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Damping of the Giant Resonance in Heavy Nuclei*
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In heavy nuclei the damping of the giant resonance is due to thermalization of the energy rather than to
direct emission of particles; the latter process is strongly inhibited by the angular-momentum barrier. The
thermalization proceeds via inelastic collisions leading from the particle-hole state to two-particle-two-
hole states. In heavy nuclei, several hundred such states are available at the energy of the giant dipole
resonance. The rather large width of the giant resonance arises from the addition of many small partial
widths of channels leading to the different two-particle-two-hole states. Both the density of the tw o-particle-
tyro-hole states and the mean value of the interaction matrix elements between the particle-hole and two-
particle-two-hole states are evaluated in a simplified square-weO shell model. In a given nucleus the energy
dependence of the widths is determined mainly by the density of states; the A dependence is determined
mainly by the size of the matrix elements. For 2 =200, we Gnd 0.5 MeV&F(2.5 MeV. The uncertainty in
this value comes mostly from the uncertainty in the strength of the interaction. Representing the energy
dependence of the width by a power law we 6nd for the exponent the value ~1.8.

I. INTRODUCTION

"HE photodisintegration of heavy nuclei in the
giant resonance proceeds in three steps, First, the

incoming photon is absorbed and a collective nuclear
nlotlon ls set up. Second thc cncrgy of this cohclcQt
mode is dissipated into many degrees of freedom, i.e.,
the "mechanical" energy is transformed into "thermal"
energy; the nucleus is being heated up. Third, the hot
nudeus cools down by evaporating particles and
photons. The 6rst and the third of these steps has been
treated quite extensively. ' ' The investigation of the
second step ls the aim of this paper.

The damping of the collective state in heavy nuclei
results from the excitation of complicated conGgurations.
The direct emission of fast particles is here of minor
importance owing to the angular-momentum barrier
which limits the contribution of this process to the total
width to about 10%. Because of the two-body char-
acter of the nuclear forces a complicated many-body
conlguration can be reached starting from the essen-
tially particle-hole configuration of the collective state
only by increasing the comp1exity of the state by adding
Ore particle-hole excitation in each internal-scattering
event.

After such an inelastic-scattering event, the coherence
of the particle-hole state has been destroyed and there
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is no particular reason for any of the particles to re-
combine with any of the holes. In the coherent particle-
hole state, the energy of the state is shifted by a con-
siderable amount from the Hartree-Pock energy of a
sing1e particle-hole state; each particle-hole component
of the coherent state is quite far off the energy shell.
After the inelastic scattering, the state loses the co-
herence and the collective energy shift becomes avail-
able for distribution among the participating particles
and holes. In this situation any final state in a following
scattering event is as likely as any other, as long as the
energy is approximately conserved in the event. Since,
as will be shown below, there are several hundred states
of this kind available it is extremely unlikely that the
state will return to the coherent state. %C calculate the
process in the "they never come back" approximation
where the lifetime of the coherent state is given by the
probability that the first inelastic collision occurs.

The feature that the thermalization process of neces-
sity has to go via thc cxcltatlon of two-particle-two-hole
states allows the latter states to be called "doorway
states" in the terminology of Feshbach and Lemmer.
One then could say that each particle-hole state has
several hundred doors available through which to pro-
ceed to the thermal state.

The coherent state is supposed to bc stationary as far
as the collective excitations are concerned, i.e., it is ob-
tained by coupling all collective modes. "The inelastic
collisions then lead to states of noncollectivc character.
Some of these second-generation states, and some of the
states of later generations will contain low-angular-
momentum neutrons of "thermal" energy which will be
emitted as "evaporation" neutrons. In other words,
they are damped and have 6nite widths. Therefore all
states actually have some widths and do overlap. Thus,

' G. Ripka (private communication).



DAMPING OF GIANT RESONANCE IN HEA VY NUCLEI

the transitions into the second-generation states can be
treated like transitions into continuum states. The
probability of this process is given by a formula which
has the form of the "golden rule" of first-order perturba-
tion theory. However, as we shall see, the formula is of
much greater validity.

Previously this problem has been investigated in a
few papers. Reifman' described the giant resonance in
the independent-particle shell model and considered the
damping to be due to the excitation of surface oscilla-
tions by the what now would be called particle-hole
state. Neglecting con6guration interactions he found a
strong coupling between the particle-hole states antici-
pating in a certain sense the results of Danos and
Greiner' on the coupling of dipole and surface collective
states, The strength of this coupling implies however
that it has to be treated more precisely by diagonaliza-
tion and thus the surface states then are not available
any more as a dissipative mechanism. Fujita~ introduced
the giant-resonance state by a coordinate transformation
on the nucleon coordinates in the ground state and tried
to determine the width of this state by the evaluation of
certain commutators involving the nuclear Hamil-
tonian. The expressions yielded disappointingly large
values for the width. The reason for this was that his
method of calculation did not single out the dissipative
part but gave the total spread of the dipole state over
energy. In addition, the ground state used was not an
eigenstate of the Hamiltonian but an independent par-
ticle state. The nonstationary character of this ground
state also contributed to the width obtained.

Wildermuth' calculated the width of the giant reso-
nance in the Fermi-gas model. The mechanism con-
sidered for the damping was essentially correct, namely,
he considered the scattering of individual protons or
neutrons which would lead to the destruction of the
coherent state. He made some unjustified assumptions
which, however, can be circumvented a posteriori. His
Fermi-gas treatment also did not include the eGects of
correlations, i.e., the collective energy shift.

There exist several other papers which consider the
width of the giant resonance to be due to the spread in
energy of the independent-particle states. However,
after diagonalization essentially only one dipole state
remains" and the other states do not appear in the
photon-absorption cross section, having lost their
strength to the dipole state.

The damping of the giant-resonance modes in light
nuclei, which results almost totally from penetration
through the centrifugal barrier, has been calculated by
Bauer and Ferrell" for the case of 0".This damping

mechanism gives only an unimportant contribution to
the widths in heavy nuclei.

In Sec. II we shall describe in detail the various
features of the damping mechanism and th, e approxima-
tions inherent in the method of calculation. The mathe-
matical details of the problem are formulated in Sec.
III. In Sec. IV we obtain the density of two-particle-
two-hole states available for the damping process. We
explicitly take into account energy and angular-mo-
mentum conservation. In Sec. V we obtain a value for
the averaged matrix element in a simplified square-well
model of the nucleus. Section VI gives the results and a
discussion of the important parameters which enter the
calculations. In Appendix A we give by means of time-
dependent perturbation theory a simple derivation of
the "golden rule" formula which we use in Secs. III,
IV, V, and VI. In Appendix B we give a derivation of
this formula which is formally exact in the nuclear
Hamiltonian and of lowest order in the electromagnetic
interaction. We demonstrate explicitly at which point a
random-phase assumption enters, and furthermore, we

also show that the photon-absorption line shape con-
sists of a superposition of Lorentz rather than Breit-
Wigner lines. In Appendix C we have collected some of
the complicated expressions entering the density-of-
states formulas of Sec. IV.

