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The application of the reaction-matrix theory to the calculation of binding energies and other properties
of finite nuclei is investigated. We consider 0"and Ca' .The single-particle wave functions are obtained from
a self-consistent shell-model potential defined so as to minimize the total energy of the nucleus. The attractive
part of the reaction matrix is derived from the long-range part of a central spin-independent potential acting
in S states only. We treat the nonlocality of this reaction matrix in the eBective-mass approximation and the
nonlocal shell-model potential is then also obtained in the similar form. For the repulsive part of the reaction
matrix we compare the local-density approximation of Brueckner and co-workers with a more detailed one.
We find that the local-density approximation gives an underestimate of the binding by 2-2.5 MeV/nucleon.
The center-of-mass correction increases the calculated binding further with 0.8 and 0.2 MeV/nucleon in
0"and Ca~, respectively. We investigate the possibility of replacing the nonlocal shell-model potential by
certain local potentials. We try the harmonic oscillator and the Gaussian potentials, minimizing the energy
with respect to the one parameter for the first, and the two parameters for the second. The binding divers
by not more than 0.2 MeV/nucleon between these local potentials and the nonlocal self-consistent potential.
In fact the local potentials often give more binding, owing to approximations necessary in the self-consistent
potential in some cases.

I. INTRODUCTION

' 'N a previous publication' we presented a formal
~ ~ theory of 6nite nuclei. The reaction-matrix (E-
matrix) theory of nuclei has been applied rather ex-
tensively to the system of infinite nuclear matter. ' '
A main correlation between the nucleons can be in-
cluded in the E matrix by suitable de6nition of this
quantity. It was until rather recently believed that the
energy of infinite nuclear matter could be calculated to
a good approximation in first order of this E matrix as
customarily defined. ' However, recent results of Bethe'
show that higher order E-matrix terms (3-body terms)
contribute several MeV. Thus in the future develop-
ment of the theory, either one has to calculate these
higher order terms explicitly, or one might manage to
rede6ne the E matrix so as to include in it the im-
portant 3-body correlations previously omitted by its
de6nition.

In I, we developed a scheme for applying the E-
matrix theory to the finite nucleus. The E-matrix
theory does not de6ne the quantum-mechanical state
of the system but provides in general only a means of
calculating the total energy of the system in powers of
a E matrix for a given state. In calculations on infinite
nuclear matter, the state of the system specified, e.g.,
by the density, is usually obtained by searching for the
minimum of total energy. In analogy with this procedure
we defined for calculations on finite nuclei a shell-
model potential so that the total energy is minimized.
This de6nes the ground state of the nucleus by specify-

' H. S. Kohler, Phys. Rev. 137, 31145 (1965) (referred to as 1).
~ K. A. Brueckner and J. L. Gammel, Phys. Rev. 109, 1023

(1958).' S. A. Mosskowski and 3.L. Scott, Ann. Phys. (N. Y.) 11, 65
(1960).

4 H. A. Bethe, B.H. Brandow, and A. G. Petschek, Phys. Rev.
129, 225 (1963).

~ K. A. Brueckner and K. S, Masterson, Jr., Phys. Rev. 128,
2267 {1962).' H. A. Bethe (to be published).
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ing the wave functions as solutions of the Schrodinger
equation with this shell-model potential.

The Ematrix is a function of the state of the medium.
It is quite a complicated numerical task to compute
the E matrix in infinite nuclear matter, and far more
complicated in a general 6nite system. Therefore one is
forced to find an approximate method to calculate the
E matrix in a finite medium. In I we concluded that
not only the short-range but also the long-range part
of the E matrix in con6guration space would have to
be treated as medium-dependent. Our conclusions were
made from calculations of the rearrangement contribu-
tions to single-particle energies. In the calculations of
Brueckner and co-workers only the core part was
treated as density-dependent. ' ' In I as well as earlier'
we pointed out that the core term contains an important
part which does not depend on a local (center-of-mass)
density, ' ' but is proportional to the sum of the
potential E-matrix energies of the two interacting
nucleons. Thus the core term depends rather on some
average density than on the center-of-mass density.
We have also pointed out that this characteristic of the
E matrix gives more binding for finite nuclei than if
calculated by a local-density approximation. ' '

However, the E matrix enters in a complicated way
into the calculation of both the energy and the wave
functions, determined by the shell-model potential.
Therefore one has to investigate this point by actual
calculations even to estimate the corrections.

It is an object of primary interest in this paper to
investigate the eBect on binding energy and density

K. A. Brueckner, A. M. Lockett, and M. Rotenberg, Phys.
Rev. 121, 255 (1961) (referred to as BLR).

'K. S. Masterson, Jr., and A. M. Lockett, Phys, Rev. 129,
776 {1963).' H. S. Kohler, Nucl. Phys. 38, 661 {1962).

~ K. A. Brueckner, J. L. Gammel, and H. Weitzner, Phys.
Rev. 110,431 (1958)."K.A. Brueckner, and D. T. Goldman, Phys. Rev. 116, 424
(1959).
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distributions by replacing the K matrix calculated by a
local-density approximation with one more detailed, as
previously described. "

The shell-model potential obtained is nonlocal. In
order to speed up the calculations and make possible
more extensive calculations, we expanded to second
order in the nonlocality. Thereby the problem of
calculating the wave functions was considerably simpli-
fied. In general, this will involve the solution of an
integrodiBerential equation, since the potential is non-
local. The expansion reduces this to a second-order
differential equation similar to a customary Schrodinger
equation, although a first-order derivative term now
also appears.

The definition of a shell-mod. el potential, as in I, that
gives wave functions that minimize the total energy
means, in principle, a variation with respect to an
infinite number of parameters. It is of practical interest
to know how important the exact definition of the shell-
model potential is. Thus we may choose a potential
which is a function of only a few parameters like surface
thickness, depths, etc. , and vary these parameters so
as to minimize the energy. Of course, we do not thereby
reach the absolute minimum, but only a minimum
within the class of states defined by the special choice
of parametrical expression for the potential that we
choose. We find in this paper that for calculations of
the binding of 0"and Ca" both the harmonic osciBator
and the Gaussian potentials are quite adequate.

II. CHOICE OF NUCLEON-NUCLEON INTERACTION

Our aim in this paper is not to start with some
"exact" nucleon potential and with this try to reproduce
known bindings, etc., by applying the E-matrix theory.
This was tried before. ' ' However, on that occasion an
approximate medium dependence for the E matrix was
used: the local density approximation. We have tried
to improve on this approximation. ' ' It is of immediate
interest to investigate if this would appreciably improve
the results for binding energy, etc. We also wish to
make other tests and checks on possible approximation
procedures so that a calculation on a finite nucleus can
be made practically with su%cient accuracy.

The shell-model potential is in general nonlocal.
Therefore we have to solve an integrodifferential equa-
tion to obtain the single-particle wave functions. This
is, however, quite time consuming on the computer. '
The Schrodinger equation will contain a term J'"U(r, r')
XP(r')dr' where 'U is the shell-model potential and f
a single-particle wave function. However, we can expand
in powers of the momentum conjugate to r—r' and if
we keep only terms up to some order n& 2 the integro-
differential equation will be reduced to a differential
equation of order n. If we thus expand to second order
only, the equation will be of the order of a customary
second-order wave equation. This procedure is referred
to as an e6'ective-mass approximation; a term similar

r~o(q) = e'&'vo(r)dr,

vg(q) = e'&' g(vr) sin'adr.

(2a)

a is the angle between k and e,. Diagonal elements in
momentum space will thus be

(k)Z. (k) =a+be,
where

u=avp(0) and b=Pv2(0) .

(3)

In all our calculations we treated a and P as pa-
rameters, adjusting them so that the E, matrix of (3),
together with the repulsive core term to be discussed
later, gives saturation of the infinite system at a specified
density and binding energy.

to the kinetic-energy term will appear and can be
included in this by defining an effective mass.

The shell-model potential is derived from the E
matrix. Rather than approximate on the shell-model
potential, we therefore preferred to approximate on the
K matrix in such a way that the shell-model potential
derived from it gives an effective-mass approximation
as defined above.

