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The two-channel coHision matrix for the t+p++ ~He+a system is obtained by calculating the amplitudes
for isotopic spin 0 and j. for the scattering of a nucleon and an A =3 nucleus and combining these amplitudes
in the proper linear combinations. The isotopic-spin alnplitudes are obtained by making a resonating-group
approximation for the continuum wave functions. It is found that with an "equivalent" central potential
representing the nucleon-nucleon force the theory predicts the existence of two isotopic spin-9 ho~ed excited
states. These states, a 0+ and a j, , are related to two experimentaQy observed structures in the cross sections.
The good agreement of the theoretical and experimental cross sections in an energy region above the experi-
mental peaks is used to establish the semiquantitative correctness of the pure isotopic-spin amplitudes
obtained.

Z. DTTTRODUCT'ION KRnc 8E GL. Rlso reveal R dcQDltc cnhanccIncnt of the
three-body breakup cross sections for relative energies
in the 1+p and 'He+I systems which correspond to an
excitation energy of 22.2 MCV relative to the alpha
ground state. This is also the energy at vrhich broad.

peaks occur in the sHe(N, ss)sHe ' and, g(p, rs)sHe ' total
cross sections. McycrhoP has extended the single-pole

approximation used. in Ref. 3 to the energy region oi the
second peak in the breakup experiments and 6nds that
it is due to strong p-wave interaction although none oi
his phase shifts go through 90o. The experimental tmo-

body rcactlOQS rc(julrc only L=Oq 1~ RQd 2 terIns ln thc
I.egcndrc polynomial expansions for the cross sections,
Rnd this vrould seemingly eliminate B and higher
orbital-angular-momentum states as being involved. . A

group at Wisconsin' has measured. the polarization of
the neutrons produced in the charge exchange 1+p
reaction. The maximum polarization occurs at the
encl gy of the second A' pcRk, and thc quantity

(do/dQ)E(8) has a sin8 cos8 dependence. This distribu-

tion is consistent vrith a 1 resonance in vrhich spin-

orbit coupling allovvs it to decay into eithcx the spin-6
ox' spin-1 stRtcs,

The four-body system is still simple enough that one

vfould llkc to understand its spectruxn ln tcrnls of R

basic nucleon-nucleon potcntlal. %C have undertaken R

calculation using a purely central "equivalent" po-
tential. as a 6rst step tovrard one vrhlch ls based on R

more complete nucleon-nucleon potential. Hovrcver, vrc

believe our calculations are reliable enough to indicate

' "T is likely that the 4HC nucleus is the lightest nuclear
~ ~ system in which true resonances .occur. At present,
two broad resonances seem to be present in the 1+p and
sHe+rs channels. They have been observed in both two-
body scRttcx'lng cxpcrilnents Rnd ln x'cRctlons ln %hich
they Rrc ploduccd Rs pal ts of three-body 611al states.

Thc 10&cr state~ Rt Rn cxcltatlon of about 20.4 McVp
is observed most convincingly in the three-body-pro-
ducing reactions t(d, ss)pt and 'He(rJ, p)pt. ' The cross
sections arc strongly enhanced for those states in vrhich
the triton and proton come away vrith their relative
energy in the neighborhood of 500 kcV. A direct Ineas-
urement by Jarmie' et ul. of the 120' elastic 1+p cross
section in the energy range including 500 kcV has re-
vealed a broad peak at about 3($ keg vrhich certainly
corresponds to the structure produced in the breakup
x'eactions. Kerntzs has shovrn that thc results of both
types of cxpcrQncnts can bc understood ln terms of an
8-@rave 0 resonance of the alpha particle at the excita-
tion energy given above. Balashko and Kurcpin' come
to thc sanM conclusion from. their analysis of their own

t+p data.
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the correct spin, parity, and isotopic-spin assignments
to be given to the states.

Goldhannner' has calculated the excitation energy of
the 6rst excited 7=1 p state by employing the Feen-
berg-3olsterli' perturbation technique through second
order. This calculation uses harmonic-oscillator wave
functions as a basis and, thus, an in6nite spectrum of
discrete states is introduced into a system where only
a few broad resonances occur. One cannot be certain
that even two states shifted in energy by the perturba-
tion correspond to any physical resonance. Under
these circumstances it seems more reasonable to
attempt to treat the problem directly as a scattering
problem and calculate the two-channel scattering
matrix for each partial wave.

Bransden, Robertson, and Swan" have calculated
the cross sections for t+I and 'He+n elastic scattering

by using the resonating-group method and have ob-
tained remarkable agreement with experiment, par-
ticularly in the case of t+e which is correctly considered
as a one-channel scattering problem. In this method a
cluster-type wave function is inserted into the
Schrodinger equation and the best single-particle wave
function for the fourth nucleon is found. The asymp-
totic values of the wave function are used to calculate
the scattering phase shifts at any energy. Since the 4He

resonances are very broad they should be predominantly
single particle and one might expect to represent them
accurately by a resonating-group wave function.