II. DESCRIPTION OF THE MODEL

All collective modes are essentially single-particle
excitations, i.e., they are linear combinations of states
which diGer from the ground. state in the state of one
particle only. In the language in vogue at the present
time, they are one-particle —one-hole states. This is
necessarily so because they have large electromagnetic
transition probabilities to the ground state and the
transition operator is a sum of one-body operators. In
terms of graphs they are thus represented essentially

by single "sausages" which may go backward as well as
forward (Pig. 1). In such chains each particle and its
hole partner are coupled to the spin and parity of the
particular collective state, i.e, , 1 for the dipole state,
2+ for surface oscillations. It has been shown earlier'
that some dipole and surface states are strongly coupled.
Such a state would be depicted by graphs like Fig. 2.
The configurations corresponding to the region of Fig. 2

where two sausages are present do not have multipole
moments to the ground state. The transition strength
of such a state is thus decreased and it reappears at the
state corresponding to the excitation of a surface quan-
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FIG. i. Essential structure
of a collective state.
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Fzc. 2. Coupling of a dipole
and a surface mode.

which shows that even at the top of the energy spectrum
the neutron energy is about 8 to 10 MeV below the
barrier height. The resulting penetrability is thus con-
siderably smaller than yo. Except for closed-neutron-
shell nuclei, the "direct" emission of the excited particle
leaves the hole buried below the Fermi surface, i.e.,
the nucleus is left in an excited state thus reducing the
available energy for the outgoing neutron which results
in a further decrease of the penetrability. The pene-
trability of the protons is still much smaller owing to the
additional Coulomb barrier. The damping of the giant
resonance thus cannot be due to the direct emission of
particles. This is in agreement with experiment which
indicates that only about 10 percent of the emitted par-
ticles are prompt; the overwhelming majority consists
of evaporation neutrons.

FIG. 3. The basic diagram for
the thermalization of the energy.
After the collision the coherence
of the dipole state is gone. Angular
momentum is conserved only for
the total excitation.

» D. H. Wilkinson, Physica 22, 1039 (1956).

turn in addition to the dipole state which, as a matter of
fact, is also represented by a graph of the form of Fig. 2.

In the consideration of the damping of the giant reso-
nance we begin with a state which has been diagonalized
with respect to the collective modes. Because of the

configuration interaction the energy of the state diGers
from the sum of the energies of the participating par-
ticles and holes by about 5 to 10 MeV; we limit ourselves
here to heavy nuclei. The high-energy particles of the
dipole particle-hole state have mostly large angular
momenta. ' " Their emission therefore is strongly in-

hibited by the centrifugal barrier

0' l(l+1) l(l+1)
=21Mev —, rin10 "cm (1)2' r' r2

We now turn to the details of thee thermalization pro-
cess. The beginning of the thermalization is given by the
inelasticscattering of theparticleor thehole(see Fig. 3)
with the excitation of a state other than a collective
state. After the collision no particle-hole pair is separ-
ately coupled to 1;only the total state of two particles
and two holes is coupled to 1, in contradistinction to
the case of mixing collective states, illustrated in Fig. 2.
Furthermore, after the scattering the particle will find
itself in arbitrary states; i.e., states other than the con-
6gurations participating in the dipole state can and will
be populated. Thus after the collision the collective
energy shift must be accommodated by the particle and
hole excitations; the states must return to the energy
shell. This is, in fact, an important consideration; it
shifts the nucleus to a region of higher level density.
After this erst collision any further scattering process is
a priori as likely as any other as long as the energy is
approximately conserved. Because of the large number
of available states the probability is overwhelming that
a "cascade" develops at this point. Ultimately a low-
angular-momentum neutron state of sufhcient energy
will be excited which then will enable the neutron to
escape (Fig. 4).

The last part of the process, viz. , the escape of "ther-
mal" neutrons, is very important. In the absence of such
a possibility the process of Fig. 3 would not lead to
damping of the collective state but would instead just
produce a fine structure, a splitting of the state into
many sharp levels. Qualitatively this can be explained
most easily in terms of a classical picture. Consider a
system of coupled oscillators. If one of them is suddenly
excited the energy will not remain localized at this one
oscillator but "beats" will set in, transferring the energy
away from this "struck" oscillator. According to
I,iouville's theorem the energy will after certain time
intervals more or less completely return to the struck
oscillator, and a Fourier analysis would reveal just a cer-
tain number of discrete lines, viz. , the normal-mode fre-
quencies. The situation changes radically if some of the
oscillators are damped. Now essentially all normal
modes will be broadened, and beginning from a certain
magnitude of this damping, the levels will coalesce. The
energy then will be dissipated before the elapse of the
"Poincare time" and the struck oscillator will not start
moving again once the energy has left it the erst time.
In other words, the damping of the system must be
sufhcient only to dissipate the energy during the
Poincare time which is determined by the number of
coupled oscillators, a measure of which is the separation
of the normal-mode frequencies. Only under these cir-
cumstances does the coupling to other oscillators lead to
damping and not to splitting of the resonance. Then the
width of the struck oscillator resonance is given by the
"beat frequency, "by the strength of the coupling to the
other oscillators. In quantum-mechanical parlance this
means that for damping to occur it is necessary that
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Fn. 4. Emission of
a "thermal" neutron:
After some "genera-
tions" a neutron of
sufBciently low angular
momentum and suBi-
ciently high energy es-
capes leaving the nu-
cleus behind in a possi-
bly quite comphcated
state of medium excita-
tion energy.

GONTlNUUM
STATE

Pxe. S. Return collision: After
the 6rst scattering event the next
collision can restore the dipole
state. This process must compete ) k

with all other scattering possi-
bilities.

some of the participating states must be continuum
states but it is sufBcient that there exist very few such
states. They also may lie a few generations away, i.e.,
a situation like that shown in Fig. 4 may obtain. How-
ever, already in the 6rst generation some of the states
may be escape states.

After the first inelastic collision has taken place and
the state is on-the-energy shell the next collision will
most of the time lead to more complicated conhgura-
tions and the "return collision" (Fig. 5) has to compete
on equal footing with all the other possibilities. Since
there are of the order of hundreds of states available at
this energy the they-never-come-back approximation
is excellent and then, since the states actually are
broadened and overlap, one can use the golden rule
formula to calculate the lifetime of the dipole state.
This point is discussed in detail in Appendices A and B.
We re-emphasize here again that this procedure is
applicable only because of the eventual evaporation of
neutrons and the broadening of the many states which
otherwise would be stationary and sharp. In the ab-
sence of neutron evaporation the golden rule calculation
would actually be inapplicable. The "width" one would
obtain when using it formally would just indicate the
energy range over which the dipole state is distributed;
this would not mean a damping of the state.

The many erst-generation states must each be
broadened only by a very small amount. It is just
necessary that their width be large compared to the
level spacing. Furthermore, each state may be coupled
quite weakly to the dipole state. As it turns out, this
actually is the case. The large width of the dipole state
is thus not a consequence of a single strong process, but
results instead from the combined effect of a large num-
ber of processes involving only weak coupling between
each individual second-generation state and the dipole
state.

A further very important point concerns the inter-
ference between the diferent possible graphs of the kind
of Fig. 4. We shall make the explicit assumption that
their contributions can be added incoherently. We be-
lieve that this assumption is eminently justified owing
to the exceedingly large number of 6nal states, i.e.,
excited states in which the nucleus is left after emission
of a thermal neutron, and, in addition, owing to the
very large number of quite diverse graphs participating
in the process which assures randomness in the phases.

Instead of using the golden rule one could calculate
just the forward-scattering amplitude, e.g., in the single-
collision approximation, Fig. 5, since it contains a11 the
necessary information. We prefer, however, the more
elementary approach for reasons of simplicity.

