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The energy of nuclear matter which is due to the simultaneous interaction of three nucleons is calculated
to all orders of Goldstone perturbation theory. The various orders form a divergent series with alternating
signs. This series is summed by an integral equation due to Faddeev, and an approximate solution of this
equation is found. According to this solution, the e8ect of the repulsive core on the potential energy of
"particle" states is reduced to about one-third as compared with the usual third-order calculation, while
the long-range attraction is essentially unchanged. The total potential energy of the important excited
particle states is thereby reduced essentially to zero. Similarly, the total effect of three-body correlations
on the energy of nuclear matter is very small, of the order of 3 to 6% of that of the two-body correlations.
Thus the Goldstone series, if rearranged into a series in the number of interacting particles (which also
corresponds roughly to powers of the density), converges very rapidly. The energy of nuclear matter is
reduced substantially by our theory. When the theory is combined with Wong's idea of a "soft" repulsive
core, the binding energy becomes roughly 13 MeV per particle, in much better agreement with observation
than other recent estimates.

1. INTRODUCTION

'WO independent calcuIations of the binding en-

ergy of nuclear matter have been made with
realistic nuclear forces, by Brueckner and Masterson'
and by Razavy. ' Both of these give too little binding

energy, about 8 MeV per particle instead of the experi-
mental value' of about 16 MeV. It is true that this dis-

crepancy should in fairness be compared with the aver-

age potential energy of about 40 MeV and is then only
about 20%. But most of the mathematics in the treat-
ment of the many-body problem should be much more
accurate, probably better than 1 MeV. Reasons for the
discrepancy must therefore be found.

Three types of suggestions have been made. One
possibility of great interest is that the two-body forces
between nucleons should be changed in such a way as to
preserve the agreement with nucleon-nucleon scattering
but increase the binding energy of nuclear matter. In
particular, Wong' has suggested that the short-range
interaction should not be a completely hard core but a
somewhat "softer" repulsion like e "'/r. This is very
reasonable on theoretical grounds, because the repul-

sion may be due to the exchange of a heavy meson, '
particularly the ~, and 1/p is then the Compton wave-

length of this meson, i.e., about 0.2 F.This modification
leads to an increase in binding energy by 4—7 MeV
(see Sec. 8 of this paper). However, Brown, Schappert,
and Wong' have shown that a correction in the opposite
direction, by 2—8 MeV, should be applied. to the calcu-
lations of Brueckner and Masterson' and of Razavy, '
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so that a discrepancy of 5-10 MeV remains. Other
modifications of the two-body potential are, of course,
possible.

The second possibility is that the use of a potential is
not permissible. Nucleon forces are derived from experi-
ments on the energy shell, while in nuclear matter we
are far oG the energy shell. This extrapolation is com-
monly made by assuming that the forces are given by a
potential. This may be incorrect, and this indeed might
be the most interesting conclusion from the above-
mentioned discrepancy, if it is real. A related possibility
is true three-body forces. ~

Before drawing these far-reaching conclusions, how-

ever, the third possibility should be investigated, viz. ,
whether the mathematical treatment of nuclear matter
is reliable. Some improved calculations have, in fact,
been done, while others are under way: Dahlblom' has
calculated the "ring diagram" (cf. Fig. 7) of three suc-
cessive tensor interactions, Irwino is investigating the
Pauli and spectral corrections for tensor forces, while

Sprung" has calculated the energy gap at the Fermi
momentum. In addition, however, Rajaraman" has
pointed out that there are many higher order diagrams
(fourth order and higher) which do not necessarily give
small results because they involve only three hole lines
and are therefore proportional to the same power of
the density as the third-order diagrams, which are
known to be very important.

It is the purpose of this paper to give a numerical
estimate of these diagrams. It will turn out that they
are attractive and indeed very important. Our estimate
is that they approximately cancel the correction of
Brown, Schappert, and, Wong' and bring the energy
back to the value of Brueckner and Masterson. ' To-

' Bjorken has investigated some of the more important meson-
theoretic three- and four-body forces. When this paper was
written, the net eGect of these forces was zero.
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gether with Wong's' "soft" core, the binding energy
comes out to be about 12 MeV, in not too bad agreement
with experiment (Sec. 8).

The importance of the higher order diagrams arises
from the fact that the nuclear binding energy, as is
well known, is not simply a power series in the inter-
action potential, because such a series would not con-
verge for the strong, short-range forces. Instead of this,
as was 6rst pointed out by Hugenholtz, " the e8ect of
the short-range forces may be considered as a power
series in the density. If c is the radius of the repulsive
core, and rQ'ts is the nuclear radius, an appropriate
expansion parameter is

x= (c/rp)s

For instance, according to Bethe et ul. ," the e6ective
mass in the limit of high momenta is" no*=1—2~. For
ro, the best available value" is 1.12 F; for c, a reasonable
value is 0.4F, although the modern calculations of
Breit ef al." and of Hamada and Johnston'r favor a
somewhat larger value, c=0.51 and 0.49 F, respectively.
Using &=0.49, we get x=0.08 which is satisfactorily
small.

The leading terms in the Goldstone expansion (first-
order diagrams) contain two hole lines (actually two
bubbles) and therefore give a total energy of the
nucleus proportional to p', or an energy per particle
proportional to p. The next order, viz. , the third, in-

Fro. 1. A fourth-order diagram
with three hole lines.

FIG. 3. A third-order diagram
with four hole lines.

Fro. 4. A higher (sixth-order)
diagram with three hole lines.

volves three hole lines and thus gives an energy con-
tribution per particle proportional to p'. These diagrams
have been amply discussed. "' In fourth order, there
are two classes of diagrams, some involving three hole
lines, as in Fig. 1, and others involving four"" as in
Fig. 2. Every hole line implies integration over the vol-
ume of the Fermi sea, hence a factor kp' which is
proportional to p. VVe are only concerned with the dia-
grams involving three hole lines, Fig. 1; those involving
four will be of relative order z. There is also a diagram
in third order involving four hole lines, Fig. 3. There
are, however, diagrams with three hole lines in all
higher orders as well, since the three particles created
from the original three holes can interact any number
of times, as, for example, in Fig. 4, the only condition
being that the same pair must not interact twice in
immediate succession. Ke should therefore calculate
not only the fourth-order diagram, Fig. 1, but also the
sum of all higher orders.

FH".. 2. A fourth-order diagram
with four hole lines.

'2 N. M. Hugenholtz, Physica 23, 533 (1957).» H. A. Bethe, B.H. Brandow, and A. G. Petschek, Phys, Rev.
129, 225 (1963);quoted hereinafter as BBP.
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a value still closer to 1, but 1—nz* remains proportional to ff.."3.H. Brandow, Ph.D. thesis, Cornell University, 1963 (to
be published)."K. E. Lassi1a, M. H. Hull, Jr., H. . M. Ruppel, F. A.
McDonald, and G. Breit, Phys. Rev. 126, 881 (1962).
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2. FOURTH-ORDER CALCULATION

We shall generally assume that all hole states have
zero momentum. This is a good approximation, because
only the short-range forces are strong enough to give
an appreciable contribution in these high orders; a
typical length for these forces is the core radius c;
therefore our assumption amounts to kyc&&1. In fact,
A~c=0.54, if c=0.4F, but the corrections in third-
order diagrams for 6nite momentum of the hole states
are typically" of the order 0.2(ksc)s and thus only a
few percent.

'8Note that whenever a hole interacts, a new hole line is
counted as starting. See J. Goldstone, Proc. Roy. Soc. (London)
A239, 267 (1957).' There is also a third-order diagram involving four hole lines,
viz. , the so-called hole-hole interaction, Fig. 3.This diagram gives
an energy per particle proportional to p~, because of the correla-
tion of the momenta involved. However, the coefBcient is very
small, cf. Ref. 14.
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a-b
I'ro. 6.Third-order ring diagram with

hole lines broken open.

Fxo. 5. Fourth-order diagrams with three interacting nucleons.
The hole lines have been broken open. The four diagrams (a), (b),
(c), (d), represent all possibilities apart from relabeling of lines.
Each propagator labeled with its momentum.

A typical fourth-order diagram has the form of
Fig. 5 (a). Here the hole lines I, 444, 44 have purposely not
been closed for the sake of clarity of the figure; this
representation was first used by Rajaramanii M
mentum conservation has been taken into account in

labeling the lines. Many different orders of interactions
are conceivable, but many of these diagrams are
identical. The sum over identical diagrams is carried
out if we de/we particle l as that particle which is in-

volved in both the first and the second interaction, and
particle m as the other particle involved in the 6rst
interaction, so that particle n participates in the second.
Then we must obviously integrate over 1, es, and g,
independently; i.e., the diagram of Fig. 5(a) is multi-

plied by p' to give the energy per unit volume, and by
p' to give the energy per particle. Since the same pair
cannot interact twice in succession, there are then only
4 diferent diagrams, Figs. 5(a)-(d). In Fig. 5{b), we

have labeled the particles 1, 2, 3 rather than l, m, ys,

and we shaH keep the notation 1, 2, 3.The intermediate
momenta a, b, & (a—b) are, of course, vectors.

All four diagrams have in common that the erst
interaction leads to a state of momenta a, —a, whi1e

before the last interaction we have the momenta h, —b.
Since particles 1, 2, 3 are well defined by the fact that
j. is involved in both the 6rst and the second inter-
action, we must integrate over the esture space of the
vectors a and b, not just over half the space. The dia-

grams can be considered as the various ways of going
from a state a, —a to b, —b. This cannot be done in
third order; the only relevant third-order diagram is
that of Fig. 6, the well-known three-body cluster, a1so

shown'in the more conventional diagram of Fig. 7:
This can only lead from —a, a to another state —a, a.
In the middle interaction, particles I and 3 simply ex-
change momenta; the transition goes from (a,0) to
(O, a). The third order is therefore a special case, which
will become even more important when we compare
the third and fourth orders below. All orders beyond
the fourth have the same structure as the fourth,
namely, of lea, ding from a, —a to b, —b.

YVe have calculated the fourth-order diagrams of
Fig. 5 approximately, by integrating over the momenta
a and 1 explicitjy. YVe have assumed the same potential
as Moszkowski and Scott, 20 the "standard hard-core
poteiltial (SHC), viz.