Laskar" has formally derived coupled equations for
the three-channel system t+p ~ IHe+e++ d+d which
includes our two-channel system as a special case. How-

ever, he has numerical results only for the matrix
elements Uq~, U~g, and U„~none for the elements U»,
V„„,or U„„in which we are primarily interested. The
two-channel problem reduces to two single-channel
ones—like those solved in Ref. 11—if the isotopic-spin
invariance of nuclear forces is invoked. An A =3
nucleus and a nucleon can be coupled to a total isotopic
spin of either 0 or 1.By analogy with pion-nucleon scat-
tering one can calculate the pure isotopic-spin phase
shifts and form the physically observed collision matrix
elements by taking the proper linear combinations of
the matrix elements for each isotopic spin state.

The justi6cation for dealing with each isotopic spin
state separately is that the coupling between the two
states is small. The Coulomb potential which certainly
couples the two states is two orders of magnitude less
than the nucleon-nucleon potential. Brennan and
%erntz" have shown that the matrix element

Paul Goldhammer, thesis, Washington University, St, Louis,
1956 (unpublished).

"Mark Bolsterli and Eugene Feenberg, Phys. Rev. 101, 1349
(1956).

» B. H. Bransden, H. H. Robertson, and P. Swan, Proc. Phys.
Soc. (London) 69A, 60 (1956)."William Laskar, Ann. Phys. (N. V.) 17, 436 (1962)."J. G. Brennan and Carl Wertru, Phys. Letters 6, 113 (1963).

(7=1~ V,
~
T=O) is —0.1 MeU for the 4He ground state

so that the effective isotopic spin mixing potential is
reduced by still another order of magnitude by the
diff ering space syxrnnetries of the two states.
((r=O( V.

i
r=o)=1.5 MeV. )

In the calculations which are described below the
interaction of the A =3 nucleus and a nucleon is con-
sidered for the four possible spin and isotopic spins and
for I,=0, 1, and 2. The calculated phase shifts show
that there are two excited states, for purely central
forces at least, and that these states are both T=0 with
spin and parity 0+ and 1-. The two-channel scattering
matrix is evaluated for a number of energies, and the
excellent agreement of the calculated with the observed
cross sections at energies above the observed resonances
is used as evidence to support the assignments to the
states.

II. COLLISIOÃ MATRIX

The region of excitation energies for which we intend
to calculate the two-body cross sections is near the
t+p and 'He+I thresholds. As a result, even though
isotopic spin conservation obtains in the region of strong
interaction the mass difference of the triton and 'He
and the presence of the long-range Coulomb force in the
t+P channel cause the matrix elements in the two
channels to differ considerably. As an extreme example,
only the matrix element U» exists physically for exci-
tation energies below the threshold for 'He+e.

Before considering the problem in its full complexity
it is perhaps instructive to review the calculation of the
collision matrix elements in the absence of the electro-
magnetic interaction. Introducing the symbol h to
represent the A =3 nucleus in its T,=+—', state, the pure
isotopic spin states can be written as linear combina-
tions of the 3+p and 'He+I states.

i r=0)= (1/N) (he —tp),

i X=1)=(1/v2)(ae+tp) .
(1)

In the absence of a nuclear interaction between pairs an
expansion of he (or tp) in terms of the pure isotopic spin
states,

he = (1/v2) (i T= 0)+ j 7=1)),
has the meaning that only a noninteracting 'He+I pair
is present. In the presence of an interaction the same
equation now represents a plane 8He+I wave plus out-
going 'He+I and t+p. For a given angular momentum
and parity channel the above considerations lead to the
following expressions for the collision matrices appro-
priate to the processes'He(m, e)'He, ~He(N, p) ~, t(p, N)~He,
and t(p,P)t:

U. =JOCU(0)+U(1)]
U„=U =-,'(U(0) —U(1)],
Unn=kLU(0)+ U(1)j
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The quantity U(T) is the pure isotopic spin-matrix
element.

Baz" has shown how the above equations can be
modi6ed to take into account the Coulomb eQ'ects. One
assumes that there is an interaction radius u beyond
which there are no nuclear forces. At this radius the
logarithmic derivative of a pure isotopic spin state is
taken to be the same in either the sHe+rs or t+p
channels. Denoting these derivatives by Ip(2') and intro-
ducing the appropriate asymptotic wave functions for
the two channels, two new "pure" isotopic-spin matrix
elements can be obtained which contain the eHects duc
to the difference of the thresholds and the long-range
cGect of the Coulomb force,

-~. .'+I (T')"-'(~-J'-I (2')i.)

complex conjugate

u„(.,'—I.(2.)G,—s(~~,'—I.(2')Pi)
n(T') =

complex conjugate p=kya ~

In the above equation the prime denotes differentiation
of a function with respect to its argument. The regular
and irregular channel functions have their usual de6-
nitions. The c.m. wave numbers of the two channels arc
related, by Ask~'=As)'s s—2(3rN/4)E&. The energy P& is
the threshold energy in the t+p c.m. system and is
numericall. y =—0.76 MeV.

