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The form of the equations given by Faddeev for the problem of three-particle scattering is analyzed in
the case in which the amplitudes of the two-body subsystems are dominated by a finite number of pole
terms. It is shown that an important simplification can be made, reducing the Faddeev equations to a
system of coupled integral equations in one variable only.

I. INTRODUCTION

HE numerous achievements of the ideas of

Faddeev,' on the proper mathematical formula-

tion of the scattering of three particles in terms of two-

body interactions, have been pointed out by several
authors.2-5

They are mainly due to the fact that all the two-body
subsystems are taken into account exactly, so that the
integral equations given by Faddeev involve no two-
body potential at all, but only the actual exact solution
of each two-body subsystem. Thus, the three-body
problem appears to be formulated in such a way that,
as long as one knows the exact two-body scattering
amplitude off the energy shell, one should be able to
derive all the properties of three-particle states.

In the domain of strong interactions, where the
Faddeev equations will presumably receive much atten-
tion, one is faced with a quite hopeful situation. In fact,
it is well known that in that domain one has much
greater information about the properties of the scat-
tering amplitude itself (on the energy shell) than about
the original potentials which give rise to it ; moreover, it
has often proved quite satisfactory to assume that a
two-body scattering amplitude is dominated by a cer-
tain number of poles that correspond to bound states
and resonances.

Furthermore, the properties of the off-shell two-body
amplitude have been studied in great detail by Love-
lace.2?® He has shown, in particular, that in the neigh-
borhood of a pole, the scattering amplitude factorizes in
the initial and final off-shell momenta, and thus can be
written in the form

@' TiS) | p)=Tu(p,p"; )=g®)r()g(®), (1)
where p and p’ are the off-shell initial and final momenta,
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s is the total energy, and / indicates the partial wave in
which we find the pole; g(p) and g(p’) are called the
resonance or bound-state “form factors,” and #;(s) the
‘“‘propagator.” In the case of a bound state, Eq. (1) is
well known ; the function g(p) is related to the bound-
state wave function 5 (p) by

g(p)=—(*+Esls(p),

and #;(s) can, for instance, be given the simple form
tl(s)= (3+EB)_‘1 )

where Ep is the energy of the bound state. The ‘“form
factor” g(p) can still be defined for a resonance,? and the
various forms one can give to £;(s) are discussed in great
detail by Lovelace in Ref. 3.

Itis on these grounds that Lovelace® was able to show
an important simplification of the Faddeev equation.
Assuming that the influence of regions far from the
poles is not too great, so that one can give the amplitude
any arbitrary form as long as it reproduces the known
one near the pole, Lovelace noticed that a separable
two-body potential gives satisfactory behavior of the
amplitude in the vicinity of the pole, provided that it is
chosen to give the two-particle bound-state wave func-
tion correctly. From this standpoint, Lovelace calcu-
lated the two-body scattering amplitude, shows that one
can define some kind of “potentials” corresponding to
the scattering of a bound state or a resonance by an
elementary particle, and then derived from the Faddeev
equations two-body Lippmann-Schwinger equations in-
volving these so-called potentials.

In this paper, we want to show that the step of the
separable potential is perhaps unnecessary, and that
Eq. (1) can be directly inserted in the Faddeev equa-
tions without making any assumption regarding the
propagator #;(s), and that this leads to considerable
simplifications. We will give a particular example in
Sec. II, while the general case will be dealt with in
Sec. III.