P =+ ao, r(o,
V= —As-st —

&-', (1+8), r&c,
A =260 MeV=6. 27 F-2,.=0.4 F ~=2 083 F-i

P= Majorana exchange operator

(2.1)

(translation from MeV to F ' by factor hs/&V=41. 5
MeV Fs). We expected, and veri&ed in the calculation,
that the main contribution is due to the repulsive core,
but that the attraction has a noticeable effect in keeping
the result down. For the core, it can be shown on
dimensional grounds that the result must be propor-
tional to c'; assuming this for the entire interaction, we
And for the fourth-order energy

AZ = —30(o/ o)'(ass/3&o') . (2.2)

44 S. A. Moszkowski snd B.L. Scott, Ann. Phys. (N. Y.) 11, 65
(1960).

With rs 1.12 F, and c=0.49 F——, the Hamada-Johnston
value, this gives

AE4= —35 MeV/particle,

wlilch ls cnorIQous.
Before discussing the consequences of this result, we

want to make certain features of (2.2) plausible. The
negative sign follows from the fact that three pro-
pagators (energy denominators) are involved in Fig. 5,
each contributing a negative sign; the G matrices at
the vertices {wavy lines) are all positive because the
repulsive core dominates, The dependence on ro follows
from the fact that the energy per nucleon from our
term is proportional to the square of the density, i.e.,
proportional to ro '. The quantity {2.2) is an energy,
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hence of dimension (length) ', and since e is the only
other length available, it must be proportional to c4.

Concerning statistical weights, we note that the first
and last interaction in Figs. 5 involve a transition of
two particles from states inside the Fermi sea to excited
states. Since the repulsive core gives the main con-
tribution, and since kpc(&1, only 5 states will be
strongly affected. This means that the two interacting
nucleons must have different spin or isospin, so that
only three-fourths of all possible nucleon pairs will
contribute. In all cases, except Fig. 5(b), the f&rst and
last interacting pairs are diferent, and the numerical
calculation shows that Fig. 5(b) gives the smallest
contribution of the four diagrams, about one-sixth of
the total. We therefore assume that the first and last
pairs are different. They will have one common nucleon,
No. 1 in Figs. 5(a) and 5(c). Both the other nucleons
must then differ in spin or isospin from nucleon 1, and
we therefore have inserted a factor (ss)s for this fact in
obtaining (2.2). In the second and third interaction,
the initial and final relative momenta of the interacting
particles are both large, so that any angular momentum
is possible. Then there is no restriction on the spins and
isospins of the interacting particles.

The very large result (2.3) would be far more than
suKcient to explain the discrepancy between the previ-
ous calculations of the binding energy (8 MeV) and the
observation (16 MeV). However, it indicates that the
whole procedure of calculating successive orders in the
Goldstone series is unreliable. We must be prepared
that the 6fth order is again very big, and the series
appears to diverge (see Sec. 4). The only remedy is then
to sum all the graphs containing three hole lines, over
all orders. This will be done in the next section, and the
very large result for the fourth order will then become
understandable.

The large result for the fourth order may seem par-
ticularly surprising, in view of the fact that the ring
diagrams of third order, Fig. 7, are known to give a
small result, less than 1 MeV per particle. ""This
result, in fact, was the chief reason for the erroneous
belief that higher order diagrams do not contribute
much (and also that ring diagrams are less important
than bubble diagrams). However, Kohler~ pointed out
that the small result for the ring diagram is due to the
fact that the contributions to Fig. 7 from the short-
and the long-range forces in the middle interaction al-
most cancel. This is best understood using Fig. 6,
which is our new representation for Fig. 7. As we
pointed out before, in the middle interaction here the
two nucleons exchange the large momentum a. Tllls
substantially decreases the effect of the repulsive core
which is an "ordinary" force, while the long-range,
central force ha, s a large effect, because it is essentially
a Serber force, proportional to 1+P, Eq. (2.1). The

2 H. A. Bethe, Phys. Rev. 103, 1353 (1956)."H. S. Kohler, Ann. Phys. (N. Y.) 12, 444 ('1961).

Fn. 7. Same as Fig. 6, in usual
representation.

2' —2' lr &+2'(s)+ 2'(s & (3.1)

where T&'& means that particle 1 does not take part in
the last interaction. If g» denotes the two-body reaction
matrix, i.e., the quantity denoted by G in BBP," then

T&'& =gss —gss(1/e) (Tis&+ T&s&) . (3.2)
'3 This is also in agreement with the result of G. A. Baker, J.L.

Gammel, and 3. J. Hill, Phys. Rev. 132, 1373 (1963), who 6nd
that the ring diagrams are large for their case of a simple, weak,
square-top repulsive potential.

24L. D. Faddeev, Zh. Kksperim. i Teor. Fiz. 39, 1459 (1960)
/English transl. : Soviet Phys. —JETP 12, 1014 i1961)]; Dokl.
Akad. Nauk SSSR 138,565 (1961)LEnglish transl. :Soviet Phys. —
Doirlady 6, 384 (1962)j."I am indebted to R. Qmnhs for drawing my attention to
Faddeev's work, in a lecture about a diferent application of this
work."I am particularly grateful to A. M. Green who suggested that
Faddeev's theory be applied to the entire three-body interaction
beginning with the third order. In my original version I had only
applied it from the fourth order on.

operator P, operating on the exchange of the two
momenta 0 and a, gives zero momentum change, and
hence a large matrix element. Therefore the attractive
force, though fundamentally weaker than the repulsive
core for high momentum, is, in this particular case,
equally strong, leading to the cancellation discussed
above. In fourth order, as we pointed out in connection
with Fig. 5, the momentum changes in the two middle
interactions are arbitrary, hence applying the exchange
operator P does not lead to zero momentum change.
Then the attractive force contribution is only a small
correction to the repulsive core, and therefore the net
result of the fourth order is large; the same will hold in
higher orders. So the third-order ring diagram is excep-
tionap' because of the special character of the nuclear
forces—repulsion plus Serber-type attraction —while the
higher orders are regular.

3. SUMMATION OF THREE-BODY INTERACTIONS

We wish to sum all three-body interactions. In Gold-
stone language, this means all diagrams containing ex-
actly three hole lines. There must be not more than
three loops, because each loop must contain at least
one hole line, and there must be at least three inter-
actions because otherwise it is impossible for all nu-
cleons to return to their original momentum. We break
up the hole lines as in Fig. 5 and thus consider diagrams
involving three nucleon lines. As in Sec. 2, we neglect
the momenta of particles in the Fermi sea; so vre start
from and return to three nucleons of zero momentum.

A method to treat three-body interactions has been
developed by Faddeev. ' "The total scattering matrix
is written as the sum of three parts
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PzG. 8. Interaction of three nu-
cleons representing T&». The part
below' level A represents T&g).

FIG. 9. Interaction of three nu-
cleons. As described in the text, it
is convenient to separate the two.
last interactions, g12 and g23, from
the rest. At level 3, the wave func-
tion is 4«».

@(i)
t 1 (1/() (2'(&)+2'(3))$@, (3.3)

+0)c—g23+0)

Then (3.2) may be rewritten

+"'=C—(1/~)gi~+(2' —(1/~)g»+"' (3 5)

Here vre may vrrite, in the notation of BBP,

(1/(:)gi2 ——1—Qip. (3.6)

The quantities g, t,, and 0 are operators. We shall shovr,

however, that in good approxin1ation 1—0~2 can be
replaced by a suitable function g of the distance ri~.

To evaluate the operator Q~~ operating on 0 &'&, we

imagine the latter function to be expanded in a Fourier

It is important that all matrices be calculated for the
same starting energy, " vrhich may be complex in
Faddeev's theory (we shall not need this).

The result (3.2) is very easily understood, (Fig. 8).
In T0~, the last interaction is by definition g». This
may stand. by itself, or it may be preceded by other
interactions. Because the same pair cannot interact
twice in succession, the interaction just before g» must
involve particle 1. (In Fig. 8, it is gi2.) This may again
be preceded by an arbitrary ladder of g interactions. In
other vrords, the part of Fig. 8 belovr the linc A has
again the form of a complete three-body T"' matrix,
vrhich in Fig. 8 must be T&'&. Obviously, T&'& is equally
possible.

Clearly, the nota, tion (3.2) is highly abbreviated, and,
in fact~ wc n1ust pRy close attention to thc energy de-
nominators, not only the e occurring explicitly in (3.2)
but also those occurring in the calculation of g itself.
The e occurring in (3.2) involves the excitation of the
two nucleons, 2 and 3. Any e occurring in T&') or T~s~

involves the excitation of all three nucleons" and. is
therefore, in general, much larger; an exception is the
last e on the right, i.e., the e after the erst (bottom)
interaction in Fig. 8 vrhich again involves only tvro ex-
cited. nucleons. Faddeev explicitly writes down an
energy argument for each T and g; vre shall not do
this but shall discuss the appropriate energies vrhen

indicated.
We shall find it convenient to introduce a three-body

WRVC fuIlCtioIl

»tegral, and consider thc component

@.g.——expi(k, ri+kg rp+k. ra), (3 7)

vrhere V~~' is the Laplacian vrith respect to the relative
coordinate x~2, m is the potential acting between nu-
cleons 1 and. 2, and. m* is the effective mass. %,q, now
plays the role of the unperturbed function, 4 in BBP,
Q)~%'.q, of the perturbed, wave function, f in BBP, and
(1—Qiu)%', q, that of the i' in BBP.The parameter y is
given by BBP (7.10), viz. ,

y'=ALE" (u)+Es(c)+Es(d) —E(E)—E(m) —E(e)j
—-', (k.—kg)'. (3.9)

This can be evaluated. , in a manner shghtly different
from BBP (7.14), giving

y'= ash '+ (36—0.45)hr'. (3.10)

In (3.9), Es(a) is the reference spectrum energy of
state o above the Fermi sea, E(N) is the actual (nuclear
matter) energy of state I in the Fermi sea, t, m, rl, are
the initial momenta of the three nucleons before any
interaction, and k~'5 is thc effective gap between states
inside the Fermi sea and the reference spectrum, as
de6ned in BBP (7.3) and (more precisely) in this
paper, Eq. (7.22). We have used the fact that the total
momentum is conserved:

k.+k,+kg= ki+k +k„.
The function (1—Qin) @,s, can be obtained from (3.8)

by expanding in spherical harmonics in the relative co-
ordinate r~~. If e is a pure hard-core potential, the radial
functions for r&2& c are given by spherical Hankel func-
tions hz(iver), BBP Eq. (5.6). However, it is shown in
BBP (5.25) that a good. approximation for all of these
hz is h()(iver) = e &'/r. /This could be im— proved by using
RIl effective 7) soxncwhat 1Rrgcr thRn thc tluc p~ and
defined from BBP (5.28).$ If we make this approxima-
tion, the operator 1—Qi~ becomes simply a factor f;

where the notation is chosen to conform with BBP
(7.10) (see also Fig. 9 in this paper). We use the refer-
ence approximation of BBP, then

(~s—V,P)((1—Q„)e...)=m*~Q„e..., (3.8)
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k.=3r/2c, (3.12)

because it favors states whose S-state wave function
sink, r has a maximum near r=c. For c=0.4 F (as in
the Gammel-Thaler potential), this means

thus

(1—012)@,e,/4, e,= f (r12) = 1, r&c,
(3.11)=e ~&~'(c/r), r) c.