The collision matrix elements can be shown to be re-
lated. to S(T) and Q(T) by the equations

7»CS(0)+S(1)3—v»C(l(0)S(0)+f1(1)S(1)]
U„„=

2v» —v»C(1 (0)+f1(1)3

S(0)—S(1)
U„=U„„=(k /k~) "'

2v»+v»CS(0)+S(1) j
&„Cn(0)+n(1)j+~„Cn(0)S(0)+n(1)S(1)~

Un&=
2yrr+v»CS(0)+S(1)]

The hitherto undefined quantities y@ depend on the
channel functions and their derivatives evaluated. at
the nuclear surface. Their de6nition can be found in

Appendix A. We note that in the limit of large Es/P„
y»-+ 0, S(T) —& Q(T), and the expressions in Eq. (5)
reduce to those of Eq. (3).

For completeness we de6ne the dBFercntial cross
sections in terms of the collision matrix elements. Since
central forces are being used. throughout the calculation

the total spin and the orbital angular momentum in a
channel are good quantum numbers. Then the matrix
element in a given partial wave can be represented by
U;;(sI,). The usual expressions obtain for the cross

&4 A. 1. iles, Zh. Ehsperim. i Teor. Fis. 32, 478 (2N7) LKnglish
trsnsL: Soviet Phys. —JETP &, 4O3 (&937)l

sections,

=-:If"«)I'+-'If" (8) I',
dQ

where, except for' s=j=p the amplitudes f; * are given
by

=1 CU (I)-8;;7
f;„'(8)=—P (2I.+1) Pr, (cos8) . (7a)

k; 2i

For elastic scattering in the charged. channel the ampli-
tudes are

f,.(8)=f.(8)+ E(2—I-+1)(-p-2 .)
ky

CU-(sI-) —1j
Pr, (cos8), (7b)

fo(8) = —(1/2k)r) csc'(8/2)

)(expC —2sri ln sin(8/2)] .

The Coulomb phase shift col. ——01,—00 appears because
of the way in which the spherical Coulomb waves have
been deiined. (See Appendix A.)

III. INTERNAL WAVE FUNCTIONS

The formulas of the preced. ing section give the de-
pendence of the scattering matrix on the logarithmic
derivatives of the channel wave functions evaluated at
some radius larger than the radius of interaction. %e
give below a discussion of the approximation to the
Schrodinger equation we have used in order to obtain
internal wave functions, and hence, the required lo-
garithmic derivatives. This approximation, the reso-
nating group approximation, "'~" has been used ex-
tensively in treating theoretically the scattering of light
nuclei.

Suppose one wants to consider the elastic scattering
of a system A from a system B.The total Hamiltonian
can be written as the sum representing the internal
motions of A and 8 and. a term consisting of the kinetic
energy of relative motion and. the sum of the two-body
potentials acting between pairs of nucleons which are
split between the two nuclei A and J3. The Schrodinger
equation is written as

{II~ H& (h'/2l )v'+—g —y"—g}@=0 (g)

jgB
The resonating group approximation consists in writing
the solution as the antisymmetrized product of the in-
ternal wave functions for A and J3 and a function of the

"J.A. %'heeler, Phys. Rev. 52, 1j.07 (1937)."Y.C. Tang, E, Schmid, and Karl %ildermuth, Phys. Rev.
131, 2631 (1963).
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[—V'+ U(r) —k']4 (r) = — dr'E (r,r')4 (r'),

(10)

For large I
r

I
the equation takes the form

[—V+k']4 (r) =0,
which shows that the approximate solution has the
correct form in the asymptotic region. The kernel
E(r,r') arises from the exchange terms and is explicitly
a function of the total energy E. This has the conse-
quence that a set of solutions obtained by imposing
boundary conditions on the surface of a finite volume
are not, in general, orthogonal. However, the set of
properly antisymmetrized functions formed from the
4(r)'s are orthogonaL

Equation (10) can also be obtained from a variational
principle

%*(H—E)%=0,

in which the variation is taken with respect to 4(r)
alone and the total energy as defined in Eq. (10) is held
6xed. Since the true solution obeys the same variational
principle with no restriction as to the variation of 4 it
follows that if the true solution is nearly of the resonat-
ing group form we get a very good solution to the
problem. Conversely, if we have a poor approximation
in the beginning, the resonating group method can give
a very poor result.