III. MATHEMATICAL FORMULATION
OF THE PROBLEM

If 4 &'& and +,&'& denote the one-particle —one-hole and
the two-particle-two-hole states, respectively, and I, e
are the appropriate quantum numbers, we have

=Zgsvm (flp&fmpm I 1r&)after 4&a l0)
I={fgfg1rgkgkp},

4, "&=Z Q„,„,„,„„g(lgmglmm2
~
Aa)(Aa4mg

~
Bb)

X(Bb4ns4~1r~)a~, ,tb~, ,tag, ,tbg, ,t ~0), (3)
v = {lylmlgl~481r yk qkqk3k4},

where c~ t, b~ t are creation operators for particles and
holes with angular momentum Lm. fj and f~ are the
angular momentaof the one-particle —one-holecon6gura-
tion. A and 8 are intermediate angular momenta of the
two-particle-two-hole state. Di6'erent A, 8 and the
same lj., lm, l3, l4 are diferent two-particle —two-hole con-
Ggurations. The wave numbers (energies) of the single-
particle states are denoted by k. Z is a normalization
factor, which can easily be calculated to be

Z=~ 1+(2A+1)(28+1)

lj lm

l2
A 8 &8),,),—

A

2A+1 lg lg At
''Sing/ ~

w , 4
28+1 /g 8 A

The matrix element of the residual nuclear force is
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gq f~ P~ &g
I

fp f)

(b)

(c)

Fro. 6. Graphs of Eq (7)..The Grat two graphs, (a) and (b)
describe the scattering of the particle. The second two graphs, (c)
and (d) describe the hole scattering.

given in. general in terms of particle creation and
annihilation operators by

V=-,' Q V~p, ,ra~ ap a,as. (~)

%e introduce in the usual way the hole operators for
the states X below the Fermi surface

a&t —( )&g—mob

a —( )4—m)b &t
(6)

where we have used the phase convention of Bell." |Irate

notice that t'he following terms of (5) give contributions

to the matrix elements &4'&')
l
V l%'(')

&

&~ lvl~ »=:Zv.p.,
&&L( )—'~"Pa-'b pa-.as+( )—'-".b .ap'a, as

+( )l~m~)p —mp+)r mob

+,( )4-mW)P-mP+)s —msb b a b tj ())
The difierent processes occurring in P) are represented
by the graphs of Fig. 6. Each of these graphs, together
with its exchange form, describes a diGerent process.
In (a) and (b) the hole "lies at rest" and the particle is
scattered and creates a new particle-hole pair. In pro-
cess (c) and (d) the particle is unaffected an.d the hole
scatters and creates a particle-hole pair. In fact, the
graphs (a) and (b) cover almost the same function space,
albeit in a different coupling scheme (representation).
The direct and exchange terms of the graphs of Fig. 6 are

(a) bx) b Ãs4, ) & V~—),&& j( )™—
(b) 4s)sb-sr:V~i&4, 4)i—Vfi4, )a,j(—)™,
(c) 4 ~i4 LV~24 rr4 . V4—)sxs) j, (g)

X ( )4+&4+ps-ms-m4 —~

(d) bfi4 QmsLV'4&s /24 .V44, fs4j( )
If the force V(1,2) is expanded in spherical harmonics

V(1,2)=Z. "(1,2)V. *(1)V. (2), (9)
the matrix element Vf,g, , ~,~„ for example, is explicitly

Vr, &, ,),&,
——Qzsr &Ey,(1)Vg,„,(1)Rg,(2)Fg,„,(2) l t)r(12) Vrsr (1)V (2) l E,,(1)F,„,(1)g„(2)V„„,(2))

=Z~~(—) «s~&—~If~~&&lt~tL~lls~s)«sllJ lift&&lrlli. Ills»y, &, ).b(1),, (10)

-(2a+1)(21.+1)—')'
& llJ-lib&= ( «olbo&

4s (2b+1)

Er,44),(I.)= Zr, (1)Z),(2)R4(1)Rg,(2)er, (1,2)rtsrssdrtdrs. (12)

8» are the radial wave functions and l is here understood to represent all quantum nuinbers.
We now speciahze to b-function forces. Introducing the expressions (10) into (8) one can calculate by straight-

forward methods the matrix elements between the properly angular momentum coupled states (2), (3). We list
the result for the graphs (a) and (b), exchange terms included:

Z (2lg+1)(2lg+1)(2lt+1) '"
&@ (1)

l
V(~) l+ (s)&=( )&s+)I+f~

kr (23+1)'(2ft+1)
-(2lr+1)(2ls+1)(2ls+1)-'('—(—)" &lrolsol Ao&&dolsol fro&gf. .. ,...()r,)sg4f„(13)(2ft+1)'

Z
&e„(')lv(»le.())= D2A+1—)( 82+1)(2l,+1)g (Z„4,„„P (—)r~&+»&1,01.0lf 0&&l,oZoll, o&

kr I

1 fs ft ls ls 1.

lz I4.

"J.S. Bell, Nucl. Phys. 12, 117 (1958).

I

( )"(21-+1—)&ls—«olfro&&lromll40& ls ~ 8 b4y, . (14)
lx I. A A & 8
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8(ri—rm)
&i) p'~ ~&&)(—)&&r (15)
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IV. THE DENSITY OF TWO-PARTICLE-
TWO-HOLE STATES

We choose for the model, in which we calculate the
wave functions and the number of 6nal states, the
in6nite square-well model. If the radius of the square-well
potential is E, then the solutions of the Schrodinger
equation 1Il th1s potcntlRl Rlc of the folIn

g~,),, ),),
—= Z~,Z),Z),Z),r2dr. 'p&me= Jl(km') V&m (20)

One can similarly derive expressions for the contribu-
tions due to the graphs (c) and (d), but we will not need
the exact values of these for our estimate. Note, that
the value of B is restricted: In the case (a) we have
B=fi, in all other cases B can have only the values
B=14+1, l4, l4—1. Note also that the different graphs
in Fig. 6 represent transitions to diferent coupling
schemes of the 6nal states. The difference between (a)
and (b), for example, is that in (a) the value for t4 f2-—
and in (b) the value for 4——fm.

The width of the particle-hole state 4„&'& is given by

where the transition probability T for the transition
from 4' (') to all N, &') can be calculated by perturba-
tion theory. (See Appendix A.)

y./2ir
I'=2' P~(@ &')

~
V~@ &')))' (18)

(&—&.)'+v. '/4

Here E is the energy of the giant resonance, E, and y„
are the energy and width of the two-particle-two-hole
state%', ('). The sum goes over all two-particle-two-hole
states with the same energy and total angular momen-
turn. as the particle-hole con6guration, i.e., 1—.Equa-
tion (18) could be calculated numerically exactly in an
actual model for the single-particle states (for example,
the oscillator model). Instead, we wish to obtain a
formula which exhibits, at least approximately, the
energy dependence of (18).We do this by replacing the
summation in (18) by an integration and by introducing
suitable average values and obtain

j&(kr) ~ (kr) ' cosLkr ——,'(k+1)s.j
and 6nd for the 6rst zero the equation

kr ——',(I+1)s———',n,

which gives (I&. is the Fermi momentum)

l = (2I&.R/s) —2.