Here p still depends, by Eq. (3.10), on the mo-
mentum k of the nucleon not participating in the
interaction. We may distinguish two cases, cf. Fig. 9:
In the erst and last interaction, the "spectator" nu-
cleon is not excited, so that k, (kr in (3.10). )Actually,
(3.10) must then be somewhat modified, see (3.16)
below. ] Then y is rather small, and f decreases fairly
slowly with the distance r&z for r») c. We shall denote
this i function by 2t. In all other interactions, the
spectator nucleon is outside the Fermi sea, k &kg.
Now we know that the most important two-body inter-
action is the repulsive core because the weak, long-
range interaction can be treated by perturbation
theory. The repulsive core raises nucleons from the
Fermi sea chiefly to states of momentum

calculate ort the energy shell; then BBP (7.7) is valid,
and

+22 2k p2Q k02 (3.16)

d=1.0 to 1.1 F. (3.18)

where the subscript 2 means that only two nucleons
are excited, not three as in (3.15). Taking the average
value in the Fermi sea, ko ——0.3k~', and again 5=0.55,
we get

yg'= 0 8k p' y2= 1.22 F—' (3.17)

This is then the appropriate value of y for the function
3t; it is much smaller than (3.15), which holds for i

In the cases of both t' and 3t, we can include some of
the attractive force outside the repulsive core in calcu-
lating the wave function. In the case of i', this makes
little difference, because of the large value of y. In the
case of g, it makes a lot of difference. The most con-
venient procedure is the Moszkowski-Scott method, "
modified as proposed by BBP Sec. 10, in which the
wave function defect g, and its derivative, go to zero
at the separation distance d. Since the function g is an
ordinary defect wave function for two interacting nu-
cleons in the Fermi sea, the separation distance, for
most of the acceptable potentials, is

k =4F' (3 13)
A rough approximation to rt is

y2= 3 (3r/4c)2+1. 2kr2 (3.14)

pc=1.49 to 1.56 for c=0.4 to 0.5 F,
y=3.7 to 3.1 F ' for c=0.4 to 0.5 F. (3.15)

This value of y is to be used for the function i de-
scribing all interactions except at the two ends. For the
exceptional cases at the two ends of the ladder, we must

Figure 14 of BBP gives a quantity F8(k) whose square
is the probability of transition to an excited state k;
this has a maximum between 3 and 5 F ', a fact which
was used in BBP for the determination of the pa-
rameters of the reference spectruxn. We now assume
that even after repeated interactions, as in Fig. 9,
momenta of the order (3.12) still dominate: One argu-
ment for this is that the momenta must be first gen-
erated by interactions and then be brough back to zero
by the further interactions, so that very high momenta
in intermediate states are not likely. On the other hand,
very low momenta will not contribute much because of
the volume in momentum space. Further, the wave
function (3.11) is not terribly sensitive to y, because
its inner part (r &c) will turn out to be most important,
and is independent of y, and further, y by (3.10) is
only moderately sensitive to k,. We therefore assume
that k, is generally given by (3.12), for all but the first
and last interaction.

We may now compute p. According to (7.17), the
best value for 6 is about 0.55, and Brandow" has shown
that kr=1.36 F '. Then using (3.10) and (3.12),

2t= L(d—r)/(d —c)$2 for c&r&d,
q=1 for r&c, g=0 for r)d. (3.19)

(3.21)
f 12)18 t 18/23 $23$12+2t 12t 18)23

where t'12=—f (r12). This will be discussed in Sec. 4.
Equation (3.20), however, is oversimplified. We

must take into account that the 6rst and last inter-
actions are described by 3t rather than f This can be.

~7 I am greatly indebted to D. Thouless for pointing this simp]e
fact out to me, after I had tried for some time, and edith some
success, to solve (3.20) by approximate methods.

This function satis6es the boundary conditions &=1
at r=c, 3t=rt'=0 at r=d. For i, we may use a similar
approximation, but with a di6erent separation distance,
d8(d. The crude approximation (3.19), is, of course,
not necessary but will be useful in Sec. 5.

We can now write the operator equation (3.5) in
terms of the functions rt and i Let us. assume for the
moment that these are equal, then we can simply
replace (1/e)g in (3.5) by f'. Then (3.5) becomes

e ' =C —i (r»)e ' —i (r»)e», (3.20)

where the f's are now known fgrtctiorts, rather than
operators. Ke may write down the two corresponding
equations for +('& and +&'& and thus obtain three linear,
algebraic equations for the three independent un-
knowns'7 +('& 0('& 4('&. These can easily be solved,
with the result
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done most conveniently by calculating %~') at the level
8 of Fig. 9. Then@'o& is foUowed (going upwards) by
the interaction g23, and this in turn by g12(1/e) =p(T»),
by definition of g. The contribution of Fig. 9 to the
energy is then

FIG. 10. Third-order bubble
interaction.

W = g (r») g3(r28) (4 0' "&—)dTidT2dT8. (3.22) then unity, and the coefficient of q» in the numerator
is zero. Then

The subscript 3 on g3 means that three nucleons are
excited, so that (3.10) must be used for y. We use
C —4"i in (3.22) rather than%&'& itself, for the following
reason: t/V is to be the diagonal element of the energy,
i.e., the nucleons shouM start, as well as end, in states
1, m, n. The two topmost interactions of Fig. 9, how-

ever, involve nucleons 1 and 3 each only once; therefore,
at level B, their momenta must be different from i and
n. Hence, there must be at least one interaction below
level B to return all nucleons to their "normal" states
I, m, n; therefore, the unperturbed wave function 4
will not give a contribution to the diagonal element of
the energy, but only the difference C —+('& will.

The equation for 1If&'& corresponding to (3.5) is now

This also follows immediately from the fundamental
equation (3.23), since the last term in each row of this
equation is of order iq and hence negligible.

We may insert (4.1) into (3.22) and obtain

Ii 1 g(T12)g3(T23)L'g(T12)+'9(T18)]1fT11fT2 (4 2)

where particle 3 may be considered as fixed (instead
of the center of mass). This is exactly the contribution
from the familiar third-order diagrams shown in Figs.
7 and 10. The particular form is similar to that first
given by Kohler. 22 It is convenient to consider (4.2) as
an integral over the two-body interaction g3(r28) with a
weight factor; thus,

'g 12N 18+9182812 '923 (2812+2813 22812M 13)
4 —4(') = (3.24)

2812N 13+28182828+28282812 —228122813N 28

where

28»= 1—t » = 1 i (T») ~ (3.25)

This, then, is our final solution for the three-body
problem, with the approximations described above. It
is linear in p, as it must be, but strongly nonlinear in
i' or 28.

4. DISCUSSION

We shall first consider (3.24) for large distances r»,
r», and r». Then all the two-body functions I», I»,
and 2823 are close to one. The denominator in (3.24) is

The first term corresponds to the possibility that there
is no interaction at all below the level B. The second
term corresponds to a single interaction between nu-
cleons 1 and 2; this must then be the first and is there-
fore described by Tl(r»). The next term gives the con;
tribution from more than one interaction: Then the
interaction preceding level H is i because it is not the
first one, but to the right of t' we cannot have the un-

perturbed function but only the difference 4&3)—C, be-
cause at least one interaction must precede i. The last
two terms in (3.23) are the same as the preceding two,
but with the nucleons 1 and 3 interacting.

Equation (3.23) for 4'&'i, and the two corresponding
ones for +&'~ and 0'(3&, may again be considered as
three linear equations for the three unknowns +&'~.

The solution is

Wi= g8(T23)F1(r23)dT23, (4.3)

~1(T28) dT1'g(T12)Lg(T12)+TI(T18)] (4.4)

where in (4.4) the distance r28 is held fixed. When the
correct 0'"& is inserted, F& must be replaced by

F(T28) = dT1g(T12)t4 —+" (T12 113 1 23)] ~ (4.5)

Equation (4.3) represents the third-order three-body
energy in terms of the two-body interaction g(r23)
acting at the middle level of Fig. 10, i.e., the interaction
of the particle b with the hole N. Due to the higher order
diagrams, the mt,'ight of each r» in this interaction is
reduced by the factor

f(T») =&(T28)/~i(T28), (4 6)

which, as we shall see, is less than one.
Expanding (3.24) to second order in g and i, we get

C' 4 g (T12)+n13—|12('f18+'f23) i 18('912+'f28) . (4.7)

The same solution again follows more easily by itera-
tion from (3.23). It will be noted that (4.7) contains
two terms of 6rst degree in g, and four terms of second
degree in g and |'.The former correspond to the third-
order Goldstone diagrams, Figs. 7 and 10, the latter to
the fourth-order diagrams, Figs. 5(a)—(d). It may be
seen, most easily by continued iteration of (3.23), that



Then (3.24) red.uces to

(4 g)

c—e&»=2~/(3 —2N) =2~/(1+2t) (49)

For small i', we easily recover the results (4.1), (4.7).
But when the three nucleons are very close together,
then 1=0, and therefore

4 —4 &'& = 2q/3, (4.10)

which is only one-third of the first-order result (4.1).
In this limit, also q=C and, therefore,

eo& =C/3, (4.11)

again onc-third of thc unperturbed result.
We may get further insight by expanding (4.9) in a

power series,

C —4 "&= 2» 4gt +S—gP 16+'+—~ . (4.12)

Each term corresponds to one order of Goldstone
perturbation theory, the erst to third order. The series
is exactly that vrhich is obtained by continued iteration
of (3.23), in the case when all i's and all i&'s are equal;
it is just the series which we described below (4.7).
For small l', this series converges, but as i'&-'„ it di-
verges. It is, however, always sunilnable as a geometric
series, giving (4.9). Thus also (3.24) may be considered
as the sum of a quasigcometric series consisting of the
various orders of perturbation theory.