We further decided to deal only with 5-state inter-
actions. This is, as discussed in previous publications,
the most important part of the interaction in nuclear
matter, and also carries most of the medium depend-
ence. We have further neglected spin dependence. The
spin-orbit force giving rise to the spin-orbit splittings
is, as is now well known, important for the explanation
of the nuclear shell structure. Also we expect the tensor
force to be important for the binding, as it has been
found to be in infinite nuclear matter. However, we
omit these details of the nucleon interaction in this
investigation.

We shall thus deal only with a central, spin-inde-

pendent, S-state nucleon interaction. We split the E
matrix into parts and, as discussed in I, a main part,
the long-range part, is static, i.e., independent of the
structure of the medium. Of the medium-dependent
parts discussed. in I we shall here, as mentioned in the
Introduction, be concerned only with the short-ranged
repulsive part. The static part is attractive. We shall
call it E . We shall then achieve our goal of an effective-
mass approximation by assuming it to have a form

(rl+ Ir')=avo(r)5(x)+pv2(r)(e„x V)'8(x), (1)

where e„ is the unit vector along r, and

(la)

The e„xV' term is explained later. In momentum
space thus

(k"iE. i
k') =avo(q)+pk'v, (q), (2)

where k=-', (k"+k'), q=k" —k', and
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p(r) = Vpe ~", r& d

p(r) =0, r&d
(4a)

with Uo= —603.06 MeV, p, =2.083 F ~ d=1,1 F. By
means of the 5 function we include only s-state inter-
actions. We expand (4) in the momentum conjugate
to nonlocality coordinate x. Thus

(r
f
E.

f
r')

p(r)8(r —r')D+x ~+-', (x ~)']dx

Xb(x)/err', (5)

which is perhaps an unusual way to write a Taylor
expansion, but quite straightforward with the use of 5

functions. The gradients operate on 8(x). With (4a)
the first integral (dp) gives

Vo e-~"
fp= — 8Lr—(4rP+r —4rfi cos8)"']8dr, (6)

4x r~

where r, =-', (r+r'); thus x= 2ri —2r and 8 is the angle
between r and r&. We do the angular integration by
putting cos8= t, s'=4riP+r' 4rrit and—

2Uo

rl
e f""dr.

From (4a) we get the conditions ri&d, r&ri and
r&&d, r)d. Thus

(8)
with

y=d for r&d, y=r for r)d. (9)

The two remaining integrals are performed similarly.
Owing to the spherical symmetry (filled-shell nuclei)
of the nuclear systems to be studied, the term with one
gradient averages to zero when computing a matrix
element of E . Thus we can write

We further have to choose the functions ep(r) and.

vp(r) I. n some preliminary test calculations, some of
which we shall present, we just used 5 functions. It is
clear however that both vo and v2 must have the range
of the nucleon force. It would probably be sufBcient to
use an exponential or similar function of the appropriate
range. In order to relate vo and v2 more strongly to some
realistic nucleon force, we assumed E, to be given by
the long-range part of the Moszkowski-Scott potential
interacting in 5 states. ' Thus

(r f
E, f

r') = p(r)b(r r')/4~—r',
where

A (p) = r /(1 —bp") (11a)

in which yi and b are parameters (depending on spin
state) which are adjusted so that (11) gives the calcu-
lated repulsion in an infinite system. p is the density.
As mentioned above, we are interested in the repulsion
Er obtained by subtracting from (11) the zero-density
value. Thus we shall use

(r f
E (p) f

r') = Lyp' '/(1 —bp' ')]5(r)8(r'), (11b)

with y=yixb&&4mc'. In (11b) we have further replaced
8(r c) by 8—(r), since the core radius is very small
relative to nucleon wavelengths (krc(&1). From Ref. 11
we get

In (10) the e„&V term appears because the non-

locality of the central s-state interaction is only along
coordinates perpendicular to r, while along r the inter-
action is local because of the b(r —r') factor in (4).

We now let the functions sp(r) and ep(r) in (1) be
determined by (10a). With a= 1 and P = 1 one gets in

(5) a= —1005.6 MeV F' and b=1420.2 MeV F'. In
order that the assumption of the force (4) and the ex-
pansion (5) shall make sense, our parameters n and P,
when adjusted to give correct saturation, should of
course not deviate too much from the value 1. In fact
we shall find a= 1 and P=0.4. The smaller value of P
is because in the exact expression of E in k and il (2)
the function of k is more like a Gaussian than a pa-
rabola. The second-order expansion in k is not strictly
good, and the error has to be compensated by a small P.
However, we still think the functions (10a) are sufli-

ciently realistic.
For the repulsive part of the E matrix we have as a

main object of this investigation compared the local
density approximation~ ""with the one described in
I. Ke have also here chosen to use parametric expres-
sions so as always to be able to "normalize" the inter-
actions to equal saturations of the in6nite nuclear
system. How this is done exactly is described later. The
core term of the local density approximation as given
in Ref. 11 is nonvanishing for zero density. However, by
using for the attractive part E, a potential that van-
ishes for r&d (4) we have in fact included in the core
term the attraction for r&d in such a way that the re-
pulsive term should vanish at zero density. ' "

Brueckber and Goldman" put for their core term

(r fE(p) f
r') =A(p)8(r —c)8(r'—c)/4sc', (11)

where c is the core radius and

with
(r f E, f

r') =ep(r)8(x)+ pp(r) (e„icV)'8(x), (10)
singlet: 8=0.78/ F, y=185.0 MeV F',

(11c)
triplet: 5=0.740 F, y =218.8 MeU F'.

pp(r) = (2Vp/pr)e », -
2Vp (y' 2y 2

n2r =-- e»
r

gati

p p p
with y given by (9).

(10a) 8=0.763 F, y= 202.6 MeU F'.

"H. S. Kohler, Ann. Phys. (N. Y.) 16, 375 (1961).

(11d)

As we use the spin-independent interaction, we aver-
age to
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In I (Eqs. 27, 29) and in Ref. 9 we derived a E-
matrix 1epulslonq wh1ch wc shall call K as dlstln-
guished from Kl of (11).

)r;;,;/p= — r'(p)rrf p;(R)p;(R}rs (r;+r)

Most of the calculations presented in this paper are
made with the attractive part of the K matrix of Kq.
(1) where e, (r) and ss(r) either are () functions or are
given by (10a). The repulsive part is given either by the
local density approximation EI (11c) or by the more
exact expression EI' (15). The parameters of these in-
teractions are determined as will now be described.

+2 p'(R) pr(R)x'(k) V(»p(R))dRdk (12)

Here I is a two-particle correlation as described in I,
and V is the K-matrix potential energy of the speci6ed
state. We assume that the excited-state potential energy
in (12) is given by' V(k,p(R))=constp(E)k'. The inte-
gration over momentum k in (12) depends on the de-
tails of x, and we assume it to give

III. DETERMINATION OF PARAMETERS FROM
INFINITE MEDIUM CALGULATIONS

The parameters are determined by an adjustment
of the inhnite nuclear matter system to known data.
The binding energy and saturation density are given
experimentally.

With E, given by (3) we obtain the contribution V,
for the E-matrix energy from the attractive interaction,

x'(k) U(k, p(Z))dk= c,p(Z).