(22)

This estimate is numerically very accurate. Thus the
number of states for a given / and given 6xed energy is

n& (ER/s. )—-',l. —— (24)

Since the (21+1) d&fferent states of the magnetic quan-
tum number in (20) are degenerate, the total number of
possible single-particle states in our system up to an
cneI'gy E ls

~(X)= P ~,(2l+ 1)= (4/5)(I&.Z/~) ~

0

+ (E'R/m)' —(11/6) (IM/m)+~~. (25)

Using this expression one can determine the Fermi mo-
mentum from the equation

and the above numbers t|„are given by the boundary
condition

j&(k,E)=0. (21)

For a given upper bound of the energy (i.e., of k) the
condition (21) can be satisfied only for angular momenta
l&/, where l is given by the condition that the 6rst
zero of the spherical Bessel function j&„(kR) lies at tlm
boundary E, We replace the j&„(kr) by their asympto-
tic expressions

I'=2'(~ (e &')
) V[ @,&2)) [').p(E), »(@=i2Z, i~X (26)

where p(E) is the density of two-particle-two-hole con-
6gurations at the energy E which can be reached from
the particular particle-hole state by R two-body
colbsion.

Strictly speaking, (19) together with (18) is the de-
6ning equation for the averaged squared matrix ele-
ment. However, with the usual assumption of ran-
domness the mean value can be calculated separately.
We expect that the average matrix element should be a
very weak function of the energy; it may decrease very
slowly with lnclcRslng cncIgy. Thc cnclgy dependence
of I' thus is given by p(E). We now proceed to evaluate it.

for protons and neutrons. The factor —,
' comes from the

spin. The function e(E2&'.) is plotted in Fig. 7.
We introduce the density of states of given angular

momentum by

p, (K)=d~,(E)/dr= R/~. (27)

Note, that we do not count the ns degeneracy of the
state IC, l, m in (27), because conservation of the s
component of angular momentum allows only definite
values of it in the matrix elements of (18).

Let us now count the number of states which con-
tribute to the processes of graph (a) of Fig. 6 taking
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The number of final states fulfilling the conservation
conditions (38), (29) is therefore

los lf l22s

&(")=Z Z Z ~(/2/2/3f1)
lg lg l3

n(Kf)
SO—

60—

FIG. 7. Averaged
number of states in
a square well.

kg P3 I'y

P3 Pl
p1,(k1)p1,(k2)p/, (k3)dk 1dk2dk3 ~ (30)

40

20—

0
0

KfR

The upper limit of the momentum integrals is given by
the condition (29) and the fact that the hole momentum
k2 can be maximally the Fermi momentum E:
P1 (~'+k——42+k '—k ')' ' I'3 (x'+——k '+k ')"' (3&)

The lower limits are

into account angular momentum and energy conserva-
tion. For the other graphs the considerations are similar

and we will estimate the number of contributing states
to the other four graphs later.

Because of /4 f2 and B——= f1, the angular momenta

/1/2/3f1 have to fulfill the triangular rule

p1 ——(/12r/2R) if
=K lf

p2 ——(/22r/2R) if
=E if

p3= (/32r/2R) if
=E if

(/12r/2R) )E
(/ 12r/2R) &E;
(l22r/2R) &E
(/22r/2R) &E;
(/32r/2R) )E
(l32r/2R) &E.

(32)

k1'+k3' —k4'= x' (29)

where k2142/2M is the energy of the particle-hole state,
i.e., the giant-resonance energy. It is therefore 6xed.

LL (lll2/3fl)
=1 if /1, l2, l3, f1 can be coupled to zero

=0 if /1, l2, l3, f1 cannot be coupled to zero. (28)

Energy conservation gives the condition

They exhibit the fact that the particle momentum has to
be above the Fermi surface and the hole momentum has
to be below the Fermi surface. Further, a given angular
momentum can occur only above a certain minimum

momentum given by (/2r/2R) Lsee (24)$ and by the
Fermi angular momentum for the hole.

Equation (30) is exact within our approximations.
The integrals can be easily performed and we obtain

&(/4') = (R'/2r')p/, /213 &(/1/2/3f1) (2r/4)(~'+k4')(E —P2)+(2r/12)(E3 —p, ')

—2(x'+k4')
p3 1 2/ p

arc sin k2' arc sin — dk2
(42+k42+k22)1/2 2 (g2+k 2+k 2)1/2

+P1P3(E P2) (P3E/ )(/4 +k4 P 2+E2)1/2+(P P2/4)(/42+k 2
P 2+P 2)1/2

E+(/42+k42 —p3'+E') '/'
—(p3/4)(x2+k42 —p3') ln —APE(~'+k '+E')'/'

P2+(/4'+k4' p3'+ p ')'/'—
E+(g2+E2+k 2)1/2

+ypxp2(/4'+k42 p3')'" 2—(/12+k42)—P2 ln (33)
p +(/42+E2+k 2)1/2

The expression in the braces depends via the p1p2p3 in a
complicated way on the l1, l2, l3, Eq. (32). lt is obvious

that one cannot perform this sum exactly. Ke can pro-
ceed and we will obtain a good approximation, if @re re-

place the p„by suitable mean values: The momenta

p1,p3 lie above the Fermi surface and below (E2+/42)'/'.

Suitable mean values for these are therefore

pl @3=(E2+42x2)1/2 (34)

where n is a cocScient of the order 0,~~$Q We will show

later that the result does depend only very weakly on

the choice of 0/ The momentu. m p2 lies between 0 and E.
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We expect physically that the largest contributions of
holes in the two-particle-two-hole state will come from
the region near the Fermi surface. %'e replace therefore

TABLE II. 2l &l .The same as in Table I, but
with the assumption that 2l &l .

ps k4 ~ (35)

Now the expression in the braces is independent of l1, l2,

lq and the sum can be performed. Before we do this,
however, we simplify the complicated expression in the
braces in the following way: When the particle-hole
energy is zero (s'=0) then k4 ——F'. On the other hand,
as the particle-hole energy increases, the holes lie pro-
gressively deeper below the Fermi surface. We therefore
make the ansat7

0
1

l
l+1

l —l
l —l+1

l

l
l+1, l, l—1

2l ~ ~ ~ 0
2l+1 ~ ~ 0 1

l ~ ~ lm —2l
l ~ ~ l —2l+1

l ~ ~ l —l

1
3

2l+1
2l+1

2l+1
2l

0

l+1

k '=k' —P~' (36)

in the following way. Ke first introduce partial sums byand p will be a coefficient of the order p=x'e. It can be
determined accurately from the experimental positions
of the hole in the giant resonance (remember, k'k4'/2M
=hoie energy of the p-k state). Inserting (34), (35),
and (36) into the complicated expression (33) for the
braces and developing this expression in the small
parameter ~s/E'= ~4 up to quadratic terms, we obtain
after a straightforward, but lengthy calculation

g d(lqlslsfq)=P F„(l„foal), v=1& 2, (39a)

where

F„(l fgL) =Qg, g, lL(lglslsfg), (39b)

where

P=0.22P+0.031n,

Q =0.21P—0.089n+0.045nP —0.096P'+0 049ns . les-l

with the constraint of triangularity between ls, fz, and
l, i.e., 1=ls+f~. Thus l can have the vaiue ( f~ ls

~

&1—
&

~ f+l~ ~. For a given l we have therefore to count the
(37) number of possible conhgurations which fulfill 1=1~+lg.

In Table I we have listed this number N for diBerent
values l1 and le. Here we have assumed that 2l& l .The
sum of all values gives

(38)

TABLE I. 2l)l . The number X gives the number of non-
vanishing 5's in (39b) for given l, l1, le. The sum of all these values
X gives Fi(lmfil).