Since Eq. (12) is a variational principle and not a
minimal principle it is clear that for k'&0 one can not
say u priori whether a calculated phase shift is greater
or less than that corresponding to the correct solution.
However, it may happen that there are exponentially
decaying solutions to Eq. (10) for certain AP(0. That
solution which approximates the ground state of the
system in a given channel of 2 and B is a trial wave
function in the sense of the Rayleigh-Ritz principle and
Ep(kp') is an upper bound on the actual ground-state
energy. That this is true follows from the observation
that the best trial wave function of a given type, that is,
the one with the lowest energy, satis6es the variational
equation

relative coordinate of the centers of A and B;
@=Q (—1)~PC'~@s4 (rg —rs) .

Upon inserting this function into the Schrodinger
equation, multiplying from the left by 4'&*0&", and
integrating over the internal coordinates of 3 and B,
one obtains an integrodifferential equation for 4 (r).

Since bE& is given by

~~~= (2«&+~I &—~~ I ~~&/&+~I+~&) (14)

it is clear that a solution to Eq. (10) is the product
function which gives the lowest energy. [We note that
(@I%'& exists only for decaying exponential solutions so
that solutions to Eq. (10) with lower energy have no
physical significance. $

If there is a solution to the resonating-group equation
for a second k'&0 in a given channel of 3 and B,
E~(kP) is no longer an upper bound to the energy of the
first excited state because there can still be some ad-
mixture of the true ground state into the excited state.
However, if (4&I@0& is~~small one may hope that the
estimate of the energy is accurate. Actually, both situa-
tions occur in the calculation under discussion. We
obtain a total energy for the 'P& state which is lower
than the total energy of the A =3 cluster plus nucleon
so that this energy is an upper bound to the energy of
the state. The 'So state also turns out to be slightly
bound, but since the ground state of the alpha particle
has the same quantum numbers the calculated energy
is not an upper bound to the actual energy of the state.

In the present calculation the four-body wave func-
tion is constructed from the product of an 5= 2, T= —,

'
cluster representing the 3=3 nucleus and a single
5=—'„T=-, nucleon. With central forces the ground
state of the three-body system is an 5 state. However,
the differing magnitudes of the singlet and triplet forces
causes mixed synunetry and antisyinmetric 5 state to
be mixed into the predominantly space-symmetric
ground state. The latest calculations by Blatt and
Delves'~ indicate that with the most complete nucleon-
nucleon potentials this admixture is the order of about
1%. Since for our "equivalent" central potential the
relevant quantity V,+(r) V,+(r) is roughly o—f the same
size as the V,+(r) V~+(r), the —difference between the
central-singlet and central-triplet part of a complete
potential, we are safe in taking the ground state to be
totally space syrrunetric. Thus, the four-body resonat-
ing-group wave function for a given spin S, isotopic
spin T, and orbital angular momentum L can be
written as

(1234)=Q (—1) e([123])

X (fr sr(r4)/r4)Pz(cose4)

XP (-', 25; m', m —m', m)

XX"'((12),3)x" "'(4)

XP (-,'~2'; t', t t', &)—
8 4'g*(H —Z,)+,=0,

bE]——0.
(13) "J.M. Blatt and L. M. Delves, Phys. Rev. Letters 12, 544

(1964).
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Fzo. 1. The wave function fga~(r) plotted as a function of t' for
selected values of L, S, and T.The normalizations are arbitrary.

and the two-body potentials,

V„,+(r) = —V, , ( exp (—) r') .

The parameter p, was chosen so that the rms radius of
the three-body cluster is equal to 1.69 F, a value con-
sistent with the rms radius of the space-synnnetric part
of the three-body cluster obtained from electron scat-
tering. ' The parameters of the nucleon-nucleon po-
tential are taken from the work of Tang et ol."The
values of the parameters are

&=0.05905 F-~, ~=0.46 F-2,

Vq=45, 98 MeV, V&= 72.98 MeV.
(18)

It is worthwhile to note at this point that there are no
more free parameters in the theory.

The wave function of Eq. (15) leads to the following

integrodi6erential equation for the fourth particle
function fisr(r);

—d' L(L+1)
+ +UsT(r) P2 fisT(g)

r'

dr'Ei (r,r')fi r(r') . (19)

» L, I. Schiff, Phys. Rev. 133, 8802 (1964); B. K. Srivastava,
ibid. 133, B545 (1964).

where [ij . ] denotes a function symmetric in the
indices and (ij} denotes a function antisyrnmetric in
the indices. The space function + is that of the three-

body cluster while x and p' are mixed-syzmnetry spin
and isospin functions.

In order to facilitate the integrations a Gaussian form
was chosen for both the three-body cluster, represented

by
4'(t 123j)= iY'" exp( —p P r;P),