(16)
Unfortunately c2 can only be roughly estimated to be

3 4 kJ
(13) V (k ) &

—ikr. rl—(kr. rr(++f)kS)&lkr. rr+/kr. rrdk
4 (2rr)s s

The core-correlation volume we caB c~. Thus

cl= x (r)dr

where k=-', (kl—ks) is the relative momentum and.
(13a)

kg the Fermi momentum. The factor ~~ comes from the
spin statistics for a 5-state interaction in a 611ed-shell
nucleus'4 and therefore appears throughout this paper.
Note that the exchange term is included in (16) by
this factor. After the integration in (16) and with the
density p given by

and we have previousyl"" calculated cg=0.5 to 1.0.
Ke can now write a parametrical. expression for the
repulsion E~~ in coordinate space as

(rlrslE" l
rl'rs')

= —~IC(» l V l
rl')+ (rs l Vl rs') 1~(rl—rs)~(rl' —rs')

+c,p(Z)S(r, —r,)S(r,'—r,'), (15)

where the potential energy operators V are obtained
from

(rl Vlr') =2 s.(rl)(rlrlElrl'I')

X q k(rl')drldrl' —exch, (15a)

where q~ are the single hole states. As explained in I,
the matrix E" of (15) corresponds to third-order E-
matrix graphs —the 6rst term to hole-bubble and the
second to particle-bubble graphs. Momentum conserva-
tion does rot prevent nondiagonal hole or particle
states, as the states q are not eigenfunctions of mo-
menta for finite systems. However, we shall not include
these nondiagonal graphs, which should only give small
corrections. We leave the study of them to a later in-

vestigation. Therefore the prescription is now to include
in (15) only diagonal elements of V with respect to q).

Further, in (15) the t) functions represent the short-
range core correlation: the erst and last interactions
of the third-order graphs.

"J.Dabrovrski and H. S. K(ihier, Phys. Rev. 136, 3162 (t9ti4).

9b (3~'~s/4 3b
v.(k)=.up+ l l

-p/+—pk. —
go) 2 j

9b 3x' "'
I'o= ssap+ p51 3

80 2
(18a)

Further, the repulsive term EI (11b) gives similarly
V'(kl), which is independent of kl, i.e.,

VI —~sp4/s/ (1 f)pl/s)

PI ~sp4/4/(1 apl/4) (20)

As the E~ matrix depends on density, it gives rise to
a rearrangement contribution to the energy of real
holes. This can be calculated as by Brueckner and
Goldman" or we can use the Hugenholtz —van Hove

14 H. A. Bethe, Phys. Rev. IOS, 1353 I',1956).

As expected, this is of the form of the e&ctive-mass
approximation. Further, the contribution from K for
the potential energy per particle, I'„ is

k~

I'.= U.(k)dk—
0
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and we get
V~'=P'+ p(d/dp)P' V'—

I i~p4/8/(1 bpl/8)8

(22)

We further get from (15) in an infinite system

(I,l, le" l l,k,)= —c,t V(k,)+V(k8) j+c8p, (24)

with unit volume of the box in which the plane waves
are normalized. Here 'V is the 6rst-order E-matrix
energy. Thus

V(k)= V.(k)+V"(k)

and V'I(k) is obtained from Zll by

(25)

3
V"(k) = —— ci

4 (28r)8 8

or

t V(k)+V(k8)]dk8

3 p+—
4 (28r)8

V"(k) = —-8clpLV(k)+2P1+-,8c8p8, (26a)

where I' is the total potential energy. Thus

ky

P= V(k)dk. —
2 0

theorem, "which we write as

8(kp) =E/A+p(d/dp) (E/A), (21)

where E/A is the energy per particle and 8(k8) the
energy of a real hole at the Fermi surface, i.e.,

8(k) = V(k)+ V/8(k)+T(k), (21a)

where T is the kinetic energy. Now (21) is satisfied
when calculating contributions to E/A and 8 from the
kinetic energy operator and from E,. We thus obtain
immediately the rearrangement contribution to V from
Zl. We call this quantity V/81(k); it is independent of
momentum k. Thus

tribution to Vg from the E'~ matrix, i.e., to third order
in E.We then obtained the hole-bubble contribution

V/8, 811(k)= —-8clpV(k) . (32)

We thus find by comparison with the first term of (31)
that at the Fermi surface the result (32) should be cor-
rected by a factor (1+a8cip) '=0.87 at p=0.2 F~ and
with el= 0.5 F' (the factor is 0.77 for ci——1.0). Thus the
rearrangement potential is overestimated by some 10-
20'/jan at the Fermi momentum by only including the
lowest order rearrangement term. We may expect a
similar correction at other momenta.

To determine the parameters n and P when working
with the interaction E,+E, a saturation density p8
=0.1948 F and a total energy per particle —15.5
MeV were assumed. At saturation the second term of
the right-hand side of (21) is zero. Then

8(k,)=E/A

E/A = —15.5 MCV

(33)

(34)

determines a and p. The qllaIltltlcs 'r alld 8 alc given bv
(11d), but we also calculated with some other values of
y and 5, while keeping PI of (20) the same as with the
values (11d).

When working with Z,+Z" we have to determine
the four parameters a, p, cl, and c8. We first assumed a
value of cg for the particle-bubble interaction. Then 0,,
p, and cl were determined using (33), (34) and putting
PI'=Pi„where again P' was obtained from (20) with
y and 8 from (11d).

IV. FIRST-ORDER X-MATRIX ENERGIES

As discussed in I we now calculate the potential
energies of the system to 6rst order in E, as has been
done for the treatment of the infinite system. Thus the
potential energy is given by

From (26a) we further obtain the potential energy per
particle due to E",

Thus, also

P"=
88C ipP+ g88C8

p8—— (28)

P=P +P" (29)
so that with (28)

P= (P.+8&8p')/(1+8~u ) (30)

The rearrangement potential VIIII(k) will now be a
function of momentum k. We can again obtain VIIII(k8)
from the relations (21), (30), (16a), and (26a). Thus

VII"(kr) = —-8cipV(kr)/(1+grip)+I8Ic8p8(r) (31)

P= 8 &&8 2 8 ''(ri) 8~/*(r8) (rl &
I
r') 8 '(ri') 8/(r8')

ii
Xdridr8drl'dr8', (35)

where r=r~ —r2 and r'=r&' —r2' and the functions q
are the single-particle wave functions (of the ground.
state). As before, the exchange term is included by
means of the factor gs, as we are working with 611ed
shells.

The single-particle potential energy V; enters into
the rcsulsive Ell matrix (12) and

v'= 8 z/ 8 '*(ri) v»*(r8) (I I
&

I
I') 8 '(ri') 8/(r8')

)&dr,dridri'dr8', (36)

This result is of some ~~mediate interest. The expres-
sion (31) is in fact a rearrangement contribution for all
orders in E. In I we calculated the lowest order con-

also, from (35),
P=$ Q; V;.

In coordinate space we have from (15a)

(35a)

1' N. M. Hugenholtz and L. van Hove, Physica 24, 363 (j.958). (rilVlri')=42'8~/(r8)(rl&lr')8/(r8')«&r8', (»)
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otcs aQ the quan-follow1ng deno chere and 1n the O

e„~p;(r)= (1/r)(44„'(r) —N. r r /, , a

(50b)

'en b K" the
'

e interaction given yW th the repuls1ve 1n

evaluation 1s somew a
with (37)

r V r (p, (r) ——4'(;, , p,lv*'I )=-!"()v(.

p2(r) =Z. 4 ~
* 1')~ V»()

andr) can beI1 'ca '
tes the functions y;C11CRI1 'cal coordinates e
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where V, was given by (36) and

p (r)'= A' (r)p'(r).
After (15) it was pointed out that only diagonal ele-
ments of V (15a) should be included. Therefore we can
also write

( IV"l ~)= —-' ()V' '()—l Z; ()V; '()
+~&2p'(r) v '(r) (51b)

In an in6nite medium when p(r) and. V(r) are inde-
pendent of r, Eq. (51) can be used directly. It is prob-
ably only for very light nuclei that it is necessary to
observe the diagonalization rule, and we still also use
(51) instead of the more complicated (51b) in the actual
calculations. From (51b) we get the E" contribution
to first ord-er (Hartree-Fock) single-particle energies,

V;"=—-' V;0;——,
' Q; V;0;,~+-', 0, (52)

p(r) p'(r)«,

0, ,= p, (r)p,.(r)dr,

p'(r)p'(r)«

Wltll p giveil by (43) adding flic attlactlve pal't of
V we get

2l'+1
V, „—-„'cia — V 0„,„+3~@20 '

l (1+~ciO ),

1r.inetic energy

OQ l(l+1)
(2l+1)u„(r) u„"(r)— u (r) dr .(55)

Finally the Coulomb energies were added to the
single-particle energies and the total energy neglecting
the exchange term was obtained.