It is now clear why the calculation of the fourth
order in Sec. 2 gave such a large result; We calculated
the second term in (4.12), which (in the limit l'= 1) is
twice as large as the first term (third order), while the
correct result (4.10) is only one-third as large as the
first term.

The result (4.10), that the relevant quantity 4 —@"&

is cut down to one-third of its elementary value, can
be given the following, somewhat naive interpretation:
The quantity g represents the interaction of one pair
of pa, rticles, including their repulsive cores. W'hen three
nucleons are close together, an elementary treatment
would give us three repulsive pair interactions. In
reality, we cannot do morc than exclude the wave
function from the repulsive core region, hence vre get
only wte core interaction rather than three.

there are 2" terms of eth degree in» and t'; these
correspon. d to the m+2nd Goldstone order. As long as

g and 1' are small, this series will converge; but » and i
each become equal to one when their argument r&c;
and, in this case, the series of iterations, and hence the
Gotdsroee perturbation series, obviously diverges.

We must then use the exact solution (3.24) without
expanding it. The situation is simplest, if vre assume

~19 ~18 ~28 j

We novr turn to a morc general discussion. 8' in
(3.22) represents the interaction of particle 2, when it is
outside the Fermi sea, with particle 3 (Fig. 10). To lift
particle 2 out of the Fermi sea, it must erst have inter-
acted. with particle 1, by the factor»(rig) in (3.22).
Therefore, particle 1 must be close by particle 2. Since
the interaction is mostly repulsive, the presence of
particle 1 reduces the wave function for particles 2 and
3. This is especially true if r23 is small, because then a
small value of r~2 means also small x~3. The correlated
vrave function of all three particles is less than it would
be if only 2 and 3 interacted, and the interaction betvreen
2 and 3 is reduced accordingly. This would follovr auto-
matically from Jastrow's correlated, wave function, "but
calculations with that function are somewhat cumber-
some because the normalization integral is already
complicated. These difEcultlcs arc avoided by using thc
Goldstone method as vre have done.

We have shown, however, that the Goldstone method
must not be used blindly by considering order by order,
as everybody including myself has done until now. In-
stead, we needed to sum all diagrams involving three
hole lines at once. This procedure is analogous to the
familiar summation of all ladder graphs to give the G
matrix for the two-body interaction which is the start-
ing point of the Brucckner™Goldstone theory. The
reason why the summation is necessary, however, is
diferent. For a potential with a hard core, the matrix
elements of the potential are inhnite and hence mean-
ingless; so we must form the two-body reaction matrix
6 to gct any sensible quantity at all. For the three-
body interaction, each Goldstone diagram is perfectly
meaningful, hence nobody ever noticed the trouble,
except perhaps for Rajaraman, "who also showed that
the sum of all diagrams is finite. The trouble is tha, t
the number of diagrams in eth order goes up as 2"—'
[cf. paragraph following Eq. (4.7)j, and the contribu-
tion of each diagram remains almost the same. The
three-body trouble would be absent if the potential
were suSciently weak, because the f would remain
small for al/ values of r, and the denominators in (3.24)
and (4.9) would be essentially one. In this respect, the
three-body and the two-body problems behave similarly.

Qn the other hand, nothing would be gained in the
treatment of the three-body problem by replacing the
hard core by a strong but 6nitc repulsion. Such a re-
pulsion would stiD make the two-body wave function
go nearly to zero at small r, hence make i'= 1 and cause
the series (4.12) to diverge. Therefore, it would still
be necessary to solve the three-body problem com-
pletely, rather than by perturbation theory. Since the
solution of the tvro-body problem with a hard core
presents no difhculty, there is no advantage of mathe-
matical simplicity to be gained by avoiding the hard
core. The question of agreement with experiment, to be
treated. in Sec. 8, is an entirely different matter.

"R.Jastrow, Phys. Rev. 98, j.479 (1955).
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The three-body correction is considerably milder
than the two-body one. For two bodies, the wave
function inside the repulsive region is zero, and the
potential s(r) which is infinite for r&c is transformed
into the function (in the reference approximation)

(4.13)

which merely has a 5 function at r=c, and thus is
completely different from v(r). The three-body wave
function @&'), on the other hand, is everywhere 6nite
and nonzero, just like the unperturbed C, and multiplies
the already well-behaved g», Eq. (3.22).

It is likely that the analogous procedure should be
repeated for four bodies. However, as we shall show
in Sec. 8, the contribution of the three-body correlation
to the energy seems to be only about 3% of the two-
body potential energy. Hence it is likely that the four-
body correlation is only about 0.1'//~, and therefore
hardly worth calculating. It is also likely that the
four-body modihcation of the wave function will be
even miMer than the three-body one.

We have shown that the GoMstone series does not
converge, just as a number of physicists have suspected.
However, these authors have nearly always emphasized
the superconductivity phenomenon which depends on
the presence of very many (S) nucleons, and on the
fact that E times the interaction energy is large." It
is now generally agreed that the BCS gap I' in nuclear
matter at normal density is very small, ' almost cer-
tainly much less than 1 MeV, and that the observed,
larger gap in finite nuclei (about 2 MeV) is a surface
effect.""The effect on the binding energy per nucleon
is of order I"/2E&, where Ez is the Fermi energy, about
40 MeV; this eGect is then less than 10 keV per particle
and therefore negligible.

Instead, the divergence of practical importance is in
the three-body correlation, i.e., in low orders and few
bodies. To my knowledge, this has not been suspected,
except by Rajaraman. " It seems to me that only
paitient evaluation of the theory and study of the
physical and numerical importance of various terms
will give us the answer, rather than use of formal
mathematics. I believe that the Goldstone series is the
most convenient and most physical enumeration of the
terms which occur. We may have to continue to extract
from it suitable subseries, which should and can be
summed to obtain convergence.

00

F (~23) t 12' 12ri (&12)
2r23 &23 ~12

r»dr»(C —et'&). (5.1)

Here C —4't'& is given by (3.24). For il and t', we use the

approximation (3.19), viz. ,

~1= $(ds—r)/(ds —c))' for c&r&de,

i = $(ds —r)/(ds —c)j' for c&r &ds,
(5.2)

ti=l'=1 —a for r&c,
(5.3)

rl= f=0 for r) ds, ds, respectively

The parameter a in (5.3) prevents I= 1 i' fr—om vanish-
ing: Otherwise, if two (or all three) of the distances
r», its, and res are less than c, (3.24) would take the
indeterminate form 0/0, which would cause great
trouble for the numerical calculation. In Dahlblom's
and one of Thomas' calculations, u was taken to be
0.1; in the Anal calculation of Thomas, a=0.001; in
the analytical work, a=0 presents no diQiculty.

The parameters d~ and d3 were determined as follows:
For d2, we assumed the Moszkowski-Scott separation
distance. We assumed that for a core size c=0.4 F, the
separation distance d~=1.0F, while for c=0.5 F, we
took d2=1.1F. Accordingly, we calculated the two
cases:

Case (A) ds/c=2. 5, c=0.4 F;
Case (8) ds/c=2. 2, c=0.5 F. (5.4)

The function (5.2) represents rl quite well, as explained
below (3.19).

For t', a better approximation would be the exponen-

.75

.?0-

.65—

5. NUMERICAL EVALUATION

Thomas and Dahlblom have independently evalu-
ated the function F(rss) of (4.5), using the Cornell and
Copenhagen computers, respectively. Kirson and Reid
have independently checked the result for r23——0 and
r» ——~ by analytical integration. The agreement be-
tween all calculations is satisfactory (see below).

The integral (4.5), for fixed rss, may be written

29A very good mathematical discussion of this problem has
been given by G. A. Baker, Phys. Rev. 131, 1869 (1963),who also
shows elegant mathematical methods for obtaining, in many
cases, the correct result in spite of the divergence of the series.' V. J.Emery and A. M. Sessler, Phys. Rev. 119,248 (1960)."E.M. Henley and L. Wilets, Phys. Rev. 133, B1118 (1964};
R. Kennedy, L. Wilets, and E.M. Henley, ibid. 133,31131 (1964).

3' L. Wilets, E. M. Henley, and R. C. Kennedy, Congres Inter-
national de Physique Nucleaire, Paris, 1964, Vol. II, p. 302 (un-
published)."S.Nagata and H. Bando, Ref. 32, p. 293.

.55-

.50—

.45

R

r /c

FIG. 11.The function P(r») including the correlation of
three particles to all orders.
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Fp= dry(r„), (5 7)

which is obviously independent of r», then clearly

Fg(0) =2pp,

p, (oo) =p(oo) =pp.
(5 g)

Comparing Figs. 11 and 12, we 6nd that F(r) changes
less with r than F~(r), and in the opposite direction.
Now Ii&—Iio represents the elementary ring diagram
of Fig. 7, while Iio represents the bubble, Fig. 10:
Therefore it seems to be a better approximation to
consider only the simple Fig. 10 than to include the
ring diagram of Fig. 7, a surprising result.

However, this result is not of much practical use
because of the many exchange diagrams which must be
taken into account. Their examination (Sec. 6) shows
that we should start from a complete third-order calcu-

L4oL

I.20

tial (3.11). Accordingly, we tried, to fjx dp in such a
way that (5.2) represents (3.11) as well as possible. We
chose dp such that the approximate expression (5.2) for
l' is equal to -', at the same value of r as the "correct"
expression (3.11),with pc given by (3.15).We found:

Case (A), t =-,' for r'=1.293c, then dp ——2.00c;
(5.5)

Case (B), f= ,' fo-r r'=1.284c, then dp=1.97'.