Our assumptions are quite simple: We suppose that
each two-body amplitude can be approximated by a
finite number of pole terms, and that the contribution of
a pole to the off-shell two-body amplitude is factorizable
in the initial and final momenta, for all energy values.
We will consider that Eq. (1) is the exact expression of
T(p,p’; s), valid for all energies.
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II. A SIMPLE CASE: J=0

For the sake of clarity, we will first show our result in
a very simple example. Following the notations of Ref.
4, where the total angular momentum J and its pro-
jection on a body-fixed axis M are chosen as quantum
numbers, we will suppose that the total angular mo-
mentum is J=0, so that we can suppress all indices but
one in Eq. (44) of Ref. 4. The Faddeev equations thus
are written, in the kernel notation

Ti{w w)= T (' w)
B /Ki(w',w")ff'j(w",w)‘FT"(w”,w)]dw”, 2

where w represents the whole set (wyws,ws) and dw
=dwidwsdws, w; being the energy of particle 4, in the
total center-of-mass system. Furthermore, we approxi-
mate each two-body amplitude by a single pole term, so
that*?®

Ki(w' ') = (mymoms) (maps )6 (wi'—wi") (X w'—z)
Xfil(w,aw”,z) Yl.o* ('Yi’,o) Yl,0(7i,,30) ) (3)

where m; is the mass of particle ¢ and p; its momentum,
z is the total energy of the three-particle system, the
functions ¥ ,, are the spherical harmonics, / is the spin
of the composite system of particles (7) and (&), each of
which is assumed to be spinless, v/, defined in Ref. 4, is
a function of w’ and v,/ is a function of w'’. The two-
body amplitude is written, according to formula (1),

[0 ,2) =g (pir)g (pir)t(a—wi) 4)

where $; is the relative momentum of particles j and %
in their relative c.m. system, and is related to the
momenta of these particles in the total c.m. system by

piv= (mupj—mipr) (mj~+mi)™,

for, as the angular momentum has been separated, the
form factors depend only on the absolute values of the
momenta, and we have replaced s by its value in terms
of the total energy z and w,’. We can thus write

Jillw' 0" 2) = ai(w",2)bi(w") . ®)

The kernel defined by Eq. (3), then, can be written in a
simple form, omitting the variable z, which has no
importance in this matter,

Ki(w ') =8(w/—w)pi(w)4:(w); (6)

and the system of integral equations in three variables
then seems to be quite simple, as the kernel is separable
except for a part which, in fact, will give rise to a
convolution product in one variable. This convolution,
furthermore, is very simple, as it involves a Dirac
distribution. We are now able to write the Faddeev

¢ Akbar Ahmadzadeh and Roland Omnes, Phys. Rev. (to be
published).
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equations as

Ti(o' w)= T w)—A i(w')/cﬁ;(w")&(w/—w/’)

X[Ti(e" w)+T*w" w)]dw", (7)
and the solution can be written quite naturally:
T w)=T(w,w)— A4 () Bi(wi; ). (8)

Now, inserting (8) into (7), and changing the names of
the variables in a very obvious way, we obtain a new set
of integral equations, involving the functions B;(x,w):

Bi(s)=ils)— [ Kilea) B )i, O
where we have introduced the functions

Bi(x,w)=/q&i(w")&(x-—w/’)

X[T7(w"” w)+ T* (o w) Jdw"  (10)

[since the inhomogeneous terms 7% are known, 8;(x,w)
is a perfectly well-known function’], and

Kii(wa’) = (1—354)
X/q&i(w)/l,-(w)&(x——wi)é(x’-—wj)dw. (11)

In Eq. (9) w has the importance of an index, and we can
write that equation in the symbolic form

B (xyw) B1(wyw) 0 K K| |Bi(xw)
Ba(ayw) | = |Bi(wyw) | — [Ko1 0 Kas| | Ba(yw)
Bs(x,0) Ba(wyw) Kz Kz 0 ||Bs(xw)

(12)

It will be shown in Sec. IIT that the results of the very
simple case considered here (J=0 and only one pole
term in each two-body system) can perfectly well be
extended to the general case in which the two-body
amplitudes are approximated by the sum of a finite
number of pole terms, whatever the angular momentum
may be. The only change is, in fact, an increase of the
dimensionality of the K;; matrix considered above, as
one increases the number of input pole terms and the
angular momentum. On the other hand, it is obvious
that all the reductions coming from the separation of
parity and the identity of particles are applicable to
these equations as well as to the original Faddeev
equations.