The explicit forms for the direct potential Usr(r) and
the kernel Kz,sr(r, r') are listed. in Appendix B. The
equations were solved numerically on . the Naval
Ordnance Laboratory IBM-7090 following the pro-
cedure outlined by Robertson. " In the Gnal "runs" a
mesh containing 34 points, spaced 0.3 apart, was used.
This allowed us to evaluate the single-particle wave
function out to 9.9 F which is about 2 F larger than the
practical limit of the nuclear forces. This radius is also
suKciently large that for k'&0, the kernel term con-
tributes e6ectively zero. Unfortunately, this is not the
case for k'&0 since the function blows up exponentially
for larger

~
r~. Without rewriting our program to allow

us to take more mesh points, we can only infer the
positions of ground states from the behavior of the
phase shifts.

Note that the Coulomb potential does not appear in
either term because we are treating it as a perturbation
of the forces.

35C-

Ch
&30(-

~ 25C

l-

~ 20C

WAVES

cn l50

IOO

s e l I I l I I

4 5 6 7 8

&cg ~ MEv

FIG. 2. S-wave phase shifts b(ST) as a function of the relative
energy of the fourth nucleon and the A =3 core. The Couloumb
force has been neglected.

~ H. H. Robertson, Proc. Cambridge Phil. Soc. 52, 538 (1956).

IV. NUMERICAL RESULTS

Equation (18) has been solved for the set of states
L=O, 1, 2, S=o, 1, T'=0, 1. Several representative
functions fisr(r) are plotted in Fig. 1. They are all
solutions for zero relative energy, that is k'=0. It is
apparent from the positive slope for large r of the 'So,
T=0 function that in this model there is a second bound
5 state of the alpha particle just below the threshold for
two-body breakup. The node in the 'P&, T=O function
means that there is also a bound I' state several MeV
below the threshold. It can be shown that the phase
shifts which are obtained from solving the resonating
group equations satisfy modi6ed e6ective-range ex-
pansions so we have estimated the energies of the bound
states by inding the negative energy poles of the e6ec-
tive-range expansion for the scattering amplitudes. The
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FxG. 3. P- and D-wave phase shifts b(ST) as a function of the
energy of the fourth nucleon and the A =3 core. The Couloumb
force has been neglected. The dashed line represents a possible
energy dependence of the T=O, 'PI phase shift if the state is
moved from below the threshold into the continuum region. The
resulting total cross sections are compared with the data in Figs. 8
and 9.

estimated energies, relative to the two-body threshold,
are

'So.' E——290 eV;

E——2.7 MeV.
(20)

The 'S&, T=O function is typical of the other three
S states. In spite of the absence of a bound state the
function has a node in it. This comes about because of
the Pauli principle which forbids a third neutron from
being in a ls state. The phase shift starts at x and de-
creases essentially like a hard. -sphere phase shift. This
is an example of a theorem discussed by Swan. '0 The
phase shift at zero energy for scattering from a com-
posite system approaches (I+m)~, where I is the
number of bound states and m is the number of states
excluded by the Pauli principle. In the 'S& case, m=0
and m=1 while for the 'I'& state m=1, m=0. Finally,
the 'P~, T= 1 state is added to show what a typical non-
resonant I' state looks like.

Since the Coulomb force has been neglected, the wave
function in a given L, 5, and T channel for large

~ r~

takes the form

3- && W, He)n
xxx g
THEOR.

2-.

L(T) of the inside functions were evaluated. The sets of
L(T) determine the scattering cross sections as outlined
in Sec. II and they can also be used to calculate the
"pure" isotopic spin phase shifts defined in Eq. (21).
The phase shifts so obtained are displayed in Figs. 2
and 3.

It is interesting to note that only in the S=O, T=O
states are the forces attractive for all I values. The
contributions of the exchange integral are generally of
one sign for even-parity states and of the opposite for
odd ones. In the spin-isospin singlet state the attractive
direct potential dominates and the over-all forces are
always attractive. In the other three spin-isospin states
the kernel dominates for low I values and in the even-
parity states the phase shifts reQect the over-all
repulsion.

The total 'He(e, n)'He and t(p,e)'He cross sections
have been calculated and are compared. with the ex-
perimental"" values in Figs. 4 and 5. The B,t at the
higher energies is excellent but very poor at the lower
ones. This also is reflected in the angular distributions
of the t(p, p)t, t(p, m)'He, and 'He(N, rt)'He reactions. In
Fig. 6 the theoretical and experimental' ""differential
cross sections are compared for a c.m. energy E„=6.0
MeV. The fit is astoundingly good, whereas, as shown
in Fig. 7 the 6t is very poor at E„(c.m.)=2.25 MeV,