To have round numbers, and appreciable difference
between the two cases, we actually chose for the nu-
merical work. :

Case (A), dp/c= 2.0;
Case (B), dp/c= 1.9.

With these parameters, the curve in Fig. 11 was ob-
tained for F(rpp) in Case (B). Case (A) gives a similar
curve, with the minimum at r/p= 1 being F(c)=0.773
Xp(~), instead of 0.647F(~) for Case (B). To in-
terpret the result, we must also consider the "ele-
mentary" quantity F& Ldefined in (4.4)$, which is
given in Fig. 12 for Case (B).It decreases monotonically
from r23 ——0 to ~. If we deine also

Tasz.E I. Three-body correlation function f.

r/c

0
0.6
1.0
1.02
1.1
1.2
1.4
1.6

0.356
0.374
0.389
0.454
0.498
0.540
0.612
0.690

rjc
1.8
2.0
2.2
2.4
2.8
3.6
4.4

0.776
0.8/3
0.930
0.963
0.986
0.996
1.000

6. SYMMETRY CONSIDERATIONS

We must now consider the exchange terms and the
nucleon spin. In third order, this has been done by
Rajaraman, "who found a surprisingly simple result:
The interaction between the excited particle, b in Fig.
10, and the sea nucleon e is obtained by counting only
the interaction in even angular momentum states, but
with statistical weight 1 (rather than the customary 4).

We shall generalize this result to the interaction of
three particles in arbitrary order of perturbation theory,
making the same assumptions as Rajaraman, viz. , (1)
the two-nucleon potential does not depend on spin, and
(2) he«1. As in the rest of this paper, we shall use
open diagrams, cf. Fig. 13.

lation, such as that of Razavy, ' and then correct it by
the ratio

f(~) =F(~)/P (~), (5 9)

rather than calculate only the bubble diagram (Fig.
10) and then correct it by the factor

fp(~) =F(~)/F p(~) . (5.10)

Representative values of the function f for Case (B)
are listed in Table I. It is seen that for r=0, f(r) is
actually about p, which was the estimate (4.10) of the
ratio PC —4"&]/Lg(r~p)+g(r~p)] for small r It is .reason-
able that f(0) is somewhat larger than p, because
larger r~p contribute to the integral (5.1). The sharp
rise of f for r/c)1 may be noted. For r=d=2. 2c, f is
within a few percent of its asymptotic value, 1. The
increase of f with r is monotonic, while fp (see Fig. 11)
has a minimum at r=c and overshoots its asymptotic
value for r=d.

I.OO

FI
.80

.60—

.40—

.20—
FIG. 13. Interaction of the three par-

ticles. A is the terminal interaction.

FIG. 12. The function E1(r23) giving the correlation in the
third (i,e., the lowest nonvanishing) order.
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k„c«1, k c«1, tt Ec&&1. (6.1)

Since by assumption the potential does not depend
on spin, we may assign a de6nite spin (up or down)
and isospin (proton or neutron) to each of the three
nucleon lines, and retain spin and isospin for the
entire length of each line.

It is well known that the symmetry of the wave func-
tion does not need to be taken into account in inter-
mediate states, because an integral is to be taken over
u// intermediate momenta at each level. The symmetry
of thc 6nal State Inust bc taken into Recount, slncc
there are three particles, six permutations are involved.
Once this symmetry has been properly considered, we

may usc Rn ordlQRI'y ploduct wave function& unsylIl
mctrized, for the initial state. The initial states of the
three interacting particles are then de6nite and are
denoted /, m, I for particles 1, 2, 3, in Fig. 13. The
final state may then be any of the permutations of
l, m, e, and the respective diagrams enter with plus
sign for even and with minus sign for odd permutations.

Let Us assume, generally, that particles 1 and 2 are
the 6rst pair to interact. Let us further assume for the
moment that at least one of these returns at the end
to its initial state (this will be amended later). Now the
final state of particle 3 can be e, l, or m. The first of
these is always possible, but the final state f (or m) is
only permitted, if state I has the same spin and isospin
as 1 (or m), because particle 3 retains its spin, and iso-

spin along its whole line. Assuming the spins and iso-
spins of / and m to be given (they may be equal or
different), and letting the spin-isospin of n take all four
possible values, we get four direct diagrams (final state
of particle 3 is n) and two exchange diagrams (final
state, E or m).

Now consider the interaction which brings particle 3
into its final state; we call this the terminal interaction
Rnd denote it by A in Fig, I3. It may, in fact, be the
last interaction in the ladder of Fig. 13, or it may be
the next-to-last; this does not matter for the following.
(The "terminal" interaction may be followed by one
interaction of nucleons 1 and 2, but only by one, be-
cause a given pair cannot interact twice in succession. )
Now assume that in the terminal interaction, particle 3
interacts with 2. The 6nal state of particle 3 may still
be e, m, or /; we shall call these "cases n, m, and /. "All

three possibilities are compatible with our assumption
that at least one of the two particles 1 or 2 returns to
its initial state: The final states of the three particles
(1,2,3) are, respectively, (l,m, n), (l,n,m), and (n, m, l),
for the three cases,

Preceding the terminal interaction, particles 2 and 3
will be in some states of high momentum ki„k. (Fig.
13). The matrix element of the terminal interaction
will be nearly the same, in the three cases n, m, and l,
because the momenta of the states e, m, and l are
rather small, in the sense

If we then compare three diagrams, identical in the
intermediate momenta, but leading to the three 6nal
states /, m, and I for particle 3, they will give essentially
the same result. But cases l and m carry a negative
sign, because one exchange has taken place from initial
to 6nal state, while case e carries a positive sign. Now
we have shown that, if wc sum over all spins and iso-
spins of state e, there are four direct diagrams, leading
to state e, and two exchange diagrams, leading to
states l and m. Since all these diagrams give nearly the
same result except for sign, the result is equivalent to
just two direct diagrams. Thus exchange simply has
the CGect of multiplying the 6nal answer by one-half.
Evidently, this result is R direct consequence of the
existence of four states of spin and isospin. If there were
e states, exchange would reduce the direct diagram by
a factor 1—2/n.

There is an interesting corollary of our result, if we
now 6x the isospin (but not the spin) of state n. If
states l and m are both proton. states, then the inter-
action with a eeltroe state e is not reduced by exchange;
but if e is a proton state, the entire interaction is can-
celed by exchange. Similarly, if l and m are both
neutron states, the interaction with e exists only if e is
a proton. If one of the states l and m is a neutron and
the other a proton, then the interaction with state e
is reduced to one-half, whether e is a neutron or a
proton. All these results are compatible with the inter-
pretation that the potential on an excited proton state
(k) ki) arises only from its interaction with the neu-
trons in the Fermi sea and vice versa. This result is
particularly useful when the number of neutrons and
protons is diGerent, as in real, heavy nuclei.

The cancellation of direct and exchange terms is,
of course, not exact. For a specific set of intermediate
momenta, the difference will be of order ~k„—k ~c,
assuming that the important interactions are of range c.
This assumption ls just16ed because, at least for high
intermediate momenta, the most important forces are
the repulsive core and the strong attraction immedi-
ately outside it (see Secs. 3—5). If we average over all
directions of the momentum k„Fig. 13, the 6rst-order
term in k„—k„will cancel, and the remaining effect
will be of the order

fk —k f'c'. (6 2)

exchange/direct= 1—0.15(Are)'. (6.3)

Probably the exchange term is always less than the
direct onc. The difference, direct minus cxchRngc thcIl
has the same sign as the direct term, and is a fcw per-

That this ls actually so wRs showrl ln thc pRrtlculRI'
case of third order, by Rajaraman" in the calculation
leading to his Eq. (12). He also shows that the codE-
cient of (6.2) is quite small, —,'0 to 6, arising from power
scllcs cxpRnslons of slnx oI' eosx~ Rnd lt 18 cRslly sccIl
that this result should be general. He 6nds in Eq. (12)
that
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changed. Assuming that the final states of particles 2
and 3 are m, e, we may take, e.g. ,

8 c

B'
ks'- ks+m —n,
k,'= k.-m+ n.

(6.6)

cent of the latter, for reasonable values of ksc (0.5 to
0.7). A detailed investigation of 'this point will be
necessary.

So far we have assumed that at least one of the 6rst
two nucleons has a 6nal state equal to its initial one.
To each such final state, there is another obtained by
exchange of 6nal nucleon states l and m, provided their
spins and isospins are equal. In this case, then, the
final spatial wave function of the two nucleons must be
taken antisymmetric, i.e., it will contain only odd L.
Then also, in the initial state, by symmetry, only odd L
need be considered. If the spin or isospin of states l and
m differ, both even and odd L contribute. This argu-
ment leads to the well-known result (BBP Sec. 5) that,
for the interaction of l and m, we should take

(3/4) (even L)+ (5/4) (odd L) . (6.4)

This is the same as for their first-order interaction. The
odd-L contribution is, of course, small, especially if we
consider only central forces which are quite small in
odd states.

VVe may now sum all diagrams belonging to a given
order of perturbation theory. For this purpose, consider
an arbitrary diagram D LFig. 14(a)], and within this
diagram consider an interaction A between particles 2
and 3 corresponding to the transition LFig. 14(a)]

k, kg~ k„kg. (6.5)

Then there exists always another diagram D', in which
all the interactions of particles 2 and 3 subsequent to
the interaction A are interchanged; i.e., if nucleon 2
interacts with 1 at a certain level B in diagram D, then
3 interacts with 1 at the same level in D', and vice
versa LFig. 14(b)].Diagram D' is distinct from D, and
if it ends up with the same 6nal state, i.e., the same
permutation of /, m, e, it will have the same sign as
14(a). In order to have in D' the same sequence of
interactions as in D but interchanged, we should ap-
proximately interchange the momenta (6.5) after inter-
action A—approximately only, because in the peal
state, the momenta of particles 2 and 3 should be the
same in Fig. 14(b) as in 14(a), they should not be inter-

a A' b

t
l

l I

(a) (b)

Fro. 14. Two diagrams, identical below the interaction A, but
with the roles of particles 2 and 3 interchanged above this inter-
action. Both diagrams, (a) and (b), lead to the same final state.

