix can be repre-

sented by one octet amplitude" T8—i.e.,

(Ts To) r Ts 0

&To Tgi (0 0
(3.7)

On account of this we need consider the vector (3,5) as

having only five U components: U=1, 27, 10*, 10,
and 8, where T~ Ts+ T~. The con——straints (3.6) reduce

the number of independent parameters from six to four.

We now apply the principle of minimal bootstrap to fix

these remaining parameters.
Before proceeding further we remark that the 5-

matrix theory requires that the amplitude for scattering

in a de6nite state in which a particle is known to exist

must possess a pole at the mass of that particle. Thus

for pseudoscalar meson-baryon scattering in the octet
model, the J=—', octet state must contain the baryons.

We assume that the system of particles under considera-

crossing matrix C=CgXCJ. has altogether seven inde-

pendent eigenvectors with eigenvalue +1; they may
be represented, apart from normalization, by the
six-parameter vector:

x+Sy+ (2+5)s—5

[5x+9y+ (2/5) z —5j/9—4s/+5+1

'—0.1
0.0
0.7
0.0
2.6,

0.0
0.5

Vying= 0.0
1.5
0.0,

(3.8)

The sum of the squares of the small components for this
solution is about 0.8. Compared to this, the least squares
for the other allowed pairs of states are found to be all
greater than 2.

Since we have not done a thorough least-square
analysis, we do not claim the solution obtained to be
the best one. However, it certainly contains the essential
properties of the minimal bootstrap vector. Evidently,
the two large components are in the (8,—',) and (10,2)
states, which are just the states that accommodate the
observed baryons and baryon resonances. This is the
generalization to SU(3) of the nucleon and (3,3)

tion is broad enough so that the baryons can be boot-
strapped within the dynamical framework which in-
volve only the baryons and pseudoscalar mesons. This
assumption amounts to saying that the physical boot-
strap vector must have a large (and positive) com-
ponent in the baryon state.

A search for the minimal bootstrap state can, in
principle, proceed as follows. Requiring the component
in the (8, -,') state to be large, one can first try to mini-
mize the sum of the squares of all the other components.
However, we see from (3.5) that the component in the
(10,-', ) state is 1+t, while the component in the (10,-', )
state is 1 t/2—Cle.arly, there is no value of t for which
both components can be small. It can be shown that
the root-least-squares of 1+t and 1—f/2 is comparable
to the component in the (SP) state. Thus, we expect
that the minimal bootstrap state has at least two large
components. One of these large components is, of
course, required to be in the (SP) state. For the other
component to be in any given state, one can calculate
the least square of the remaining eight components.
Change the second large component to a different state
and repeat the calculation. The optimum choice of the
two large components clearly corresponds to the
minimum least square of the eight small components,

For the case in which two of the components are large
[one of them being in the (8,2) state] we find that the
pair (S,i), (10/) satisfies our requirements of minimal
bootstrap far better than other allowed pairs. The
search for the optimal pair is a straightforward but
tedious calculation, which we simplify by requiring that
the (SP) component be exactly zero, thus eliminating
two parameters. [The pair with (8,-,'), (8,—,') components
being large is eliminated by the same arguments which
eliminated the case of component (8,i2) alone being
large. ] The minimization of the sum of the squares of
the small components yields, for the case in which

(8,—',) and (10,~3) components are large, the following
vectors for the J=~ and J=-,' states:



resonance states forming the minimal bootstrap vector
in SU(2).

We do not suggest that the components in the
(10*,rs) and (27, ss) states, being only three or four times
smaller than the largest components in the respective
J-spin states, should be entirely ignored. Perhaps, they
may indicate that some moderately significant inter-
action in these states is not ruled out. Their importance
can be assessed only after a more complete dynamical
calculation is made.

From the bootstrap vectors (3.8) we can also deduce
the follovring consequences vrhich are of signi6cance.
We note that the ratio of the components in the (8, rs)

to (10,ss) states is 2.6:1.5. With the proper Clebsch-
Gordan cocKcients taken into account, this implies the
following relationship bctvreen the coupling constants:

which is in good agreement vrith the experimental
situation.

%'e can also obtain from the octet components of Vj~~
the mixing parameter of the Yukavra-type octet
coupling. If (1 f)/f is t—he D/F ratio, then the three
octet components are related to one another through
the coupling codBcients as ' '

(
7's &o) (2o/3) (1—/)' (&5)f(1—/)

(3.10)
To Tg) (4/5) f(1—f) 12fs

Corresponding to thc minimal bootstrap vector Vg/g ln
(3.8), the values of the components in the U=A, S,
and Q states are 0.92, 1.69, and 1.24, respectively. Thus
wc flIld that

D//F = 1.83

f=0.35,

vrhich is again in agreement with the results of other
analyses. "

In conclusion vre make the follovring remarks. By
defining a bootstrap state to be the eigenvector of the
total crossing matrix, vre have found that bootstrap
schemes are not unique. In problems vrhere static
models are reasonable, this nonuniqueness is likely to
persist even when relativistic CGccts are fully considered.

"P.Tarjanne, Ann. Acad. Sci. Fennicae, Ser. A, VI, No. 105
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We have proposed a principle of minimal bootstrap to
select the physical solution. By studying meson-baryon
scattering in SU(2) and SU(3) symmetries, we have
found ample support for thc validity of this principle.

Without some elaborate calculations, it is dif5cult to
assess the credibility of this principle in problems vrhere
relativistic CGects are important. This is because the
crossing of angular-momentum states makes the use of
only the isotopic- or unitary-spin crossing matrices
unreliable for the estimation of forces in the various
channels. Hovrever, if vre nonetheless apply thc con-
siderations of this paper to, say, the xm problem, we
6nd that there are tvro possible minimal eigenvectors:
(1,ss,0) and (1,0,as), where the states are labeled by
I=O, 1, 2, respectively. An extra constraint, namely,
the existence of p in the I= j state, is needed to select
the first eigenvector. This constraint may be provided
by a consideration of the up scattering problem where vr

is to appear as a bound state. The implication is then
that a unique minimal bootstrap state may be obtained
if one regards the mesons as having a higher symmetry
vrhere the existence of both x and p are to be explained
by self-consistency. We can learn qualitatively from
the eigenvector (1,—„0) for rrrr scattering in the SU(2)
subspace that no particle is to be expected in the I=2
state and that even J-spin particles, such as fs, must
exist in the I=o state. These properties seem to be
borne out by experiments.

Sole added ie proof. It has been brought to our atten-
tion that Babu'~ has also diagonalized the crossing
matrix for meson-baryon scattering in G2 symmetry.
An attractive bootstrap vector, i.e., eigenvalue +1, of
course, exists also in that case as in any other symmetry.
In this sense internal symmetry cannot be uniquely de-
termined by merely requiring the existence of an attrac-
tive bootstrap state. However, minimal bootstrap may
o'er a unique selection. Babu 6nds that in G~ a boot-
strap state exists with baryons in the singlet and the
7-dimensional representation and vrith baryon reso-
nances in the singlet and 15-dimensional representation.
Qearly, minimal bootstrap prefers SU(3) with only
tvro multiplets to G~ which requires four multiplets.
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