the energy of the peak in the t(p, rt)'He total cross
section.

It should be noted before we discuss the signi6cance
of the results that the logarithmic derivatives L(T)
are evaluated for an energy E related to the observed
energies by E=E„—E&,„b where E~,„~ is the Coulomb
energy of the internal state. This energy varies from
state to state but is always of the order of 0.5 MeV.

fr, (r) ~ jz, (kr) —tan5r, xxJ.(kr), (21)
6 7
Q(ego, QEV

where 81, is real. An examination of the k~=0 S-wave
functions shows that the wave functions become
straight lines for r~8.1 F. This radius was used for all
states as the radius at which the logarithmicderivatives

"K.B. Mather and P. Swan, Seclear Scatterigg (Cambridge
University Press, Cambridge, England, 1958), Appendix 13.

FIG. 4. A comparison of the calculated and observed total
elastic-neutron cross section. The data points are taken from
Ref. 5.

~' W. E. Wilson, R. L. Walter, and D. B. Fossan, Nucl. Phys.
27, 421 (1963).

~ R. A. Claassen, J.S.Brown, G. D. Freier, and W. R. Stratton,
Phys. Rev. S2, 593 (1951); J. E. Brolley, Jr., T. M. Putnam,
L. Rosen, and L. Stewart, ibid. 117, 1307 (1960).
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singlet i p—phase shift calculated from our model only
reaches 65' at the 'He+e threshold; the resonance is,
in effect, shifted upwards several hundred keV from its
observed value. ' (Strictly speaking, instead of a true
resonance we have a virile state. )

The small contribution of the triplet state to the cross
section arises from the near equality of the isotopic
spin-0 and -1 amplitudes in the triplet state. In each
case the effect of the Pauli principle is to produce phase
shifts that are nearly hard sphere. The scattering am-

o. l

EpIW} )MEV

I IG. 5. A comparison of the calculated and observed total pN
cross section. The data points are a sample of points found in
Refs. 6 and 21.

One numerical result which is of interest is a set of
values for the two I+i scattering lengths. They are

slnglct: Q, =3.38 F,
triplet: up=3. 25 F.

300--

Ioo "-

EXP.

n( He He)e
5

p(t, t )p

P(t, He)n

Ept~} =6.0@Ey

THEOR.

These values yield a thermal-neutron cross section of
f7=i.3S b which is consistent with the extrapolated
value from the Los Alamos data."

It has been brought to our attention'4 that it is ex-
perimentally possible to measure separately the singlet
and. triplet thermal-neutron cross sections for the process
aHe(e, P)t. For small k„, k~ an 5-wave transition matrix
element T can be written in terms of a complex scatter-

(
ing length A:

r=a,» e.~~~~.

Ke have computed the cross sections for both spin
states at 6 keV and have obtained values for the singlet
and triplet inelastic scattering lengths. They are

A, =4.44+i(5.15) F,
Ag 0 0$7 i——(0 .045)—F. . (24)

s.k„/k„iA, i'=8030 b,
3 a„/u„)a, ) =5b. (25)

The observed, value for the sum of the tvro is 5280 b
so that our value is about 60/o too high The.reason is
that the energy of the "pure" isotopic spin state cal-
lated from our model —0 kcV vrhile the estimated"
energy of the pure state corresponding to the physical
state seen in i pscattering ——15—0 keV. In fact, the

26 Los Alamos Physics and Cryogenics Group, Nucl. Phys. 12,
291 (1959).

'4 L. Paeseii and R. I. Schirmer (private communication).

The corresponding contributions to the cross section
for unpolarized thermal neutrons onto an unpolarized
target are

a a a a
os i6 0.4 0'.2 d - o'. 2 - 5,4 -o.'6 .0.8

FIG. 6. A comparison of the calculated and observed differential
cross sections for all modes of the two-channel scattering at a
center-of-mass energy of 6.0 MeV in the f+p channel. The data
points for the eN reaction were obtained from Ref. 5, those for pp
from Ref. 22, and the pe from Ref. 21. In all cases the points for
the nearest experimental energy to 6.0 MeV were used.

V. IHSCUSSION

In gauging the signi6cance of our calculation there
are essentially two points to be considered, The first
point concerns the accuracy of our solutions to the
purely mathematical problem of determining the scat-
tering phase shifts for a given potential. In other vrords,
given our simplihed "equivalent" potential hovr closely
do the resonating-group wave functions approximate
the true solutions) The second point involves the ques-
tion of hovr vrell the "equivalent" potential represents
the vastly more complicated tvro-nucleon potentials de-
rived from the study of nucleon-nucleon scattering.

There exist calculations vrhich give some answers to

plitude for the charge exchange reaction is essentially
the difference of the pure isotopic-spin amplitudes, so it
is very small in the triplet state. Since the 5-b value
quoted above is obtained by tak.ing the di6crcncc of
tvro quantities vrhich are only approximately deter-