Since
~
k —k„i c&&1, the Gnal state in A' is obtained

from that in A almost by spatial exchange of the two
particles. Note that spins are not exchanged, and the
spins and isospins of particles 2 and 3 need not be the
same. The contributions of Figs. 14(a) and (b) must be
added; this can be done approximately by adding the
matrix elements for A and A', which gives

(direct interaction A)+ (exchange interaction. A')

=P(even L+odd L)+P(even L—odd L)
=2X (interaction in even L, states only). (6.7)

This is the contribution from the two diagrams, Figs.
14(a) and (b). It is most convenient to say that each
diagram gives simply

1 X (contribution from even L states only) . (6.8)

This may be used in conjunction with our theory of
Secs. 3 to 5. It is clear that addition of interactions like
A and A' at el/ levels will give all diagrams of the given
order.

If we have attractive Serber forces, these act anyway
only in even L states, and for these states they given the
same result as an ordinary force. Of the repulsive core,
only the even-L part contributes. This is in agreement
with the assumption of Brueckner and Gammel, '4 but
it is in contrast to BBP who emphasized in their Sec. 8
that the odd-L part of the repulsive core is important.
The statistical weight of the even states is 1 in our
theory, not 4 as in BBP Fig. 10, so that our core con-
tribution is 43 times that of "even L only" in that 6gure.

Our result was previously obtained, for the third order
of perturbation theory by Rajaraman" and used by
Razavy. ' In Rajaraman's paper, the diagrams corre-
sponding to Figs. 14(a) and (b) are the bubble diagram
(our Fig. 10) and the ring diagram (our Fig. 7). In
both of these, as in Figs. 14(a) and. (b), there is no
restriction on the spins of the interacting particles. In
the bubble interaction, nucleons 2 and 3 retain their
momenta, b and e, respectively. In the middle inter-
action of the ring diagram, they approximately ex-
change it, viz. , b —+ m and e —+ c.

The bubble and the ring diagram are distinct dia-
grams, and if we neglect exchange (which has already
been taken into account), they are the only such dia-
grams in third order. This is in agreement with the
fact, stated in Sec. 4, that there are 2" ' distinct dia-
grams in eth order. Each of these two diagrams may be
considered to give a contribution (6.8). But we must
still consider the factor 2 from the exchange of particle

~K. A. Brueckner and J. L. Gammel, Phys. Rev. 109, 1023
(1958).
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3 in the final state (see above). Thus we find that, in
third order, the two diagrams together give just the
contribution (6.8) which is Rajaraman's result.

Wc must emphasize once more that our simple re-
sults depend on two iInpox'tant assumptions viz. :

(1) The nuclear forces do not depend on spin or
isospin, which IIlcans chax'gc 1ndepcndencc Dlust bc
ful61led, and the forces must be the same in triplet and
singlet states. In particular, tensor and spin-orbit
forces are neglected.

(2) The Fermi momentum and the range of the
important interactions are both small, i.e., k~c&(1.

'L ESTIMATE OF THE THREE-BODY CONTRIBUTION

Using (4.3), (4.5), and (4.6), the three-body con-
tribution to the energy may be written

g(rss) &i (rss)f(rss) drss.

In third order, i.e., when only the "bubble" and ring
diagrams of Figs. 10 and 7 are included, 8" is re-
placed by

is just that from the states of even I. which is given in
BBP Eq. (8.4), except that (8.4) should be multiplied
by —", Lsee the paragraph below our Eq. (6.8)7.

Since the third-order contribution is only separated
into a core and an outer part, we should use in (7.1)
an average of f(r) over the core, and then an average
over the outside. The former is easy to take, since f
does not change very much. In fact, more than half of
the core contribution comes from the surface and should
thus be multiplied by f(c); the rest is a straight average
over the volume. The over-aO average is about 0.384.
For the outside f changes from 0.39 to 1, so that the
average is more dificult to take. We need to know the
weight factor as a function of r. We use the erst modified
Born approximation of BBP, Sec. 5. According to their
(5.36), the first approximation to the radial wave
functloIl 1S

(7.3)

(for notation see BBP).We insert this into BBP (5.35)
and make the approximation

XJ./gr, ——(c/r) e (7 4)

This is correct for 1.=0 and ko ——0; we assume it for all
I. and general ko. We take the statistical weight

g (rss)Fi(rss)ifrss (7.2) v(L,S)=1, if L is even

=0, if I. is odd,
(7.5)

Thus gFi(r) represents the interaction at distance r in.

third order, and this is multiplied by f(r) when the
complete three-body interaction is taken into account.

We have shown in Sec. 6 that the proper way to
treat the third order is that of Rajaraman, " i.e., to
consider both bubble and ring diagram and the associ-
ated exchange diagrams Only in this way do the higher
orders join smoothly to the third; this would not be the
case if wc used only the bubble diagram in third order.
Now g (r)Fi(r) is just the third-order interaction includ-

ing both bubble and ring; therefore, f(r) is the correct
factor to go from third order to the complete
interaction.

The only calculation to third order which follows the
prescription of Rajaraman, '4 is that of Razavy. 2 He
used the potential of Hamada and Johnston, with a
repulsive core c=0.49 F, and found a separation pa-
rameter d2 varying with relative momentum ko from
1.08 to 1.20 F (for the '5 state, Razavy's Table I).
This corresponds reasonably well to Case (B) of Sec. 5,
i.e., d / s2c.2 (2.3 would have been better). From our
Table I we see that f varies from 0.355 to 0.389 in the
core, and then rapidly increases to 1.

Razavy's calculations do not explicitly give g(r)Fi(r)
and thus cannot be used directly in (7.1). He, as well

as other authors, ' " give instead the potential energy
of particle states (k&kv). BBP" separate this energy
into the contribution from the core (volume and surface
term) and from the outer potential. The same separa-
tion can be made for Razavy, since his core contribution

in accord with our Sec. 6. Then we can sum over I.,
using BBP (5.30). Then BBP (5.35) becomes

with

(7.6)

(f(r)). . -s- v.r.=0 86

(f(r))av, core
(7.8)

The other difference between our treatment until now
and that of Razavy is that we calculate the total energy.
due to three-body correlations, while he evaluates the
potential energy of "particle" states, i.e., states k~ out-
side the Fermi sca. Since the interaction of a particle
k~ with the states e in the Fermi sca does not depend
much on the momentum of the latter, we may write
for the potential energy

U(ks) =pG(ks), (7.9)

g(r)Fi(r) =s(r) $1+ (sin2ksr/2kor) 7
&&9—(c/r) c-"-'7' (7 7)

This is then used to get the ratio f, of (7.1) to (7.2).
It is interesting that gF ~ is not large for r slightly greater
than c, due to the last factor in (7.7); this is true, in
spite of the fact that n(r) is very large there. Therefore,
the "weight" gI'~ is mostly at larger r, and the average
of f over the attractive force is nearly 1. Explicit calcu-
lation by T. Dahlblom gave
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where G(ko) is the interaction of ko with an average
state m in the sea. The latter may then be written

G(ko) = g(ko, r,o)droo, (7.10)

where we have put in evidence the fact that g depends
on k~, while in our Sec. 3 we assumed k~=4 F ' and
therefore simply wrote g(roo). Otherwise, (7.10) differs
from (7.2) only by the absence of the factor Fi which,
by (4.4), is related to ii(ri&). Now the probability for a
particle 2 to get into the intermediate state of mo-
mentum kq is proportional to the square of the Fourier
transform of g,

Therefore

and we 6nd, using (7.9) and (7.10),

(kol1 —&I~)'Uo(ko)d'»- g(ko av, ~os)Podroo (7~ 13)

This calculation corresponds to taking into account
only the bubble diagram, hence the subscript b (bubble)
on U. The left-hand side of (7.13) corresponds to the
procedure of Razavy and other earlier work, the right-
hand side to our calculation. The left-hand side is the
first-order contribution of the potential energy of par-
ticle states k& to the energy of the whole nucleus; it is
suf6cient to use the 6rst order, because the total con-
tribution from three-body correlations wi11 turn out to
be small, and hence its square can be neglected. I.Of
course, (7.13) is also the third-order Goldstone con-
tribution to the nuclear energy. ) If the ring diagram
is included, (7.13) should be replaced by

m)'U(ko)d'ko g(ko „,roo)Fidroo, (7.14)

where U denotes the total potential energy of state k~

(bubble plus ring diagram), which is the quantity
calculated by Razavy.

We have thus established the equivalence of the
Razavy procedure and ours. His gives more informa-
tion because it also gives the potential energy of
particle states. Although this quantity has no clear
physical significance and is only a calculational device,
it is still useful for a picture of the physical situation,
and for comparison with earlier work. Moreover, if the
energy W in (7.1), and U(ko) in (7.9), turn out not to
be small in some problem, it is probably somewhat
more accurate to use U(ko) in the standard way by
considering it as part of the energy E(ko) of the particle

TAsx,z II. Potential energy of particle states,
in MeV (k~=1.s F-i).

i. kf, (F-&)
2. Razavy core
3. Razavy outer
4. Razavy total
5. New total
6. Reference approx.
7. Wong
8. Srueckner and

Masterson

0 2
91 101—91 —101
0 0—48—33.5—30

43

3
119—91
28—32.5—30.5—29—22

135—91
46—26—26.5—27.5—7.5

5
145—91
54—22.5—21—25.5
0

6
154—91
63—19—14.5—23
0

state kq. This takes into account some of the inter-
actions of more than three particles, cf. Sec. 9.