V. SHELL-MODEL POTENTIAL

As in I, we dehne the ground state of the nuclear
system by the antisymmetrized single-particle wave
functions that minimize the total energy with the
potential energy given by (35). This de6nes the wave
functions as solutions of a wave equation with a shell-
model potential which we shall now derive. The at-
tractive part of the E matrix E, contributes the
amount E, to the potential energy. The variation of
the wave functions then gives us the term (r l V, l q;) of
(42). This is of the usual Hartree-Fock type, except
that our potential is nonlocal because E is nonlocal
so that the potential contains V and 7' operators (42).

'gath the repulsive part. of the E matrix given by E'
[Eq. (11b)]we obtain a Hartree-Fock-type term in the
wave equation which because of the 8-function range,
is simply given by (19), i.e.,

( l
v*l.;)=-:-"(V[1-~" ()].;().

However, E' depends implicitly on the wavefunction
through the p dependence. Thus we get another

term, which we call V~', since it appears because of a
E matrix instead of a simple "static" potential in the
potential energy. As shown earlier by Brueckner and
Goldman" it is given by

where with (43) and (52a)
(53)

p"'(r)
(rl Vx'I ~;)= imp'(r)—

Bp 1 —bp'~~(r)

0„= p(r)u„'(r)dr,
which gives

p4/8(r)

[1—hp"'(r)]'
O„,g,.—— ups (r)u„'(r)/r'dr,

o

(53a)

0„,= p'(r)u„'(r)dr,

given by (46). We calculate single-
particle potential energies from (53); then th««»
potential energy is

Comparison with (23) gives Vxr=—Var. Thus there is s
contribution to the sheB-model potential in this case
which is just the rearrangement potential. It is a ending
after the variation has been performed and not an
assumption. The rearrangement energy is by definition
a physical removal energy, while the Vx of (56a) is a
mere mathematical quantity.

Next, with the repulsive interaction given by E" of
Eq. (15), the potential energy is, by (35),P=-,' g„(2l+1)V„. (54)

With a given. set of wave functions u (r), the po-
tential energies were thus calculated either from E,+Et
[P is then given by (50b)] or from E,+E" [I' given
by (54)], and the total energy was got by adding the

&"=—i'6~i Z(v*vallt l ~;q ~)

&«~'*(r) v';*(r) v'(r) v, (r)«+8~2 p'(r)«. (57)
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H we now vary a p* we obtain (cf. Ref. 9) a shell-
model potential

gir —Vi)+ V' ii (58)

s,nd (r l
V"

l ir;) is given by (51b) while now

( lv "lv')= —' o'( lvl~') —' 2 o( i~le')
+s~~»'{r)v '(r). (59)

~)= (~ilail ~i)
ie, Zi ~~=V.

The two last terms of (59) are the rearrangement
tcrII1S foI' hole Rnd pRI'ticlc intcIRctlons. However, thc
first term, and the first term of (51b) Lwhich by (58)
enters into the shell-model potential 'Uj, appear only
because of the prescrIptIon to take only dIagonal cj.c-
ments of E in E".If we neglect this prescription we
obtain 1QstcRd of thc t%'o terms IQcntloncd only OQc l,c.
—-'~i (r) Vv'(r) —-'&&0*(rl VI v') ~

—4~)p(r) (r I
V

l ~') (60)

which is just the first term of (51).In an infinite medium
this problem does not appear, because then &t&(r) is
constant, 0;=1 in Eq. (59), and the first term of (51b)
is independent of r and does not affect the vvavc func-
tion but only the meaning of the eigenvalue of the
wave 'function.

Now V~"W Vg" and thc cigenvalues of 'U have no
apparent physical meaning. This is why in I we stressed
that in a variation of a complicated expression for the
potential energy like (57) there is no a priori reason to
believe that the eigenvalues of the wave equation should
have any physical meaning.

In a px'cvlous woI'k wc crroncously included. the 6rst
term of (51b) in the definition of the rearrangement

potential.
In (57) E itself depends implicitly on the wave func-

tions. Thus in (58) we have included the rearrangement

potential only to thix'd oI'dcr in E, %'hlch ls )ust thc
order to which we have previously calculated it.' "In
an infinite medium we immediately get from (59) the
hole-bubble contribution

V)i, &,(k)= ——,'ciV{k)p,

wlllcll agl'ees wltll (32).
To use the expressions (59) and (51b) in (58) compli-

catcs the CRlculRtlons appreciably bccausc of thc de-
pendence of 0;and V; on the state i whose wave function
we are solving for. Iterations have to bc performed.
Therefore the simpler shell-model potential vrith the
replacement (60) was tried. The goodness of this
approximation was tested, as described latex.

In our calculations the wave functions N (r) will be
solutions of an eigenvalue equation

pd'm. l(l+1) ) dg N„)(1+~ii)(r))l
k dr' r' ] dr r i
+ I

'Ui') (r)+ ('-', —t)'U. (r)$N„=E„N„, (62)

where +. is the Coulomb potential. The potentials 'U

are in units of h'/2M. We further introduce the ef-
fective mass

M*(r)= 1/l 1+'U &') (r)j. (62s,)

When &=& +E', we obtain from (42), {56), and
(56b)

'U ii) (r)= V (&) (r) (63a)

'U"'(r) = V "'(r) {63b)

~"'()=V-"'()+: " (){6/L1-~" (.)j
+1/l:1-&u"'(r)3'}. (63c)

When &=&,+&"and we use the substitution (60),
we have with (51)

V, ii&(r) 2l+1 V &')(r) i
V~')(r) = —i~i Z o- 5'.

, -"&(r)—l~ip-(r)
1+-,'ci»(r) 4s. 1+-,'cg)(r))

V i')(r) 21+1
1

V &')(r) i«')(r)=, —4~) Z o-I ~.,-")(r) —-'~u». (r)
1+-',cg (r) 4&r 5 1+-,'cg (r)3

21+1..()V.+-:."{) L1+-: ~()j2'+1, V."'(r)+V-+k~iu(r)—i&i Z o ~...")(r)—&~i&) (r) . (64c)
4m 1+~~pi»(r)

Here S,,
~') (r) is defined by (42a)-(42c) with suppression of the summation over quantum numbers ii as in (59a),

and
p„(r)=N '(r)/r'. (65)
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The more exact self-consistent potentials for the interaction E,+E"are to be used with (58), (51b) and (59)
to solve for the functions N„(r):

2l'+1
O„S.„.~'&(r), (66b)

2t'+1
(1—-' o-)—' 2 O- (S.,- "'()—-' u- ()V- —'~u "V-+&~2u(r)p. (r)). (66c)

n'

Thus the potentials now depend on the quantum state
e(=nit) through V, and 0„, and one should iterate
the solution of the wave equation, as these quantities
depend, on the solution N„(r). This will mean added
iterations within the major cycle calculating the whole
set of I (r) and total energy, etc. This iteration was
performed, but it was also found that good convergence
was obtained by taking O„and V„ from the previous
major iteration.

In the actual computations it was found;that the
calculation of the potentials V, &'&(r) according to (42a)-
(42c), and especially the partial potentials S,,„&'&(r),

required very long computer times. Therefore we tried
using aQ average value of 0~ dered by

O.,=Q„(21+1)O„/g (2l+1). (67)

This gives a considerable simplification because

For example (64a) then reduces to

and there are similar simpli6cations for the rest of the
potentials.

In some calculations we also used the potentials (64)
and (66) to first order in ci. The expansion is s«aight-
forward and the expressions are not given here. As
pointed out earlier, the potential V&r" of (59) is only a
lowest order term, the higher orders coming from the
fact that E in (57) itself depends on the wave functions.
If we work to erst order in c~ we shall replace E in
(57) by E,. There are then no higher order terms and
the self-consistent potential is exact within the theory.

VI. SOME COMPUTATIONAL DETAILS

The numerical calculations werc made mainly on the
CDC 1604 and partly on the CDC 3600 computers of
the Computer Center of the University of California
at San Diego in La Jolla.