mined lt should bc taken as an ol dcr-of-magMtude
estimate.
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these questions. For example, Humberston" has used
an equivalent central potential in calculating the
doublet and quartet e—d scattering lengths. The reso-
nating-group solutions give values for the scattering
lengths that are very near to one experimental set:

ap—-+0.7 F,
u4 ——+6.38 F. (26)

400
KXp

nl Hp, Hp)n

p(t, t)p

THEOR.

'500 -l

~.200 - i

l

I 00

However, he gets a better estimate by making use of a
variational principle" that gives an upper bound on the
scattering lengths. He 6nds that by introducing polar-
ization of the deuteron the upper limit on a2 is reduced
well below the experimental value while a4 remains ap-
preciably unchanged. The implications of this calcula-
tion are twofold. For a given potential the resonating-
group method may give a poor result in a channel that
contains a bound state; an equivalent potential is at
best a semiquantitative approximation to the complete
nucleon-nucleon potential. On the other hand, for those
states in which the Pauli exclusion principle acts to
make the interaction essentially hard sphere the reso-
nating-group approximation+ an equivalent potential
should give reliable results.

energy appropriate to this radius. However, the mini-
mum energy of the three-body cluster occurs for a
smaller radius and the value of the energy is appre-
ciably lower. The radii and energies are listed below:

r= 1.69 F, E3=—4.125 MeV,
t'= 1.20 F, Es———7.149 MeV.

(27)

The argument which we use in favor of our choice is
that the resonating-group approximation consists in
assuming that the incoming nucleon scatters oG a
nucleon distribution in the target nucleus that is un-
distorted by the incoming nucleon. The scattering from
each of the target nucleons is represented tolerably well

by the equivalent potential so that by introducing the
correct nucleon spacing in the target nucleus one
applies, perhaps, the approximation most realistically.

Our discussion concludes with the association of the
two calculated states with structures seen in the experi-
mental cross sections. Our 0+, T=O state certainly cor-
responds to the peak observed in low-energy t+p scat-
tering. The calculated energy is of the order of 150 keV
larger than the observed energy. The over-all interac-
tion is repulsive in the other three S states so that the
correspondence is unambiguous. The situation is less
clear in regard to the 1,T=0 state because of the large
discrepancy in the energies. However, we feel that the
excellent agreement of our calculated cross sections and
the observed ones at the higher energies makes the
assignment of the quantum numbers 1, T=O to the
alpha resonance at 22.2 MeV very reasonable. In par-
ticular, the large backward peaking in the t(p, pp)PHe

angular distributions at the higher energies arises from
an interference of the 'D2, T=O amplitude with the
'P j, T=0 amplitude. The sign of the interference is that
corresponding to the 'P~ phase shift being between ~m

and x and the 'D2 phase shift being between 0 and —,'x.

4 ~ ~ 4

I

0.8 0 6 04 0.2 0 "0.2 -0,4 -0$
GOS eon.

"08 - I n( He, He)n
3 3

EXP.
THEOR.

Pro. 7. A comparison of the calculated and observed differential
cross sections for all modes of the two-channel scattering at a
center-of-mass energy of 2.25 MeV in the t+p system. The pp
data were taken from Ref. 22, the nn from Ref. 5, and the pn from
Ref. 6. 2-

It should be noted that we have attempted to solve
the problem in a way which does some violence to the
mathematical consistency of the approximation but
may improve the validity of the results. It will be re-
called that the size of the three-body cluster has ad-
justed so that the rms radius is consistent with the
radius observed in electron scattering from 'He and 'H.
The three-body energy inserted into Eq. (19) is the

"John Humberston, thesis, University College, London, 1964
(unpublished).

26 Y. Hahn, T. F. O' Malley, and L. Spruch, Phys. Rev. 130,
381 (1963).

E„(c.)n.))MEV

Pro. 8. A comparison of the total nn cross section calculated by
assuming a broad T=O, 1- resonance at about E„(c.m.) =2.25
MeV and the experimental values in Ref. 5. No other phase shifts
have been changed from those values used to calculate the curve
in Fig. 4.
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the logarithmic derivatives were equal, respectively, to
Go'/Go at E„=0.5 MeV and to G~'/G~ at E~=2.2 MeV.
No other phase shifts were changed from their pre-
viously calculated values. That an immense improve-
ment was made in the total cross sections can be seen
in Figs. 8 and 9.No attempt to improve the 6t was made
since our program for calculating the cross sections from
the logarithmic derivatives does not at present contain