0
1
2

l —l

l
l+1

l+ (l —l)

l+1, l, l—1
l+2 ~ l—2

l ~ ~ ~ (2l —l)

~ ~ o0

e

l (l —l)

1
3
5

2(l —l)+1

(2l+1)-(l -1)
(2l+1)—(1 —1)—1

(2l+1)—l

P and Q are pure numbers depending only on the param-
eters n and p. We see however, that they depend, most&y
on p and weakly (especially P) on n. Therefore our
averaging method is quite justi6ed and the number of
states we obtain with (37) should be a very good
appl oxlQlatkon.

We now determine the number of states compatible
with angular-momentum conservation. That means, we
count the number of nonvanishing 5's in (37).We do it

Fg(l„foal) = Q (2K+1)—Q X+(21+1)(l —l)

X= —g'+-'1+1+i„(2l+1). (40)
X (l -l)-I

In Table II we have listed similarly all possibilities
for l1 and la for the case 2l&l .Again we can sum up all
values and get

Fg(l foal) = Q (2K+1)+(21+1)(l —2l)+ Q
0

which gives the same results as (40). Therefore we do
not have to distinguish between these two cases. How-
ever, we have assumed in both cases that l&l . This is
not true for all combinations l=ls+f~, the angular mo-
mentum l can be larger than l even though l2 cannot be
greater than ly and fq not greater than l .

In Table III we have listed all possibilities for l1 and
lq in this case. We 6nd

Ql ws—l+1
Fs(l foal) Q ) =2l '+3l l 1+$P $l+—1. (41)—

We now can explain the index s in the sum (39):If we
sum over l we have to introduce either E1 or F~ depend-
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TAsx,z III.The combinations l1, lg which fu1611 the triangular rule
in the case l &l . The sum of all the values is called F~(l,f,l).

l—t
l —l +1

ltrs

l, l —1

~ ~ ~ l

0
1

2

l,„—(l—l )+1

Q h(ltlglsft)

lf lws

=2 Q Q Fi(l„fil)+ g Q Fs(l„fil)
v 0 i~f1—v .=l~+i l=l~+i

lm-(fl-l f) ltd,

1 l le—v+1
Fi(4') QFt—(4fil) (42)

i=f1—lf

It is straightforward to perform this double summation
using (40) and (41) and the following relations

N

Q i 3=-33$3+33N3+ s'iV, --
0 (43)

Q vs=-'$4+-'Ã +3'V i3-
0

ing on whether l&l or l&l . Having explicitly estab-
lished the quantities Fj and F2, we can now proceed to
calculate the double sum in (39). We have to distinguish
two cases: lr&fi and ll&f, ; i.e., the particle of the
particle-hole configuration can have an angular mo-
mentum larger or smaller than the Fermi angular mo-
mentum. We study here the second case, but note later
the results for the first case.

In Table IV the possible values of l are listed for
0&ls&lf. The sum (39) can now be performed over the
values l of the left area in Table IV and yields

lf we apply (44) to the special case of Pbsss where
ly=4, f3=5 we obtain

&(E)=(1/4g)(E~/ )'L~(E/Ex)+Q( /Ef)'+" j
XL4/ 4—136l '+22041 '—7727l +20117j. (45)

Wjth fthm/3r=3, E/Er &~, l ——=5 and multiplying (45)
with a factor 2' coming from the spin, a factor 2 coming
from isospin, and a factor ~~ coming from conservation of
Parity, we find with P= i'o; rt=P

X(E)=X(E)X2'=55X8, (45a)

for the number of states contributing to process (a)
and (b). For the processes (c) and (d) the number of
final states is smaller, at least for not too high excita-
tion energies, because there are two holes and one par-
ticle in the final configuration. Compared to processes
(a) and (b), the two holes below the Fermi surface have
fewer possibilities to combine to the right energy and
angular momentum. In order to obtain the density of
states we have to divide S(E) by the energy interval
over which the states are distributed. This interval in
our model is the distance between the shells, DE.
Putting AE= 10 MeV we thus have

p(E) =E(E)/DE=45 states/MeV,

i.e., a total of about 200 states is available from the proc-
esses (a) and (b) within the narrowest observed giant-
resonance peak whose width is 7=2.3 MeV."

V. CALCULATION OF THE AVERAGED
SQUARED MATRIX ELEMENT

We determine the averaged squared matrix element
by explicit calculation. We again employ the simplified
infinite square-well model used in the previous section.
The formula for the level density was general within
the accuracy of the model. Now we shall specify to the
case Z=82, and furthermore, shall only calculate the
matrix elements for the protons and for process (a). By
calculating all matrix elements of this process we believe

TAiiLE IV. If f&&ly the index l of the suin (39l runs over the
values listed below to the left of the vertical dividing line after
l2=lf. The area to the right of the dividing line is added and
subtracted again in the summation procedure for reasons of
simplicity.

The result for the number of states is LSee Eq. (37) and
the remarks after Eq. (7). We add a factor -,'to com-
pensate for having counted the states twice. )
~'(E) —(&&/~)' 'I:~(E/Er)+Q(E/Er)'+-

X [&4(fllf)dna +As(f1~f)lm+A2(fll f)4'.
+At(frig)l +As(frig) j, (44)

where the A„(fili) are complicated expressions. They
are listed in Appendix C. The case l~) fi leads to a
similar result; only the coeKcients A, are somewhat
changed. They are also given in Appendix C.

l2= 0 1 2 . l —f1 lf

f1 f1+& f1+2
fZ f1+1

fl 1 f1

4 f1+if
l +1

l

f1—if+1 ~ ~ ~ l~

"E.G. Puller and E. Hayward, Nucl. Phys. 30, 613 (1962).
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that we do not prejudice our result towards the "most
important contribution" but obtain a good average
value. Prom Pig. 7 we find the Fermi momentum
Z„R/x =3. From Eq. (23) we find the "angular momen-
tum of the Fermi surface" to be /= 4. The Fermi
energy is

O'K's/2M=36. 8 MeV.

TABLE V. States contributing to matrix element (u). It is
assumed that the degenerate 36.8-MeV states (Table V) are not
completely Sled, so that two particles can still be there. Further-
more, states with (K4R/n)=3, (K4R/w)=2 5, (.K4R/-}=3 fulfill
Kq. (46) only approximately. 2, listed below, gives 96 states.
However, when one subtracts the number of states which appear
a second time, albeit in a different coupling scheme, one obtains
59 for the number of final states (without spin factors) contribut-
ing to process (a).

In Fig. 8 we give the level scheme for the proton states
of Pb"' in our square-well model. The giant resonance is
created by lifting particles from the closed shell with
/= 4 to the level l= 5 above the Fermi surface. The shell
separation is here AE= 13.2 MeV.

In Table V we have listed all condgurations con-
tributing to process (a), i.e., matrix element (13).The
allowed con6gurations are given by the angular-mo-
mentum and parity selection rules contained in the
vector coupling coeKcients of (13) which fulfill the
energy conservation law, i.e., for this process

(ks/2M) (kis+kss —kss —k4') =E= 13.2 MeV

(46)

(k'/2M) (k,'+k, '—k,') =E+ (ks/2M) k '= 50.0 MeV.

Note that we have not included the collective energy
shift in (46). We are here interested solely in finding
explicitly the radial integrals. For this the energy shift
is unessential.