The form of the equations we have obtained is quite
analogous to that of the original Faddeev equations;
what must be pointed out as extremely important from
a practical point of view is that we have now a problem
involving a system of coupled integral equations in one
variable only. This means, in particular, that the use of
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a computer is now much easier and will lead to reliable
numerical results. One can easily imagine the enormous
difference between solving an integral equation in three
variables and solving one in one variable only.

Our result is more general than that of Lovelace, who
also obtains equations in one variable, for two reasons:

(i) We have made no assumption on the form of the
propagator #;(s), while he has taken that given by a
separable potential.

(i1) Our result (see Sec. III) is valid even when there
is more than one pole in a given partial wave, whereas
this cannot be taken into account by Lovelace’s
method.?

III. GENERAL CASE

We will derive our equations directly from the equa-
tions of Ref. 4, where angular momentum has been
separated.

Let us suppress the index J, and make some slight
modifications in the notations; the equations then
appear to be

TM:Mi(w',w)
= TM'M“(w’,w) - KM'MN i(w',w")
X[ Tarrr a3 (" @)+ Tarrrar* (o jw)Jde”,  (13)
where
Ko i(w',w”)
= (mamamy) (mip )8 (w0 — o[ o —2]™
XZ /ij(wl’ w”’ Z—wil: u)
M
Xy y? (—ai)eMidyan? (0 )du.  (14)

Following Ref. 6, we can make a partial-wave expansion,
and write

ij(w', w", z-—w/, u)
=3 fi®W (o, 0", 2—w)(2141)
1
X Pi(cosy’ cosy’+siny’ siny’’ cosu). (15)

Choosing, as in Ref. 6, the z axis to be perpendicular to
the plane of the momenta, and integrating over #, we
obtain

Kaprag i @)
= (mymamg) (mip ) =16 (w —wi"") ( wi'—2)*

XZZ fjk(l) (w', w", Z“'O)il)XMlM//(l) N (16)

where (Ref. 6)

X V=2 (=Y 3, * (v, 0) Y 1 (v’ ,0) Aprr ¥ Apgry7 .
# a7)

BASDEVANT

(The Appa? are defined in Ref. 7.) Now we assume
that each partial-wave amplitude is dominated by a
certain number of pole terms, characterized by an index
of degeneracy s, so that, following Eq. (5), we can write

firP =2 ajt* (@' 2)bjrt* ("). (18)

If we now make the assumption that only a finite num-
ber of pole terms will actually contribute significantly to
the two-body amplitude in the energy range we are
considering, the kernel of the Faddeev equations be-
comes, upon inserting (18) into (16),

KM'Mn"(w',w”)
n s=s}

=8(w/—w!) L T ¢:i*(")

1=0 s=s8p

XAil'a(w,7Z)XM’M“(wliw”) ) (19)

where we have transformed the pair index (4,k) into the
single (3). From (17) and (19), we see that Eq. (13) now
becomes

Ty ar (00 )
= TM,Mi(w',w)—Z A i"s(w',z)z Yz,,*(‘yil,O)AMl,.J

l,s n

X/4’@'“(w”)y1,,('Y¢”,0)AM",‘J*5(wi'—w«;”)

X[:TM"Mj(w",w)-{— TMHMk(w",w)]dw” ) (20)

and, in exactly the same way as in Eq. (8), the solution
is

TMfMi(w',w)

= TM’Mi(wlyw)—Z Ail's(wlyz)
l,8
XY Vi (v ,0)Anr B wun'(wd ),  (21)
m

where we insist on the fact that B, guu(w,w) de-
pends only on one variable: w,’, besides w, which
can here be considered as a simple index without any
practical influence. We now insert (21) into (20)
and, indentifying to zero the coefficients of the functions
A4 (w',2) YV, *(v{,0), which are independent functions
of three variables, we obtain the equations

Bt syunr i (%,0)

=B1,oun’ (X,0)
- / Tic,00" 7 (2,9)Bo,owu/ (y,0)dy, (22)