The iterations were started by guessing or taping
from some previous calculation the shc]l-mode], po
tentials 'U&o(r) as well as the Coulomb potential. Then
thc clgcQfuQctlons were obtalQed by solviQg thc wave
equation (62) with a fourth order Runge-Kutta scheme.
The integrations were started from outside at some
radius large enough so that the potentials were negli-
gibly small. At this point the logarithmic derivative is
I„'(g)/N„(p) = (E )'I'. The eigenvalue E„was obtained
by the condition N„(0)=0. A method was developed
that counted the nodes and maxima and minima of the
wave function, so that with e speciied the eigenvalue
was automatically corrected, to give the proper eigen-
solution I (r). In the integrations the mesh 0.2 F was
found quite sufhcient.

With the wave functions N„(r) given, the energies
werc calculated by the proper expressions previously
dei'ived. Wheii dolllg tile iiitegiafioiis (42a)-(42c) the
mesh in the angular integration d(cos8) was 1/13 and
in the radial integration it was 0.2 F. All intcgrations
were made by Simpson's rule.

%hen using the E"matrix thc potential energies p'„
were calculated from (53) by iteration. In the first
itel'ation we put V„=V~,&+c20„, which is of zero
order in cj,. Then the iterations were repeated until thc
potential energy per nucleon obtained from (54)
changed less than 0.02 McV between two successive
iterations. This took about four iterations.

I jnaHy, new shell-model potentials were computed
as described and the major iterations were repeated
until the root-mean-square change in density was less
than 0.001 F-' between two successive iterations. ~ith
a sensible irst guess the number of iterations required
was three to 6ve.

With the functions eo(r) and i&2(r) in (1) given by
b-functions, whence the integrations in (42a-c) are
made analytically, the time for each iteration on the
CDC 1604 was about 15 sec for 0"and 30 sec for Ca~'.
With i&0(r) and i&2(r) defined by (10a) the time increased
considerably especially because the integrations (42a-c)
had to be performed repeatedly to obtain thc g, ,

„|'s& in
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(64) and (66). In 0" and with K', i.e., potentials (63),
each iteration was 1 min 30 sec and with K", i.e., po-
tentials (64), each iteration was 7 min 30 sec. In Ca'e

they were, respectively, 2 and 14 min.
With the averaging (67) the times were reduced to 1

min 40 sec and 2 min 30 sec for 0"and Ca4, respectively.
On the CDC 3600 these times were divided by about

five.

T)ABLE I. Test of approximations. KE=—kinetic energy. PE
=potential energy. E—=total energy. A—=number of nucleons.
R—=root-mean-square radius. Units: Fermi and MeV. Nucleus: QI~.

Run
No. E/A

1 —15.01
2 —15.09
3 —7.49
4 —7.46

KE/A

2.12 23.76
2.17 22.64
2.43 17.92
2.44 17.64

PE/A

—38.77—37.73—25.41—25.10

Potential

(64) to order cI
(66) to order cr
(64)+ (67)
(64)

the error in binding is less than O.i MeV and in the
radius (by which we shall always mean the root-mean-

square radius) 0.05 F. The exact potentials (66) are
eBectively more repulsive.

As pointed out earlier, the energy eigenvalues of
potentials (66) have no apparent physical meaning.

They are now not identical to separation energies. How-

ever, we can also calculate these separation energies by
adding to the first-order E-matrix energies the re-

arrangement energies. This was also done and is pre-
sented in Table II (run 2). With potentials (64), the
eigenvalues are not exactly the separation energies

either, but the difference is very small and we do not

T~r.z II. Comparison of eigenvalues and
separation energies in Q'6.

Run
No. State

1$.
1p
1s
1p

Neutron
Separation Eigen-

energy value

—70.54 —51.94
—34.49 —24.85

—69.11—31.93

Proton
Separation Kigen-

energy value

—65.08 —46.71—29.56 —20.21
—63.51—26.88

VII. TEST OF APPROXIMATIONS

We wish to show results for the test of approxima-
tions that we used.

First we tested the approximation of using the po-
tentials (64) instead of the more self-consistent (66).
We then used these potentials expanded to first order
in c~. Further, we used 5-function interactions. Then the
calculations become sufficiently accurate that we ex-

pect (66) to be exact self-consistent, i.e., give nu-

merically the exact minimum in total energy. On the
other hand, we expect (64) to give slightly less binding.
The test was made on 0", since we expect this approxi-
mation to be worst for a small nucleus. The result is
shown in Table I, run numbers 1 and 2. We find that

distinguish between them. We do find the eigenvalues
of run 2 appreciably higher than the separation energies
and than the eigenvalues of run 1. Actually we find
from (64) that the difference between them is 0 V .

The results of Table I lead us to accept the approxi-
mate potentials (64) as good, at least when working to
first order in c~, i.e., to erst order in the short-range cor-
relation. Also, however, when we calculate the energy
to all orders in ci the Vxrr of (59) is only a first order
term in c~, as pointed out earlier. We found that this
resulted in a too large rearrangement energy at the
Fermi surface and presumably in all states (31), (32).
Therefore the use of the approximation (64), which from
Table I is found to be slightly too attractive, and the
first order t/"~" gives cancellation of errors to some
extent.

To save further computation time we also wished to
use the averaging (67) of 0„. In an infinite medium
0,=—p=constant and (67) is exact. Therefore the ap-
proximation should again be worse for 0" (compared
to Ca4'). We now (and in the following) use the inter-
actions (10a), i.e., a finite range. In Table I, runs 3 and
4, the result is shown. Again the error is much smaller
than we in fact had reason to expect. Actually the
binding is increased by the approximation and its value
is thus within the limits of the errors of the preceding
approximations.

Most of the calculations now to be presented are
calculated with the potential (64) modified by (67).
Thus we expect our approximations to give us the bind-
ing to within 0.1 MeV and the radius to within

0.1 F. Further indirect tests of these approximations
are obtained later.

The E matrix is simple enough that no approxima-
tions were required in potentials (63).

VIII COMPARISON OF Xr AND ASCII REPULSIONS

A main purpose of this investigation was to compare
the results for the local density approximation (E'r

matrix) with the results for the more detailed E'r
matrix. The results of this comparison are presented in
Tables III and IV. The functions ve(r) and e2(r) were
those of (10a). The parameters of the interaction were
"normalized" as described in Sec. III so that the in-
finite system saturates of p=0.1948 F~ with a binding
energy 15.5 MeV/particle.

With the core parameters y and 6 given by (11d), we
find for 0" (run 5) and Ca'o (run 6) bindings of 3.43
and 4.78 MeV/particle, respectively. These are to
be compared with the Brueckner-Lockett-Rotenberg
(BLR) values 2.02 and 3.89 MeV/particle. Although
the repulsive core term of their calculation is, apart
from the spin averaging, identical to ours, we have
used a very simpli6ed attractive interaction and worked
in the effective-mass approximation. Thus the agree-
ment between the BLR results and ours is satisfactory.
We think. the agreement justices further comparisons.
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TABLE III. Calculations with X~ repulsion (local-density approximation). Units are MeV and F.

Run No.

5
6

21
22
27

Nucleus

Q16
Ca40
016
Ca40
016

Q16
Ca4o

Q16
Ca4'

—3.43—4,78—3.36—4.69—3.41

—3.25—4.62
3 0 53—4.87

2.68
3.28
2.52
3.10
2.63

2.68
3.28
2.68
3.28

Shell-model potential

Self-consistent Kq. {63)
Eq. (63), but without

rearrangement term
Gauss: U0= —77.8

v =0.206

Self-consistent: Kq. (63)

Self-consistent: Eq. {63)

1.061

1.027

1.084

0.351

0.309

202.6

170.4

229.1

0.763

0.916

0.636

The BLR radii were 2.56 and 3.01F, respective1y,
for 0" and Ca".