It is worth noting, that we obtain from Table V 59
as the number of levels contributing to process (a) while
formula (45) gives about 55 (without spin factors). So
we find with both counting methods essentially the same
numbers.

In the same way as in Table V one can count the
numbers of states contributing to process (c) and (d)
where the one hole fs 4 is fixed f——or the matrix element
and. the holes 14, /& and the particle l3 can vary. The

E
(MeV) ~590—

SO-

70—

60-

f4

5
5
5
5
5
5
5
5

5
5
5
5-
5
5

3
3
3
3
3
3
3
3

2
2
2
2
2
2

8, 6, 4, 2
6, 4, 2

6, 4, 2
4, 2

2

2

9, 7, 5, 4, 1

5, 3
3

7, 5, 3
5, 3, 1

5, 3
3, 1

1
5
3
1

8, 6, 4, 2

8, 6, 4, 2
4, 2

2

2

7, 5, 3
7,
'

5,'3
7, 5, 3
7, 5, 3

5, 3
3

3
5, 3
3
5
3

6, 4
6, 4

6, 4

3

3
3

K4R/~

3
3
3
3
3
3
3
3

3
3.
3

3
3

KiR/7r

3
3
3

50—

40—
EF —-

20—

4
4
3
2
2
1
0

l0—

la5 XE2 la I 4&0

FIG. 8. Level scheme of the asymptotic square-well model.

analog relation to (46) is in this case

(ks/2M) (kss —kss —k4')

=E+(k'/2M)k4' —36.8 MeV. (47)——
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lg

4,

4

4

lg

4
4

2
2
2
0
0

l4

2
0
4
2
0

2

8, 6, 4, 2

4
6, 4, 2

2

2

6, 4s 2
6, 4, 2

4
6p 4, 2

4, 2
2
4
2

4
4

37

4R/s ksR/w EsR/~

3 3 3
3 3 3
3 3 3
3 3 3
3 3 3
3 3 3
3 3 3
3 3 3

3
3
3
3
3
3
3
3

Table VI gives a list of the possible states for the pro-
cesses (c) and (d). Under the same assumptions as for
Table V we find about 25 states (without the spin fac-
tors) contributing to (c) and (d) while 59 states con-
tributed to (a) and (b).

The radial integrals for the different con6gurations of
Table V were calculated by using the asymptotic ex-
pressions for the spherical Sessel functions, except for
the one with the highest / value, which here is l=5.
The latter we approximated by

ALE VI. The possible con6gurations contributing to processes
(c) and (d). The assumptions are the same as in Table V. The
number of nonrepeating states is here only 25 compared to 59 in
the former case. There are 37 states when one includes the states
in diferent coupling schemes.

VL DISCUSSIOÃ AND RESULTS

Inserting (50) and (45) in (19) we find

I'= (1/48)(Z'R/a)s[P(E/Ey)+Q(E/Er)'+ ]
X I

4/„' —136/„'+2204/„' —7727/„+ 20117)
X0.085(Vo/4s Rs) s X2a X2sX (G/EE) . (51)

Really / is a function of E via the relation (23). So
the energy dependence of the width is contained in the
second and third factor. The factor 2' comes from the
spin while a factor 2 from the isospin and a factor $ from
parity cancel each other. The factor G takes into account
the other graphs: If we put the contributions of graphs
(a) and (b) equal and those of graphs (c) and (d)
roughly —', of the contributions of (a), we have G=8/3.
The reason for putting the contributions of (c) and (d)
to be —', of the contributions of (a) is the fact that the
number of states contributing to (c) and (d) is roughly
~s of the number of states contributing to (a). (See the
preceding section, especially Tables V and VI.) We thus
imply that the average matrix element is the same for
both classes of graphs. If we write for the energy
dependence

(52)

as we did in an earlier paper, 's formula (51) gives us
for the exponent g the value g= 1.8 if E varies between
10 and 15 MeV and E is assumed to grow from l =5
to t =6 in this energy region. This is in reasonable
agreement with experimental observation: g, p 2,0."

The absolute value of the width depends strongly on
the strength Vo of the potential. In different particle-
hole calculations for light nuclei this strength varies
quite a bit, "'"

t/'0 4.5 1
MeV a=0 54F ' fo. r Ca', (53)

4rrRs 9.2 (aR)'

j~(kr) =cq(kr) 'L1—(r/R)' j
The normalization factor is

(48) where R= 7.2 F for lead. The best value of the potential
lies close to the highest value of (53), i.e., near 9 MeV.
Choosing again P =rsvp, E/Er = ss, we find

(kR) '+sir 2P

O'I' (2/+3)(3/+3)(4/+3)
(49)

0.42

2.25
MeV

This leads to elementary integrals of the type

r cosk j,r cosk2r cosk3rdr.

%'e have calculated. all the squares of the matrix ele-
ments of the states listed in Table V and averaged them.
The result is

([(0 (
Vie&)@ )]s) =(Vo/4s'Rs)sX0. 085, (50)

where Vo is the strength of the 8-force potential.

for the limiting values of Vo given in (53). The largest
uncertainty in this result is due to the strength of the
interactions, t/'0, since it enters quadratically. The un-

certainty in the value of the mean-squared matrix
element Eq. (50) is probably not worse than a factor
1.5; a similar uncertainty is probably associated with
the quantities a and p, (34) and (36). These uncer-

'4 M. Danos and W. Greher, Phys. Letters g, 113 (1964l.
'~ E. Ambler, E. G. Fuller, and H. Marshak, Phys. Rev. 138,

$117 (1965).' V. Gillet, Nucl. Phys. 5,1, 410 (1964).
'r L. G. Weigert and J. M. Eisenberg (to be published).
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tainties, however, enter only the absolute magnitude of
the width.

To summarize, we have shown that the thermaliza-
tion process indeed is sufhcient to give the total width
of the giant resonance. The contribution of the direct
emission of fast particles to the width thus can have a
magnitude consistent with the Courant process" and
no further damping mechanisms are needed. The com-
puted width has a magnitude and energy dependence in
agreement with the experiment.

e ("(E)=o,(E)C (»+ dE'b (E,E')P(E'). (A1)

According to the Introduction the continuum states lt

are mostly rather complicated states and the matrix
element between the collective state C (') and
vanishes. The diverse normalizations and matrix ele-
ments are

(@(&)H@(&))=E (A2)

(C ('&,HC (")=E b;,
(C ('&,HC(")= V

(C( ),Hit) =0,

(A3)

(A4)

(A5)

(C (s),Hit(E))= W (I-'), (A6)

(+ (')(E'),H+ ('&(E))=El& ~ i)(E—E'), (A7)

(+. ("(E'),+.(s)(E))= h. .b(E—E'), (AS)

"U. Pano, Phys. Rev. 124, 1866 (1961).

APPENDIX A

We would like to derive formula (19)by two methods.
First, in this Appendix A, we shall use time-dependent
perturbation theory since this method is simple and
transparent, and all the essential points can be illus-
trated in the derivation. In Appendix 8, we shall use a
method which is of lowest order in the electromagnetic
interaction, but is formally exact in the nuclear interac-
tions. This will allow to state precisely the random-
phase assumption discussed in the Introduction, i.e.,
the quality of the approximation implicit in the treat-
ment, and elaborated on below. With this method we
will show that Eq. (19) is more generally valid than its
form implies. We will furthermore show that the photon-
absorption cross section is a superposition of Lorentz
lines rather than Breit-Wigner lines; i.e., the line shape
coincides with the classical line shape.