provisions for including spin-Qip terms, spin-orbit split-
ting, and other couplings allowed by the complete
nucleon-nucleon potential.

In conclusion, we have plotted in Fig. 10 the calcu-
lated energy spectrum for 4He obtained in this calcula-
tion and the proposed energy spectrum deduced from
observation with the help of our calculation.

FIG. 9. A comparison of the pn total cross section calculated by
assuming a broad T=O, j. resonance at about E„(c.m.)=2.25
MeV and the experimental points of Refs. 6 and 21. No other
phase shifts have been changed from those values used to calcu-
late the curve in Fig. S.

A check was made on these conjectures by putting
into the calculation of the cross sections logarithmic
derivatives in the T=O, 'So and 'I'& channels corre-
sponding to resonances at roughly the observed energies.
A remainder term R, was included so that
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aLL(T)]= +B,
y' —(Eg—E)R

a=8.1F, y'= 1 MeV,
8—Zy Egp~g )

(28)
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the derivatives equaled the ones originally calculated at
E„~4.50 MeV. The constants 8 were chosen such that

APPENDIX A

In his derivation of the dependence of the two-
channel U matrix on the logarithmic derivatives of the
pure isotopic spin states Baz"has introduced the follow-

ing asymptotic radial wave functions for the neutron
and proton channels;

R.,+=A„L—rt, (k„r)aij,(k„r)j,
Rn~'= (&/r) [G~(&sr) +iE~(&nr)] .

In the energy region below the 'He+I threshold but
above the threshold for t+p the neutron channel wave
functions are obtained from the expression above by
making the substitution k ~iE . The quantities p;;
which appear in Eq. (5) are combinations of the above
radial functions evaluated at the nuclear surface. They
are

4 w=0', f IO

FIG. iO. The energy states of a nucleon scattering from a three-
nucleon cluster calculated using an equivalent central potential
and the proposed energy spectrum of the 4He nucleus. The size
of the three-nucleon cluster and the parameters of the two-
nucleon potential are given in Eqs. (29}and (18) of the text.

v~~= 7»*=—(&'/»&n)

XER z, 'Rnl+ R~l, R~I+ jl~i —(A2)

v ~= v~ *=(o'/2if. )L~.~+'Rn~' R-~'R.~' ll'—
Once again the correct form for E„&0can be obtained

by making an analytic continuation to the region where
k„=iZ .

APPENDIX 8

In this calculation we have restricted ourselves to an
"equivalent" central Serber potential which in this
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T=O T=O
S=1

—3(v,+v,) —2v —2 v3 —(v&+ v&)
P —3 (Vy+ V3) +2 V1 +2Vg + (V&+ V3)—3 (V1+V3) —2 V1 —2 V3 —(V1+V3)—3(v,+v, ) —(v, —3v,) —(v,—3v, ) +(v,+v,)

+3 —1 —1 —1

TABLE I. Coefficients of terms in Eq. (82) for a central Serber
potential. The strength of the singlet (triplet) potential is given
by —v, (—v,).

The coefficients P, y, t/, and q are also tabulated in
Table I.

%e list below the component functions of the kernel.
The function Nz, (x) which appears is essentially the
spherical Bessel function of order I. with imaginary
argument:

Nr(x), =i~xj J.(ix) (84)
Primes designate differentiations with respect to the
argument x.

section is written
U(r) =3'y'/~2 '(9y+X) "' exp( —yr/r')

vv=9/&(9/+~) '
~

(BSa)

V(r) = —V/ s exp( —Xr'), (81)

where —V~ and —V3 are the respective singlet and
triplet strengths. The steps in obtaining explicit ex-
pressions for the direct potential U(r) and the kernel
K(r,r ) which appear in the integrodifferential Eq. (19)
can be found in Ref. 11. In fact, those for T=i are
exactly the same as the direct potential and the kernel
listed in this reference for I+t scattering. We wish to
catalog in this appendix the explicit expressions for both
values of the isotopic spin, and for convenience we adopt
essentially the same notation as Bransden, Robertson,
and Swan. Equation (19) is written in a slightly altered
form as

(+26'/3m) // d'/d«'+ I.(I +—1)//«' k']f (r)—

q~(«') =3"'/'~ '"(3/+~) '(12/+&) "'
XN«.

(kyar')

exp) —(y, +«~,r")1, (85b)
k,= (27/2) p(3p+) ) (12p+X)-'

y, = (9/4)p(15@+SR)(12p+X)—',
~,= (9/4)/ (15/+2K) (12/+),)-~.

»(«r )=qr(««) .

t, (r,r') =3'/ '/'2 '~ '/'(3/ y-) &Nr, (—k/rr-')

Xexp) —y&(r'+r")g,
(85c)k/= (9/8) (3y—X),

y/ ——(9/16) (Sp+X) .

«~(r / ~) —39/2~22 —2~—1/2(3~+) ) 3/2N (k rr&)—

XexpL —y, (r'+r")j, (BSd)~U(r)f, («) — dr'K, (r,r')f,(r'), (82)
k„=27/J/g,

y „=45'/16.

pr, (r,r') = 3't/8 '2 'm-'/'—
X (P—152/27+9/s(rs+r'~) j
XNr, (k,rr') 14/Irr Nz, '(k„rr') —t

XexpC —y, (r'+r")) . (BSf)

Kz, (r,r') =P//qr, (r,r')+sr. (r,r'))
+ptr, (r,«')+t/rr, (r,r')

+«/[Ertg(r, r') —(2k/3m)p (rr,r')$. (83)

where the spin and isotopic-spin indices have been sup-
pressed. The coeKcient o. depends on 8 and T and its a, t2 y, /2
values are listed in Table I. The kernel can also be
expanded into a sum of terms whose coefficients depend XexpL —y, (r'+r")1 . (BSe)
onSand T;