In order to see how sensitive the binding is to the
exact values of the parameters y and 6, we also changed
6 by 20/o and recalculated y to give the same repulsive
contribution to the potential energy in the in6nite
system, 15.35 MeV/particle (and changed rr and P to
give the same saturation). The result is runs '1—10. The
binding is changed by less than S%%u~ and the radii are
unchanged. Thus the exact values of y and b are not
critical, as long as the total repulsion is unchanged.

We then used the repulsion E".First we assumed
cs=0.0 and calculated from (28) the value of ct that
gave the above repulsive contribution to the potential
energy (15.35 MeV/particle). We find c&

——1.295, which
is somewhat higher than the value of this parameter
(14) discussed in I. We then found the binding energies
presented in runs 11—12. Thus the binding is increased,
compared to the local density calculations of runs 5
and 6, by about 2,5 MeV for 0"and 2.2 MeV for Ca"
while the radii are decreased slightly. The increase in
binding is in agreement with our previous qualitative
discussions. '

The lower limit of c~ previously discussed is c~=0.5.
Assuming this value of ct we compute from (28) the
value c2=521.5 MeVF' to give the above repulsive

energy 15.35 MeV. This value of c2 is rather large. Our
estimate gives (with an effective mass for the excited
states of 0.77 M) a value cs= 311 MeV I"s. As discussed
in I, the term proportional to cs (particle-bubble inter-
action) depends on the local density like the E re-
pulsion. Further, owing to the density-squared term in
(28) we expect the binding to decrease appreciably.
The calculation is shown in runs 13 and 14. The binding
does decrease by 1.6 and 1.4 MeV for 0" and Ca",
respectively, compared to runs 11 and 12. Although the
value of c2 is very large, the binding is about 0.8 MeV
larger than for the local-density E~ repulsion. For com-
parison, we also calculated with et=0.5 but cs=O (runs
15 and 16) which shows that the main decrease in
binding in runs 13 and 14 is due to the repulsive term
proportional to c2.

It is of some interest to see explicitly the eGect the
medium-dependent core repulsion has on the binding.
Therefore we put ct=cs=O (or y=O) and obtained
runs 17 and 18. If we now look also at runs 5 and 11
for 0' and runs 6 and 12 for Ca we see that with
c2——0 the E" repulsion increases the binding but the
E' repulsion decreases it. This may be explained by
noting that the repulsion in E, (the V' term) is more
"local" than the E ' repulsion with cg= 0 but less local
than the E' repulsion. %e may also state the result of

TanLz IV. Calculations with En repulsion ("exact" core treatment). Units are MeV and F.H.O. =harmonic oscillator.

11
12
12a
19
20
23
24
25

26

Q16
Ca40
Ca40
P16
Ca~
Q16
Ca40
016

Run No. Nucleus

—5.90—7.01—7.07—5.79—6.89—5.80—7.11—6.00

—7.15

2.48
3.12
3.15
2.55
3.20
2.40
3.09
2.43

3.13

Shell-model potential

Self-consistent: Eqs. (64), (67)

As above but modified Eq. (69)
H.O. : v=0.39
H.O. : v 0.305
Gauss: Uo= —79.8

v =0.255
Gauss: Uo= —79.8

v =0.212

1.120 0.419 1.295

C2

0.0

13
14
15
16
17
18

P16
Ca"
016
Ca46
016
Ca46

—4.27—5.62—5.75—6.79—5.54—6.52

2.57
3.19
2.46
3.12
2.45
B.I2

Self-consistent: Eqs. (64), (67)

Self-consistent: Eqs. (64), (67)

Self-consistent: Eqs. (64), (67)

1.003

1.080

1.040

0.283

0.492

0.569

0.667

0.667

0.0

521.5

0.0

0.0
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Fro. 1.Density distributions in 0's. I:E repulsion (run No. 5),
II:E'r repulsion (run No. 11),III:E"repulsion, but an approxi-
mate second-order E-matrix term included in the sheH-model
potential (run No. 19).

this calculation as that the effect of the hole-bubble
third order E-matrix graph is to d.ecrease the surface
energy.

TmLz V. Separation energies for 0"in MeV. g and P
refer to neutron and proton states, respectively.

Run No.

FIG. 3. Self-consistent shell-Inodel potentials for 0'6. l: EI re-
pulsion (run No. 5), potentials defined by Eq. (63). II: E"
repulsion (run No. 11),potentials defined by Eq. (64).

Also the potential functions shown in Figs. 3 and 4
show the same general behavior, but E r gives sorne-

XII XII
Self-con- As before but

sistent Eqs. modi6ed
(64), (67) Eq. (69)

EI
Self-con-

sistent Eq.
(63)

Repulsion
Shell-
model

potential
State

1$» %
1$» P
1P', N

1P,'P

+II
Gauss:

Vo= —79.8
v =0.255

Tash.z VI. Separation energies for Ca4 in MeV. e and P
refer to neutron and proton states, respectively.

12 26Run No. 20—45.0—40.0—19.7—15.5

-35.0—30.1—17.4
1342

—36.2
-31.6—15.6—11.7

—46.0—40.9
199

-15.5

XII
Gauss:

Vo= —79.8
v=0.212

Repulsion
Shell-
model

potential
State

1$» s
1$» P
1P g
1P,'P
18» Ã

M» P
2$» Q
2$» p

EI
Self-con-

sistent Eq.
(63)

XII E»
Self-con- As before but

sistent Eqs. modi6ed
(64), (67) Eq. (69)

—65.7—553—41.2—31.8—19.6
-11.3

190—10.6

—48.0
-38.4—32.6—23.8—18.0—10.1—16.9—9.0

—55.6—48.1—35.8—27.3—17.6—10.0—15.7—8.3

—63.2
-53.3—40.7—31.6
-19.9—11.9—18.5—10.6

In Tables V and VI are shown separation energies
for the E and E repulsions. The E separation
energies are somewhat larger than those tabulated by
BLR. However, these tables are for a decreased re-
pulsion. In agreement with the larger binding for the
E'~ repulsion, the separation energies are also larger
for this repulsion, However, the agreement with experi-
ments for the top nucleons and especially for the what larger values corresponding to the larger densities,
proton-neutron difference seems surprisingly good. as shown by Figs. 1 and 2.

In Figs. i and 2 are shown density distributions for
0" and Ca40 with the E and E repulsions. The E'~
repulsion, being e6ectively leis repulsive, gives larger
central densities, but the distributions have the same 4

general shapes

.2
4.

Q.
(

1

N
A

1.'2
O

Fro. 2. Density distributions ln Ca+. I:E -repulsion (run No.
6), II: En repulsion (run No. 12), III: Err repulsion, but an
approximate second-order E-matrix term included in the shell-
model potential (run No. 20).

Fro. 4. Self-consistent shell-model potentials for Ca~. I: IO
repulsion (run No. 6}, potentials defined by Eq. (63). II: Err
repulsion (run No. 12},potentials defined by Eq. (64}.
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g "& (r) ~ 'U& & (r)+5.064p(r),

&"'( ) U"'( )-o op"'( )

(69a)

(69b)

corresponding roughly to our calculations of the second-
order rearrangement potential in I. These additions do
not change the potential of the Fermi surface in an
infinite medium. The result is presented in runs 19 and
20. The effect of this addition to the potentials is seen
to be very small. The binding decreases by only 0.1
MeV and the radius increases by around 0.1F. In
Figs. 1 and 2 it is shown how the inclusion of the
second-order rearrangement potential reduces the cen-
tral densities by 0.02 F—' in 0"and 0.03 F ' in Ca '.

Although the change in energy and size is small, the
separation energies do change by several MeV, as seen
in Tables V and VI.

As a change in the shell-model potential by an
amount of the order of the potential V~ or the re-
arrangement potential affects the calculations so little,
we also think it is of interest to see the effect of com-
pletely neglecting V~ in the shell-model potential. This
is done in runs 21 and 22. In these calculations were
included only the 6rst order E matrix or the Hartree-
Fock potential. The binding is reduced by less than 0.1
MeV and the radius by less than 0.2 F. This result is
thus in disagreement with BLR, who Gnd that the
inclusion of the rearrangement potential is very
important.