Therefore we take Razavy's particle energies and
correct them, according to (7.8), as follows:

U =0.384UR «re+0.86UR on)or, (7.15)

where the subscript E stands for Razavy. As already
mentioned, the core contribution is calculated as 4

times BBP Eq. (8.4), with

ki ——1.3 F ', c=0.49 F, kFc=0 637.. (7.16)

(kg=1.3 is chosen, rather than 1.36, because Razavy
gives explicit results for 1.3.) To find the outer con-
tribution, we took Razavy's value for the total po-
tential at k=4 F ', ki =1.3, which is +49 MeV. Since
Ug «„(k=4 F ') = 140 MeV (with Razavy's value m*
=0.90), it follows that UR,„„,———91 MeV at this
value of k. Now it is reasonable to assume that Uogteg is
nearly independent of k; this is true in BBP Table II
to within 3 MeV for k)3 F '. Then the momentum
dependence of Razavy's potential is entirely due to the
core, and this can be shown to give m*=0.93, slightly
higher than Razavy's value of 0.90.With this, we obtain
the results in Table II. (The outer contribution for
k=2 F-' was estimated to be 10 MeV larger than for
k=4 F ', in analogy with BBP Table II. For k=0, we
have inserted the usual UR,„i„———91, for future use. )

The "Razavy total" does not agree with Razavy's
own figures because (1) we find a slightly different
effective mass no*, and (2) Razavy assumed a quadratic
dependence of U on k', while we take the outer contribu-
tion constant. In any case, the Razavy total is positive
(repulsive). Our new calculation, using (7.15), gives a
negative (attractive) potential ("new total" ) through-
out. The last line in Table II gives a potential energy
which is derived from that of Brueckner and Masterson
(BM). These authors give U(k) for ro ——1.00 F, which
means k~ ——1.524 F—'. To And U for our case, we assume
that it is proportional to the density, i.e., that the
average G is independent of p, cf. (7.9). This is exactly
true for the first modified Born approximation (MBA)
(see Ref. 13, p. 238) for the outer (attractive) potential
and approximately for the higher MBA's which anyway
give a small contribution (BBP Table II). The core
contribution to G, BBP Eq. (8.4), depends on ko ——oak&

and on y; the former is independent of p, the latter,



H. A. BETHE

according to (3.10), has two terms, of which the larger
is again 3kss and the smaller (10-20% of the total) ls

proportional to k&', only this last term depends on
density. Hence it should be a good approximation to
assume that U(k) for particle states is proportional to p,.
we shall assume this for BM, for our new total, and
later (Sec. 8) for the Wong potential; for hole states
this approximation is not good, because the MBA does
not converge well.

Table II shows that our new total is lower than the
BM potential energy, by amounts varying from 5 to
over 20 MeV. This is in contrast to the old "Razavy
total, " which was higher than BM by about 50 MeV.
The e6ect of U on the nuclear binding energy is mainly
due to the "dispersion effect" of the Moszkowski-Scott
theory, which gives [see BBP Eq. (A14) and Eq. (8.4)
of this paper)

Ev=-,sLU(k')..—UjP IPI,d7. (7.17)

~*=0.97. (7.21)

This is remarkably close to unity, in spite of the large
core size c=0.49 F. This is due (1) to the reduction of
the core effect by the factor f=0 384, .Eq. (7.15), (2) to
the elimination of the intera, ction in states of odd I.,
cf. BBP Scc. 8 and Fig. 10, and (3) to the generally
smaller third-order interaction due to Rajaraman's
prescription, cf. Sec. 6 of this paper.

The constant 6 of BBP Eq. (7.3) may best be de-
6ned by

reference spectrum. The best fj.t to the region from 4 =3
to 5F—'is

UII = —36+0.6k'. (7.20)

Line 6 in Table II gives the reference potential energy
calculated from (7.20); the agreement with the "new
total" potential (line 5) is fair. The coefIIcient of k' is
very small and corresponds to an effective mass

U, (k,) U= (Ask—P/Mm*) a, (7.22)

Here U is the average potential energy of a nucleon in
the sea, U(k'), is that of an average excited state, Ii is
the reference-spectrum "wave function defect, " as in
Sec. 3, and gs ——P—IPs is the corresponding defect for
two free nucleons interacting only by their short-range
forces. We make the approximation qo

——q and take for
U(k') the average over the region k'=3 to 5 F ', which
is the most important intermediate momentum range
for the short-range forces, cf. (3.12). Then, changing
U(k ) fl'01n ollc theory 'to aIlotllcl' glvcs a cllaIlgc of
binding energy:

hE= sAU(k')P IPd-r (7.18)

The change from BM to "new Razavy" is AU= —18
MeV, on the average, for kg=1.3 F '. The value of
J'qsdr for the Breit potential has been calculated by
Wong and is 0.87 F', Eq. (8.2). For kp ——13 F—' we
have rs 1.17 F, p=0.148 F —'—and (7.18) becomes

hE= —1.74 MeV (rs ——1.17 F) . (7.19)

According to our discussion, U is about proportional to
the density, hence DE to p'. At ra= j..28 F, the minimum
of the BM energy curve for the Breit potential, we have
then hE= —1.0j. MeV. The BM binding energy for
this ro is thus increased from 8.3 to 93 MeV. The actual
binding energy will be slightly greater, perhaps 9.5
MeV.

This is in contrast to the theory of Brown, Schappert,
and Wong. ' They used the potential U of BBP, which
is essentially that of Razavy, so that hU=+50 MeV,
according to Table II. Then hZ=+5 MCV for rs
=1.17 F and +3 MeV for re=1.28F, which are the
results of Brown et c/. As they point out, the binding
energy is reduced to about 5 MeV or less.

We return to a discussion of our new particle-state
potential, Table II. We may 6t this potential by a

—35.3+28
+0.60 ms=0.535. (7.24)

This is substantially lower than the value 6=0.75
obtained by BBP from their Eq. (8.24). This is to be
expected, because the potential energy of particle states
has been very much lowered. The value (7.24) of 6 is
just sufhcient to make p' for hole states always positive;
according to BBP (7.7),

~„'=2k,'~—k,'&k, '(2S—1). (7.25)

Since m~= j., we may, approximately, replace the
potential energy for particle states by a constant. Since
k=4 F ' is the most important momentum, we choose
the value of U for this momentum: This is —26 MeV,
according to Table II.

This approximation, U(k) =const for k) ks, is about
as simple as the assumption U(k) =0, which has often
been used. Martin and de Dominicis'6 used it in their

"V.Weisskopf, Nuel. Phys. 3, 423 (1957).
3'P. C. Martin, and C. de Dominicis, Phys. Rev. 105, 1417

41957).

where k, =(0.6)Ilsks ——1.05F ' is the average Ino-
mentum of a nucleon in the Fermi sea. V is the actual
average potential energy. For the equilibrium density,
kg ——1.36 F-', this can be obtained from Keisskopf's
argument's (7=average kinetic energy, 8=binding
energy):

i+-', U= 8, —
8=16 MeV,

7=0.3k'kg'M '= 23.0 MeV

U= —78 MeV.

We assume that 8 is not very diBerent for kp ——1.30 F '.
The reference energy for k, is Ug= —35.3 MeV. With
m*=0.97 this gives
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early work chieQy for reasons of simplicity. Puff3' and
Mohling" made the same assumption because it fitted
into their quite different formalism. The only added
problem in our theory is that the value of U has to be
calculated for one representative k, let us say 4 F ',
but this is very easy because modified Born approxima-
tion converges well.

The hole states, of course, have their usual potential
energy. As Brueckner and Goldman' first made plaus-
ible, and BBP proved, the potential energy of the hole
states is obtained as a sum over the appropriate G
matrices oe the energy shell. This means that the inter-
action of two hole states is taken without regard to
any possible third hole state which may interact with
one of the first two; the potential energy of holes is a
true two-body interaction, like the main part of the
potential energy of the entire nucleus. No third particle
needs to be close, therefore the interaction is not cut
down by the factor f(rss), Eq. (4.6), which comes from
the proximity of the third particle to the first two. Thus
the fact that the hole interaction must be calculated on
the energy shell makes a difference in principle, and is
not merely a matter of convenience.

The fact that the potential energy of hole states is
not cut down by a large factor" is essential (1) in order
to provide stability of the calculation by means of the
self-consistency requirement which has often been em-
phasized by Brueckner and co-workers; (2) to obtain
a gap between hole and particle single-particle energies,
which prevents formal difhculties from spurious BCS
phenomena4'; and (3) to obtain saturation of nuclear
forces.

8. SOFT CORE

We have shown, after Eq. (7.19), that the binding
energy in the Breit potential is about 9.5 MeV, still
short of the observed 16 MeV. To obtain a larger bind-
ing energy, it seems necessary to change the nucleon-
nucleon interaction. The most promising modification
is the reduction of the influence of the repulsive core,
suggested by Kong. 4 4' He replaces Breit's hard core of
@=0.51 F by a softer core, of Vukawa shape. In par-
ticular, Kong has considered a combination of three

R. D. Pu6, Ann. Phys. (N.Y.) D, 317 (1961).'F. Mohling, Phys. Rev. 122, 1043, 1062 (1961); 124, 583
(1961);128, 1365 (1962}.

~ K. A. Brueckner and D. T. Goldman, Phys. Rev. 117, 207
(1960).' The potential may be cut down by a factor z(k) representing
the probability that the state k&kz is actually occupied which is
about 0.85 for, if Wong's soft core is used, 0.94, Eq. (8.1)j.This
factor appears in the shell-model potential for Gnite nuclei, ac-
cording to Brandow, Ref. 15. Whether it should also be used in
nuclear matter is not clear to me, but Brandow has shown that
it does not make any appreciable difference for the total binding
energy of nuclear matter whether the factor is used or not because
there are compensations. In any case, the factor is not very
different from one, unlike the factor of 0.37 in the three-body
interaction."J. S. Bell and E. J. Squires, Advan. Phys. I, 211 (1961).

4' C. W. Woug, Nucl. Phys. (to be published).

Vukawa potentials, that of longest range being simply
the one-pion-exchange potential, another attractive one
of intermediate range representing the exchange of two
pions between the nucleons, and a short-range repulsive
Yukawa potential assumed to represent the exchange of
vector mesons, ' chiefly ~. The reciprocal range of the
repulsive term was chosen to be 5 F ', in rough accord
with the + mass. The strength of this potential, and
both strength and range of the intermediate attractive
potential, were chosen arbitrarily to fit the experimental
data. Kith these three arbitrary constants, Kong gets
a good fit to the 'S phase shifts of Moravcsik. "Now
Wong's potential greatly reduces the wave function
defect g for an average pair of nucleons. Using k~
=1.36 F ' and a relative momentum of the two nu-
cleons k0=0.55kg=0. 75 F ' Kong finds"

1—s=—p q'd7 =0.147 for Breit's potential

=0.054 for Kong's potential.