7For the definition of the rotation matrices Apar’
=daa’ (r/2), we follow A. R. Edmonds, Angular Momentum in
Quantum Mechawics (Princeton University Press, Princeton, New
Jersey, 1957), Chap. 4.
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where the definition of B, s)un *(%,0) is quite obvious and
analogous to Eq. (10), and where the matrix kernel

T, ™2 (%,9)
is defined by

Tt "™ (%)
=(1=8:) 2 | ¢s¥*(@")Asru”*Y 1a(vi",0)
MI’
Xo(x—awi") A (w",2)

X ¥y, * (’y]'”,O)AMH,,Jﬁ (y—wj”)dw” . (23)
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Equation (22) is closely analogous to (12), except that
the dimensionality of the matrix is greater. In practical
cases, one must say that these equations are much
simpler than what they seem to be here, for the number
of pole terms in each two-body channel will not be very
large.
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The K°-K~ mass difference has been measured to be 3.904-0.25 MeV. The method employed involves the
observation of nine examples of the reaction K~+p — K45, K° — 7t+#™ in association with the proton
recoil from the scattered neutron. The kinematic fitting of this event in the bubble chamber is very sensitive
to the K%K~ mass difference. Sources of systematic errors are also discussed.

I. INTRODUCTION AND EXPERIMENTAL METHOD

E have measured the K°-K- mass difference using

K produced by low-energy K~ interactions in

the Saclay 81-cm hydrogen bubble chamber! at CERN.2
The reactions which we observed were

K~+p— K4n
N
rttr, )
n+p—ntp. (2)

We rescanned a sample of about 100 events which
had been measured and fit the hypothesis of reaction
(1). We searched for those events where there was, in
addition, an example of reaction (2), an (u,p) scatter
with a proton recoil, in the same photograph. We only
considered events as candidates if the proton recoil was
less than 7 cm away and if the proton recoil appeared
to conserve momentum in reaction (1). Thirteen
candidates were found. These events were remeasured
to include the neutron direction and the recoil proton.
The kinematic fitting program,® using the K° momen-

* Supported in part by the U. S. Atomic Energy Commission.

1 P, Baillon, thesis, University of Paris, 1963 (unpublished).

2 A description of the beam is given by B. Aubert, H. Courant,
H. Filthuth, A. Segar, and W. Willis, in Proceedings of the Inter-
national Conference on Instrumentation for High Energy Physics at
CERN (North-Holland Publishing Company, Amsterdam, 1963).

3 For a description of the program, KICK, see Reference Manual
for Kick IBM Program, edited by A. H. Rosenfeld, University of
California Radiation Laboratory Report No. UCRL 9099 (un-

published); and A. H. Rosenfeld and J. N. Snyder, Rev. Sci.
Instr. 33, 181 (1962).

tum® as deduced from its decay and the neutron
momentum as deduced from its recoil, tested the
hypothesis of reaction (1). In this attempted kinematic
fit all the vector momenta are known and therefore the
results are very sensitive to the K0-K— mass difference,
provided, of course, that the recoil is truly associated.
Our kinematic fitting program did not allow the K°
mass to be varied as an undetermined parameter so the
following procedure was adopted. For each event, the
kinematic fits were attempted in steps of 0.1 MeV over
the region of K° mass 491.0 to 504.0 MeV. The best
value of the K°-K— mass difference for each event was
taken as that value of the mass difference for which
the x? of the fit was a minimum.% Accidental recoils and
poor measurements were rejected by requiring that the
goodness of this fit at the minimum correspond to a
confidence level of greater than 19;. An error was
assigned to each determination of the mass difference.
This error was obtained by noting that the mass was
being used as an independent degree of freedom and
() min+1 corresponds to a change of a standard
deviation in this one degree of freedom.

II. RESULTS

Table I lists data of the nine events which satisfy our
criteria. The data listed are the average values obtained

4To_the accuracy needed we can ignore the variation of the
fitted K® momentum with the assumed K,° mass.

5 The kinematic fitting program, KICK, uses linear constraints.
We assume that this approximation does not systematically shift
the position of (x2) mia.