It is quite simple with our interaction to check the
importance of the rearrangement potential for satura-
tion of an in6nite system, by applying the expression
(33) at saturation. The neglect of V&r in a finite nucleus
corresponds to neglecting the rearrangement potential
in the single-particle potential 'U(kr). With the E'
interaction we then get

k,2+ V.(k,)+ V'=0.6k,'+P.+P', (70)

where V„V', P„and Pr are given by Eqs. (16a),
(19), (18a), and (20), respectively. With the parameters
given as in runs 5 and 6, the saturation density is
0.1948 F ' with a binding 15.5 MeV Las obtained by
adding the rearrangement potential (23) on the left-
hand side of (70)].

Solution of (65) for kr gives a density 0.256 F ' and
the binding energy is then 13.3 MeV/particle. The
central density in run 22 is 0.26 F 3. Thus the neglect

IX. THE SELF—CONSISTENT POTENTIAL

In I we calculated rearrangement energies and found
that the second order rearrangement term was strongly
nonlocal, especially owing to the long-range part of
the central interaction. We have not included in this
investigation any medium dependence of the long-range
interaction. It is, however, of interest to see how the
addition of such a nonlocal potential to the shell-model
potential affects the density distribution. We therefore
modified the functions 'U&'&(r) and 'U&'&(r) accordingly:

of the rearrangement potential increases the density by
0.05 F-', as seen from Fig. 2. The decrease in binding
energy is much smaller for the 6nite nucleus than for
the infinite. Probably this is because of the regions of
low density in the finite nucleus where the repulsive
force is less effective.

Our interaction gives a considerably smaller com-
pressibility than the Brueckner-Gammel potential. The
energy of our system increases especially rapidly with
compression. This is quite certainly because of the
effective-mass approximation. Our system is too stiff,
especially as regards density increase. This now explains
why we found the inclusion of the V& potential un-
important in our calculations. This result might not be
true for a realistic E matrix, as was also found by BLR.

X. LOCAL SHELL-MODEL POTENTIALS

The derivation of the self-consistent shell-model po-
tential that we have used involves in principle, as
previously pointed out, a variation of an inhnite number
of parameters (i.e., the wave functions at all points in
space) to minimize the total energy. We do, however,
know that a nucleus consists mainly of a central and a
surface region, and we expect that it would really be
sufhcient to minimize the energy only with respect to a
few parameters that describe these properties. The most
important ones would, e.g., be a radius and a surface
thickness.

In previous shell-model calculations one has often
with apparent success used harmonic-oscillator wave
functions for light nuclei. Such wave functions have
also been used in previous calculations' " using K-
matrix theory on the binding of 0".

We decided it to be of interest to try some simple
local potentials. We minimized the energy of 0" and
Ca" with respect to the one parameter of the harmonic
oscillator (H.O.) potential and the two parameters of
the Gaussian. We think the result was somewhat sur-
prising. With a H.O. potential V= v'r' we obtained the
results of runs 23 and 24, and with a Gaussian potential
V= Voe

"'"' those of runs 25 and 26. These are to be
compared with the runs 11 and 12a using self-consistent
potentials. Run 12a is almost the same as 12. For
technical reasons we started the integration of the wave
equation further out with the local potentials of Ca ',
than had been done in previous runs. The same inte-
gration was done in 12a as with the local potentials.

We see that the bindings are within 0.1 MeV of the
bindings obtained using the self-consistent potential.
Moreover, to our surprise, the bindings with the local
potentials are even larger for Ca ' and for 0"with the
Gaussian potential. This may seem strange, since the
self-consistent potential is define to minimize the en-

ergy, yet with the local potentials we can obtain wave

' R. J. Eden and V. J. Emery, Proc. Roy. Soc. {London)
A248, 266 (1958);R. J. Eden, V. J. Emery, and S. Sampanthar,
ibid. A253) 177, 186 {1959).



functions that give even lower energy. However, the
potential Vx of Eq. (59), is, as previously discussed,
only a first-order correction. Further, we did have to
approximate somewhat in the exact self-consistent
potential, in order to make the computations reasonably
short. And in fact we found that the error that these
approximations give would be of the order of 0.1 MeV
(Sec. VII), which is just the increased binding we are
able to obtain.

In order to check to some extent that the larger bind-
ing was not due to some error in the calculations, we
also used a, local shell-model potential with the EI
repulsion of run 5. With this E matrix, no approxima-
tion on the self-consistent potential is necessary, and
the computation is exact, i.e., should give the absolute
maxiInum binding. With a Gaussian we obtained run
27. Thus thc binding ls now sfÃcll8f, Rs lt ought to bc
unless our calculation were in error. We note, however,
that the difference is only 0.02 MCV, which would thus
be the error in binding obtained by the use of a local
instead of a nonlocal potential.

Our results thus show that in order to calculate the
binding of a light nucleus like 0" or Ca" it is quite
adequate to use a H.O. (local) shell-model potential to
compute the wave functions. There is no reason to
believe that our results should depend on the special
kind of E matrix we have been using.

We regard, this finding as important for practical
reasons because:

(A) In an exact calculation of the E matrix, this
matrix depends in a quite involved way on the single-

particle wave functions and the calculation of any self-
consistent shell-model potential will then be quite
intricate. This is especially so because of the Pauli
principle, which gives complicated second-order re-
RrrRIlgcIncnt terms.

(8) Even if we can obtain a shell-model potential,
it will bc rather involved for practical calculations. In
fact, in the above calculations we had to approximate
our potentials, which resulted in errors in the binding
which for CR4 were actually larger than those involved
in using the local H.O. potential.

(C) In the exact treatment of the E matrix we do
not expect that the elective-mass approximation will

be numerically acceptable. Thus if wc derive a shell-

model potential, it will have a more general nonlocal
structure, and we shall have to solve the general
Integro-dIGcrcntlRl cquRtloQ Rs wRS done by BLR. Th18
is a quite tedious computation and BLR actually used
approximate procedures also at this point.

(D) The H.O. wave functions are simple and provide
an easy separation into center-of-Inass and relative
motion.

In fact, as pointed out earlier, me used the H.O. set
of wa, ve functions in an earlier calculation9 on 0" and
we are, by virtue of the investigation presented in this

paper, able to state the goodness of that procedure as

far as the calculation of energy by H.O. functions is
concerned. We then obtained a binding of 3.4 MeV/
nucleon. This is larger than the binding obtained by
BLR but less than the binding obtained in this in-
vcstlgRtlon, Rlthough wc did include R rcpulslon of thc
type XII. However, the nucleon potential we used gives
only ij..5-MCV binding per particle in the infinite
system. At least 10% more potential energy is neces-
sary to give 15.5 MeV/particle, and that wouM give
around 5.5 MeV/particle in O". To compare the H.O.
results with our present calculations we should also, as
shown in Sec. XI, subtract about 0.76 MCV from this
value to get around 4.7 MeV/nucleon. This is about 1
MCV smaller than the result of run 15, which has the
repulsion most similar to the one in Ref. 9. The di8er-
ence must thus be due to the use of the effective-mass
approximation, and this conclusion is roughly justified.
by the difference of 1.4 MeV/nucleon between our run
5 and the BLR binding for 0".

Of course thc use of a local shell-model potential
instead of a truly self-consistent potential to calculate
the energy is feasible only because our criterion for a
good approximation to the energy is that we get a good
approximation both to the energy aed to the density
distribution when the energy is minimized. As we
pointed out previously here and in I, this criterion is of
a numerical nature and may involve a calculation of
higher order graphs specifically important in a, light
nucleus. Even though the correlations in the nucleus
thus may be more coInplicated' than the original
Brueckner E-matrix theory assumes, we still believe
that the H.O.-model wave functions are adequate for
light nuclei and may actually make the calculation of
these correlations numerically possible.