According to the Introduction, our initial conditions
are a collective state which has been generated as the
result of the absorption of a photon. In order to apply
time-dependent perturbation theory we have to define
the two-particle —two-hole states into which the collec-
tive state decays. Let us denote them by C &".They are
themselves broadened by continuum states P. We de-
scribe this broadening following the treatment of
Fano."We thus write:

[ W.(E') ('
F (E)=P dE' (A10)

We now solve the Schrodinger equation

A, (9———4 =II%
i Bt

by the ansatz

@=A(t)C(')e '(e«")'

(A11)

dE g (E t)@ ( )(E )e—'%'/P) (A12)

with the boundary condition

A(0) =1,
B(E,O) =0, (A13)

which yields in the well-known manner, "using the rela-
tions (A2)—(AS), the set of differential equations

—(t't/i)B (E)e '(et""=(t,(E)V e '(e«")'. (A14)

Thus, we finally obtain for the probability per unit
time of transitions into any of the states 4 (" the
equation

2g
dEI~.(E) I'=Z —

I V-I'l~-(Eo) I'
dt a Pg

y /2sr2'
(A15)

t't (Ep—p.)'+y.'/4

where we have used (A9) and have introduced obvious
abbreviations. Lastly, we assume that the energies e

are distributed at random with a density p&~), and that
the matrix elements

~

V
~

' also form a random distribu-
tion. Then one can remove an average matrix element

(~ V~'), from the sum and replace the summation over
o. by an integration over e. This way one obtains

I'= hT=27r() V( ), p(Eo), (A16)

which is Eq. (19) of the text. This formula is valid as
long as yp))1 and is then independent of y. In the pres-
ent case, yp= 50—100, since the damping of two-particle-
two-hole states by three-particle-three-hole states will
be of the same order of magnitude as the damping of
particle-hole states by two-particle-two-hole states.

"L. I. Schiff, QN(snttsm beche)ptcs (McGraw-Hill Book Com-
pany, Inc., New York, 1955), Chap. VIII.

and, according to Pano" there holds

[W (E)i'
I o-(E) I

'= (A9)
LE—E —F (E) j'+n'~W (E)~4

With
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APPENDIX B

In this Appendix we shall use a stationary-state de-
scription to derive Eq. (19) and to discuss the line shape
of the photon-absorption cross sections. The starting
point is the optical theorem

0 = (4)r/)):) Imf(E, O) (31)

and the scattering amplitude is, except for constants, a
matrix element of the operator

f= —e.D/(E —H+i))) '—(E+H+i))) ']e( D, (32)

g —+0.

~(E)=Z.~. (E).. +Z ~ (E). +

P (&)(E E')g, ('()(E')dE'

+Z &~"'(EE')A"'(E')&E'+ (33)

where the states q "), q p('), . denote bound particle-
hole, two-particle —two-hole, etc. states while ))((')(E),
P(2)(E) are similar unbound states. According to
Fano's prescription one has to begin by diagonalizing
the diferent categories of states, separately. We thus
have to diagonalize, e.g., the particle-hole states sepa-
rately, which is the usual procedure. Let us call the

20 3.A. Lippmann and J. Schwinger, Phys. Rev. 79, 469 (1950)

Here D is the dipole operator and s2 and a~ are the
polarizations of the outgoing and incoming photon, re-
spectively. For elastic forward scattering, e~= a~, g is an
infinitesimal positive number which determines the
boundary conditions. "If, instead, one puts g = I'/2, one
obtains immediately a Lorentz shape. This procedure is,
however, ud hoc, even though practiced quite widely.
The Lorentz, instead of the Breit-Wigner shape results
from the presence of the second energy denominator
which has its origin in the crossed Feynman diagram in
which a photon is emitted before the incoming photon
has been absorbed.

In order to evaluate the matrix elements we have to
define the nuclear states. For reasons of simplicity we
assume that the collective particle-hole state contains
only bound particle states, i.e., states whose wave func-
tion vanishes as r —+~. This assumption may even be
fulfilled in heavy nuclei, the shell separation being of
the order of the binding energy. The direct emission
then results from the Auger eGect, a process sometimes
called "autoionization. " As stated in the Introduction
we shall neglect this contribution to the damping. It has
been treated, e.g., by Fano."We are going to utilize
Fano's formulation in our derivations.

The nuclear wave function is expanded in the com-
plete set of states

diagonalized states C ("&. They thus fulfill

However,

(@,(~) +g) (~))—E (n)g, ~

(g&, (n') @ (e)) (34)

(4, (")(E'),B@,(")(E))=Eh(E' —E)b„.„(36)
(+,( ')(E') + ( )(E))—P(E E)g, g, (37)

Again, the elements

~'"""(E',E)=(+""'(E'),—&+,'"'(E)) (»)
in general do not vanish for m'=v+1. Finally, the o8-
diagonal elements

gT (n', n) (E)—(@ (e') jf@ (n) (E)) (39)

also exist. However, they also do not vanish only for
e'=n, 0~1.The energy matrix thus now has the form
shown in Fig. 9.

Fano's procedure would now require the diagonaliza-
tion of all bound states and all continuum states separ-
ately, and then, at the end, the mixing of the discrete
and the continuum states. However, we shall follow a
slightly diferent procedure. We begin by mixing the
discrete and the continuum states at the highest e, and
write

x, (n)(E) P g, (n)(E)@ (n)

+ dE' g b „(")(E,E')+,&")(E'). (310)

At this point we want to simplify the treatment some-
what. We invoke the random-phase assumption to
separate the diferent discrete states. The meaning of it
is the following. The Hamilt'onian is diagonal in the
states C ("&.These states can, however, still mix via the
continuum states %~&"'. We are going to neglect this
mixing with the justi6cation that the diferent continua
will contribute with random matrix elements to the
mixing, thus leading mainly to damping of the states.
Then one can separate (310) into a set of independent
equations

x (m)(E) (), (a)(E)@ (n)

+ Z -'"'( ') '"'( ') ' (3 )

(C. ("'),BC.("))=e..(n™)Wo, ~'W~ (35)

but, owing to the two-body character of the forces, only
those o6-diagonal elements do not vanish where
n'=0+1.

We now turn to the continuum states. According to
Fano" they also have to be diagonalized. We call them
4'7(")(E).Further, they are to be normalized as
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(1,2)
QIQ

„(1,1) „(1,Z)
Qy Qy

„() ~)' E(~)
QIQ Q

0

„(»)
QIQ

w") ~(' ') w(~ ')
Qy Qy Qy

„(~»)'
QIQ

„(») „(& &)
Qy Qg

FIG. 9. Form of the
energy matrix.