In line with our earlier discussions, it is not neces-
sarily true that a good calculation of the binding well
describes (within the theory) other properties such as
density distributions. A comparison of densities from
the self-consistent potential with those from the H.Q.
and Gaussian potentials is given in Figs. 5 and 6. We
see that there is an appreciable difference in central
densities, especially for Ca". The local potentials give
larger central densities, with the exception of the H.Q.
for 0"."This may be a general property of local as com-

so
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FIG. 5. Density distribution in 016 with EI& repulsion, Full line:
Self-consistent potential (run No. 11), same as Fig. 1, curve II.
Broken line: Gaussian local potential (run No. 25). Dotted line:
harmonic oscillator iocal potentiai (run No. 23).
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FIG. 6. Density distribution in Ca4 with E'~& repulsion. Full
line: Self-consistent potential (run No. 12), same as Fig. 2, curve
II. Broken line: Gaussian local potential (run No. 26). Dotted
line: Harmonic oscillator local potential (run No. 24).
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FIG. 7. Neutron wave functions for 016. Full line is for self-
consistent potential (run No. 11), broken line for Gaussian local
potential (run No. 25).

pared to a nonlocal potential, although we do not wish
to stress this point. However, in Figs. 7 and 8, where the
wave functions for the self-consistent potential are
plotted along with those for the Gaussian, we do And

that the former are slightly less curved and pushed out,
which may be because the nonlocality damps the curva-
ture, especially at the center of the nucleus where the
effective mass is smallest.

Although the Gaussian potentials, because of the ap-
proximations in the self-consistent ones, give more
binding, the density distributions given by the former
are probably less exact than those given by the latter
potentials, although we cannot state this with certainty.

The energy eigenvalues of the wave functions for our
local H.O. or Gaussian potentials have of course no
meaning whatsoever in our theory. However, given the
wave functions we can calculate the separation energies
as the sum of a Grst and a third order E-matrix graph.
The result is given in Tables V and VI for the Gaussian
potentials. The agreement with the proper E'~ repul-
sions (runs 11 and 12a) is remarkably good.

If a good approximation to the self-consistent po-
tentials can be made, one can also use, e.g. , the H.O.
wave functions obtained by minimizing the energy to
calculate these self-consistent potentials. By solving for
the eigenfunctions we can then obtain a density dis-
tribution that is more exact than that given by the
H.O. wave functions. This procedure is of practical use
if: (i) it is of advantage to calculate an exact E matrix

with H.O. wave functions rather than from some
general ones; (ii) the convergence is fast enough so
that one iteration is sufFicient with the self-consistent
potential after the energy has been minimized with a
H.O. potential. Point (ii) has been investigated. Al-

though the Gaussian and self-consistent potentials give
such diferent density distributions, we find one itera-
tion sufBces to bring the central density down from
0.345 to 0.263 F ', i.e., to the self-consistent value.
Point (i) is presently under investigation.

for 0"' E/A= —7.98 MeV 8=2.57 F;
for Ca": E/A = —8.55 MeV 2=3.49 F.

Actually we cannot directly compare the experi-
mental bindings with those we calculated. In the calcu-
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FIG. 8. Neutron wave functions for Ca~. Full line is for self-
consistent otential (run No. 12a), broken line for Gaussian local
potential run No. 26).

lations the nucleon motions are calculated in a fixed
potential well, which means implicitly that the center
of mass is in a state of motion. Thus we have to sub-
tract the energy associated with this center-of-mass
motion. This can be done explicitly for H.O. states. "
In the ground state the center of mass is in a 1s state
the kinetic energy of which is h'v/231. Thus the correc-
tion to our calculation is with the v values we found for
0" and Ca': —0.76 and —0.23 MeV/nucleon, re-
spectively. This correction is thus not negligible for O".
Ke have in all calculations "normalized" our E matrix
to make the in6nite medium saturate at kg= 1.42 F—'
with an energy —15.5 MeV/nucleon, which is close to
the experimental values and the result obtained by
Brueclmer and Gammel. '

The E matrix used in this paper is too simplified to
warrant any direct comparison with experiments. How-

"A. H. Wapstra, Physica 21, 367, 385 (1955).
"D.G. Ravenhall, Rev. Mod. Phys. 30, 430 (1958).

. P. Elliott and T. H R. Skyrme, Proc. Roy. Soc. (London)
A23, 561 (1955).

XI. COMPARISON %'ITH EXPERIMENTS

The experimental energies' and root-mean-square
radii'8 are
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ever, we 6nd from Tables III and IV that our treat-
ment of the core term increases the binding relative to
the BLR result by about 2—2.5 MeV. BLR obtained
2 02 and 3 89 MeV/nucleon for 0" and Ca", respec-
tively. Including our center-of-mass correction we still
have to account for about 2—3 MeV/nucleon binding.
We expect to be able to calculate the binding theoreti-
cally to within 1 MeV. So there is still a discrepancy
between theory and experiment.

In I, we claimed to have shown that not only the
core but also the long-range correlation depends on the
nuclear structure. Especially we claimed that this is so
for the tensor force. In fact the long-range correlation
increases with decreasing density, and so relatively in-
creases the binding for small densities and Gnite nuclei.

In Ref. 9 we calculated with H.O. wave functions
the binding of 0". We then also included a second-
order Born term, i.e., a long-range correlation term.
This contributed 1.16 MeV/nucleon to the binding. At
normal density of an inhnite system the same term con-
tributes~ 0.8 MeV. The energy due to a medium-
independent force in the same calculations is about
half in 0" of what it is in an infinite medium. Thus
these calculations already show that the long-range cor-
relations would increase the binding in O" by roughly
1.16—-', X0.8=0.76 MeV/nucleon. The quoted calcula-
tions did not properly treat the off-energy-shell eBect,
which might appreciably decrease this value. However,
the tensor force correlations are much stronger, and we
think this may very well increase the binding for a
6nite nucleus by the necessary 2 MeV or so.

Our H.O. parameters u agree well with the relation of
Moszkowskl, (k /3II)v= 412 ia MeV which gives
=0.39 and r =0.29 for 0"and Ca", respectively, (runs
23 and 24 give v=0.39 and v=0.31).

XIL CONCLUDING REMARKS

We think this investigation throws some light on the
E-matrix theory of 6nite nuclei.

In Sec. VIII we showed that a more detailed treat-
ment of the core repulsion than that of BLR increases
the binding by several MeV.

It is now, in principle, necessary to distinguish be-

2 S. A. Moszkowsklp IIQÃlSQch der Physik, edited by S. Flugge
(Julius Springer-Verlag, Berlin, 1957), Vol. 39, p. 441.

tween three diGerent single-particle energies. The E-
matrix de6nition contains virtual energies so dehned
as to implicitly sum important E-matrix graphs. The
shell-model potential de6nes further eigenvalues of the
shell-model wave functions. Neither of these potential
energies has any physical meaning. The separation
energy, on the contrary, is de6ned as the energy needed
to physically remove a particle. The main parts of all
these single-particle energies are of first order in the
E matrix. In fact our calculations in Sec. IX show that
the binding energy and density distributions are rela-
tively insensitive to the self-consistent potential. The
Inain paI't of the self-cons1stent potent1Rl 1s the erst
order E-matrix part or Hartree-Pock potential. We
found that this part of the potential already gave the
binding to within about 0.2 MeV/nucleon and the
radius to within Rbout 0.2 F. Thus the energy of R

Qnite nucleus is less sensitive to the neglect of higher
order terms in the self-consistent potential than it is
in an inlnite medium, because neglecting the rearrange-
ment term decreases the binding by about 2 MeV in
the latter case.

In Sec. X we found that a local H.G. shell-model
potential is sufEcient for calculating binding energies,
probably to within about 0.2 MeV. These calculations
do indicate, however, that the local potential is not
properly adequate for calculating density distributions.

As pointed out in Sec. XI, there is still a discrepancy
between theoretical and experimental binding energies
for the light nuclei, as calculated by a erst order E
matrix, "normalized" to saturate the infinite medium
as deduced experimentally. The agreement will prob-
ably be better if the long-range correlations are treated
properly, and it does now seem reasonable to hope that
the Brueckner theory of nuclear matter with Bethe's
improved treatment of 3-body interactions will ade-
quately describe the binding of 6nite nuclei also.
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