(1,1)» (2, 1)»
Qy

(1,P)» (2,P)» (P, y)»
Qy Qy Qy

(1,P)» v(»&)

w(' ') w(~ ~)
M M

(p, g)»

The appearance of several continua in (811) leads to
to no complications. ' Explicit expressions for a and b
are given in Pano's paper. We quote

i(1 (~)(E) (2

(U ( )(E)i2
(812)

[E E"'—G " (E—)]'+2r'i U '"'(E)i'

where

go to the form analogous to (811).At this time, the
random-phase argument has improved in quality: There
are more continuum states available than in the pre-
vious step. Thus the equations have the form

(n—1)(E) (2 (e—1)(E)@ (n—1)

+ [2 5 '" "(E')+ '" "(E')

I
U-'"'(E) ['=Z.

l
~"-v'" "'(E)

I

2 (813) +P ~ c. .(" '&(E')X..("&(E')]dE'. (816)

i
U (~)(E) i2

G ("&(E)=P dE'
E—E

The functions X,(")(E') then are normalized as

(&( (~)(E') X (~)(E))—l&(E—E )

i.e., they have the character of continuum states.
We now proceed to the next lower n; let us call it for

the time being e—1. We again write the equation
analogous to (810). It now has the same form except
that in addition to the continua %~(" " there appear
also the continuum states X ("i. We again invoke the
random-phase argument to separate the equations, i.e.,

(e—1)(E) i

2 P i
gl (n 1n 1)(E) i

—2, —

+Q ~
i
T ..("—'")(E) i

2, (817)

i U ("-'&(E ) i
'

G (~ »(E)=P dE' (818)

14) The bar on 5 and c indicates that the necessary di-
agonalization has been performed so that the o6-
diagonal elements (BS) cancel. Then again, (812) holds,
except that (813) and (814) have to be augmented with
the contributions from x.'In (812) U and G have to be
replaced by U and 6 which are given by
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and where

,(a-l, e)(E)—&(y (n,—1) g)t, (e)(E)& (319)

These equations now allow a recursion in I down to
e= i. They remain unchanged in form since no matrix
elements exist connecting functions with e di6ering by
more than one. The random-phase argument improves
the further down one proceeds on the e ladder. The
errors resulting from the marginal applicability of the
argument at the highest e at the beginning of the pro-
cedure get attenuated: The contributions of the 5'-
matrix elements in (317) tend to overshadow the con-
tributions of the T-matrix elements. This is a cumula-
tive eGect in going through the recurrence procedure.

We now can return to (82). Only particle-hole states
have finite dipole matrix elements to the ground state.
Therefore (82) becomes

&o If(E0)Io)=Z dE'(0I'DI&«")(E')&

XP—(E—E'+i2&) '+ (E+-E'+i21) 'j-
x&x.&I)(E')

I
c DI0). (320)

Since we are interested in the imaginary part of f
we need only the 5-function part of the relation
—(E—E'+ i)))

—'= —I'(E E')—'+22r 8(E —E'). Further-—
more, we disregard the nonresonating "direct" transi-
sitions involving the "continuum" contributions to
X,II), the integral in (811), as discussed in the Intro-
duction. We thus obtain

Im&0lf(E0)lo&=Z «'I(0I'DIC'-'"&I'

X~I~(E—E')—S(E+E')31o.&')(E') I'. (»1)
According to (312), la I"I'has superficially the form of
a Breit-Wigner line. However, 6rstly even (312) is not
a Sreit-Wigner line since both the "position" and the
"width" of theresonance, i.e.,E I')+G I') and I U &I) I2,

depend on the energy and are not constants as they are
in a Breit-Wigner line, Secondly, and more importantly,
Imf has poles symmetrical to the imaginary axis in
contrast to the Breit-Wigner line: Imf is time-reversal
invariant.

We now make the above statements explicit. To that
end we perform a meromorphic expansion of

I
a I')(E)

I
',

the only energy-dependent factor left in the integral.
We thus write

E„F„
II2 "'(E')I'=2, , +~-(E') (322)

e (E'—E. )2+I' '/4

We have explicitly taken int;o account the reality condi-
tion and have assumed. that no pole occurs at E=O, i.e.,
we have assumed that the nucleus is part of a neutral
atom so that no Thompson scattering takes place.

where

Im(f &
=P +B(E), (824)

~~ (E2 ~ 2)2+@ 2E2

2—E 2++ 2/4 (825)

If we consider that the meromorphic expansion (822)
contains just one pole, i.e., if we assume that one can
replace the matrix elements (817) and (318) in (812)
by constants, we obtain immediately

2xE F EE
Im&f)=Z

(E2 ~ 2)2+@ 2E2

where

p.=Z, Ill.,~")(E.) I +Z. l

I'..&")(E.) I
. (»7)

The matrix elements (317) and (818) are definitely not
independent of the energy. They may, however, very
well be rather insensitive functions of the energy over
the important, but limited, energy region.

One obtains Eq. (19), Sec. III, immediately from
(827) by using (819), inserting the expression (812)
for a &2)(E), and performing an average over the energy
under the assumption F p»1, as in Appendix A.

We note here the explicit expressions for the coefFici-
ents A„of Eq. (44). The two cases (1) fl&lr and
(2) fl &LI have to be distinguished. The upper value and

LNaturally, one observes the nuclear Thompson scat-
tering in elastic photon scattering of photons below the
(y,22) threshold since the highest electronic resonance
lines lie at very much lower energies. However, at E=0
no pole occurs. $ In (322) the residua R, and the
positions of the poles, speci6ed by E „and I', are by
definition independent of energy; F (E) is an entire
function. We now perform the integration over E'.
Since we are dolIlg nonrelatlvistlc quantum mechanics
the energy E' is restricted to positive values. However,
the photon energy E must have both positive and nega-
tive values because of the reality of the electromagnetic
field. In other words, the photons must be treated rela-
tivistically under any circumstances. After all, emission
and absorption of photons takes place, and they have
rest mass zero. For E&0 only the erst 5 function con-
tributes because of the region of integration, while for
E(0 only the second 8 function makes a contribution.
Thus, Imf has as a function of E poles which are sym-
metric with respect to the imaginary axis, namely

Im&o I fl o&= 2-I (o I 'D I@'-"'&I'Io-'"(E) I'
for E&0

= —&-I &0l'D I
C'-'") I'Io-'"(—E) I'

for E(0. (823)

Collecting the contribution from the poles when insert-
ing (322) in (323), and writing for the "background"
pal t thc cI1'tll'c fllIlctloll B(E), wc obtain
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sign in the following formulas corresponds to the 6rst case, the lower value and sign to the second.

A4 ———,',

B 891

—(7/6)(ly+ fg)+-', (+lg+ fr+1)'+lg+ fg ——,',

( '/
3~ +1 ~+2(ly+ f&)(2lg+2f& —1)Wl/a fp ——,',

k f, j
2 l/ )' 2 lg

Ag +1
~ +— +(2fz+1)

~

+1
3 fg 1 3 fg fg 4 fg

+1
~

—-', (fi+ly+1)'+-,'(fg+l/)(fg+l/+1)+-', (Alga fr+1)'

f~
(+ffW /I+ 1)'+ (1/18 )(+l,W/, )+(+/, —l~—1)(/i —

~

—lg+ —7/ 12,
fg 2 lg

1 lf ) 1 t ly l 1 If t lf l ' lz ' ly
+1

I
+-I +1

I

— +6(3l/ —2) 2I +1
I

—3
4 fg & 2 & fg ) 4 fi — & fi & fa fx—

,'f/+ 23f—g+—,'(fg-1) -— +1 ~+(fp —1)(fg—2) +1 ~+(1/24)(lg+ fr+1)' ,'(l/+ fg—+—1)'

+3(ly+ fg)+ (11/24)(ly+ fg)'+s (+l/& fr+1) 4—
~ (ly —fg)' —~~(~ly& fr+1)'+—', (~l/~ fg)

1 t' ly ) ' 1 ( l& y p lf ) 1 f lf ) t/ lf
I+-I 3f~ 3+—8 II f~ —1—I+-( f~

3E fg i 6E fg J( fg ) 4( fy ) ( f