(8.1)

Here, d is the Moszkowski-Scott separation distance,
and the expression (8.1) is just the probability of finding
a nucleon temporarily in a state k&k& rather than in
the Fermi sea, due to short-range forces. This proba-
bility is thus now only about 6%, or the effective
occupation number" a=0.94. The "effective volume"
of the "wound" in the wave function" is

ti'd7 =0 87 F' .(Breit)

=0.32 F' (Wong) .

(8.2)

43 M. J. Moravcsik, The 1"wo-XucleorI, leteractiorI, (Clarendon
Press, Oxford, 1963).

44 We use an average of Wong's potentials F'»2 and Y„„~.The
relevant constants are given in his Table V. His D is our 1—z, our
AE& is twice his because he considers only the effect of the 'S
state, while we assume that of the 'S state to be equally large.

4' Actually, to calculate z we should also take into account the
tensor forces which also raise particles from the Fermi sea to
states above it. The correct z is probably &0.9."M. A. Preston and R. K. Bhaduri, Phys. Letters 6, 193 (1963),
have already suggested that the size of the "wound" determines
the saturation properties of the potential.

4'This is evident from detailed curves sent to me kindly by
Professor Breit.

(These values are appreciably less than those at kp=0
because the relative momentum of the two nucleons
was taken to be 0.55k p= 0.75 F '.)

The reduction of the size of the "wound, " according
to Wong, 4' is only to a small extent due to the use of a
Vukawa core instead of a hard core. The main effect
is due to a reduction of the effective radius of the core.
Breit's original' potential fits the observed 'S phase
shift quite well up to about 200 MeV but gives too much
repulsion4' 4' at 300 and especially at 400 MeV. Since
these energies are important for the determination o,
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~i———1.45 MeV/particle (8.3)

for k~=1.36F ', meaning that Wong's long-range
forces are slightly more attractive than Breit's. To
calculate the effect for other values of kg, we assumed
that hE& is proportional to the nuclear density, which
should be a good approximation. The dispersion effect
of MS is given by

E,=-', X2LU(k. ')—Ujp rPdr, (8 4)

where U(k, ') is the potential energy for an average
excited state (let us say k'=4 F—') and U the average
potential energy in the Fermi sea. The factor 2 in (8.4)
comes from the excitation of two nucleons, while 8 is
the sum of the statistical weights of the '5 and 'S
states, it being assumed arbitrarily that their p's are
equal.

To compare the Breit and the Wong potential, we
must calculate (8.4) for both of them. The integral has
already been given in (8.2). Because the integral is
larger for the BM calculation, we must know the factor
U(k, ') —U more accurately in this case. In agreement
with the discussion in Sec. 7, we take

U(k,~')sM = —(8.S MeV) (1.17/ro)'. (8.5)

To calculate U, we used the 6rst Eq. (7.22). For con-
sistency, 8 should be that binding energy (B.E.)
which results from the calculations, not the observed
B.E. This binding energy was read from the curves
and tables of BM; it is, of course, a function of ro. The
kinetic energy T(ro) was directly calculated.

U(k, ') for the Wong potential was estimated crudely
as follows: First, an eGective core radius for the Kong
potential was estimated. For this purpose, we calcu-
lated Jg'dr with the 'simple expression (S.2) for g and

the core radius c, a smaller core radius, about c=0.45 F,
will improve the Qt. The Moravcsik4' phase shifts are
generally more attractive than those of Breit's group.
The soft Vukawa core has the advantage of giving
relatively less repulsion at higher energy than the hard
core, in agreement with observation.

We can now calculate how BM's nuclear matter bind-
ing energy must be modified if we change the nucleon-
nucleon interaction from Breit's hard core to Kong's
soft one. This is most easily done by using the
Moszkowski-Scott (MS) method. According to this,
the two main contributions to the energy are (1) the
effect of the long-range potential (r)d), which may
be calculated in Born approximation, and (2) the
"dispersion effect" due to the short-range forces, r(d
(d=separation distance). (The other MS terms are
small enough so that we may assume that they are
unchanged by the change of the interaction. ) Wong
has calculated the Born integral for the long-range
forces, taking into account only the S states, and Qnds44

4m 4m

v),2dr = c—[d'+dc+3c' j+ (d—c)' (8.6)
15 105

(s for simplified). For Breit's potential, c=0.51, d= 1.10,
J'g,2dr= 1.11. Comparing with Wong's result (8.2),

g'dr = 1.28 . (8 7)

U" (Wong) =—31+0.22k'.

This corresponds to an eGective mass

~*=0.990.

(8.9)

(8.10)

This reference spectrum fits U(k) of Line 7, Table II,
within i~ MeV for all k. The dependence of (8.9) on k
can now safely be neglected, and the potential energy
of excited states replaced by its value for k =4 F ', viz. ,—27.5 MeV. As in Sec. 7, we assume that U is propor-
tional to density, so that

U(k, ') wo„s= —27.5(1.17/ro)'. (8.11)

Table III gives the steps in the calculation of the
binding energy. The values of ro were chosen to make it
easy to read BM's binding energy from their table and
figure (second line of Table III). The average potential
energy in the Fermi sea, U, changes slowly with ro,. it
is given for the BM calculation in the third line, and
for the Wong potential in the fourth (the latter can
only be obtained after the binding energy is calculated,
so an iteration is necessary but easy). The average

Assuming the same ratio to hold for the Wong potential,
we find Jg,'dr= 0. 41 for this potential. Wong gives
d= 1.06 F for his potential, then (8.6) gives c=0.23 F.
This seemed unreasonably small, so we chose arbitrarily
c=0.30 F. With this value and BBP Eq. (8.4), we then
calculated the full core contribution. to U(k), and found
it to be 56 MeV at k=0. We then assumed that the
total U(k=0) has the same value as for the Razavy
calculation, which happens to be zero (Table II);
therefore we assumed U,„t„=—56 MeV, for the Kong
potential. Then, similarly to (7.15), we took the three-
body interaction into account by writing

Uw„s (k) =0.384U„„,+0.90U,„i~.
The coeKcient of U,„t„was chosen larger than in
(7.15) because, due to the small size of the Wong core,
the main contribution from the outer potential comes
from larger values of r/c than for the Hamada-Johnston

(HJ) potential, hence f, is closer to one. With these
assumptions we obtained, for k~=1.3, the values of
U listed in Line 7 of Table II. For k~ ~&4 F—', these are
still lower than for the HJ potential, Line 5 of Table II.

A reference spectrum may be htted to the Kong
potential energies:
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TABLE III. Binding energy with soft core (MeV).

1 ., (F)
2. BM binding energy
3. —U (BM)
4. —U (Wong)
5. —U(k, ') (SM}
6. —U(k, ') (Wong)
7. Z, (aM)
8. Z, (Wong)
9. —AE)

10. Wong binding energy
11. E, {Wong)
12 2&./U (%)
13. 1—s (%}

1.00 1.12 1.17 1.28 1.40
0.3 6.8 8.3 7.1

59 56 52 43
79 72 69 62 52
13.6 8.5 6.5 5.0
44 22.5 20.9 16.0

7.08 4.64 3.37 2.16
2.00 1.66 1.09 0.73
2.04 1.27 0.97 0.74
7.4 11.0 11.5 9.2
2.10 1.06 0.82 0.48 0.28
5.3 2.9 2.4 1.5 1.05
7.6 5.4 4.7 3.6 2.7

r'(d'8/dres) = 250 M—eV. (8.12)

This is even larger than the 190 MeV of Brueckner and
GammeP' and disagrees badly with the empirical
value, (50 MeV, quoted by Ford and Hill."

Obviously, our estimates are extremely rough. A
completely new calculation should be made, starting
from the best two-nucleon potential, including non-
central forces, and taking into account the three-body
theory of this paper. Perhaps a recalculation of the
tensor forces will improve the agreement: Since the
energy of particle states E(k) is now lower than in the
BM and the Razavy calculation, the tensor force which
acts only in second order should be more effective.

4' K. W. Ford and D. L. Hill, Ann. Rev. Nucl. Sci. 5, 46 {1955).

potential energy for intermediate states, U(k, '), is
given for the BM calculation LLine 5, Eq. (8.5)j and
for Wong's potential LLine 6, Eq. (8.11)j. The effect
of short-range forces, (8.4), is then listed for BM
(Line 7) and for Wong (Line 8). The correction for
long-range forces, derived from (8.3), is listed in Line 9.
The Wong energy per nucleon is then the BM energy,
minus E, for BM forces, plus E, for Wong forces, plus
the correction for long-range forces. The resulting Wong
binding energy is listed in Line 10.

Since both short- and long-range corrections are
attractive, the binding energy is substantially increased.
Since both corrections increase with density, the maxi-
mum binding energy is shifted to larger density; but
the shift is small, the maximum lies now at about
r0=1.25 F instead of BM's value of 1.28F, still far
from the observed value of 1.12 F. The binding energy
itself is about 11.6 MeV, a significant improvement
over BM's value of 8.3, but still far short of the ob-
served 16 MeV.

It is somewhat surprising that the improvement over
the calculation of Sec. 7 is only 2.3 MeV at ro= 1.28 F.
Moreover, of this amount, nearly 1.0 MeV are due to the
long-range forces, Line 9. The softening of the core
therefore contributes only 1.3 MeV, after the correction
for the three-body correlations has been applied as in
Sec. 7.

The compression modulus is

Wong4' shows that the D states should give more
binding, because the "quadratic spin-orbit" potential is
reduced. Azziz and Signell" have pointed out that the
'P state gives a large repulsive contribution (7.1 MeV)
to the binding energy in Razavy's calculations, and
that the potentials of HJ and of Breit may be too
repulsive in this state. Wong suggests that also other
odd states may be less repulsive than is now believed.
It is certainly possible that an accumulation of all these
corrections may bring about agreement with the ob-
served binding energy, but only a complete calculation
can show.

Finally, we want to estimate the effect of the three-
particle diagrams on the binding energy. For this pur-
pose, it is again useful to divide the nuclear force into a
short- and a long-range part. The long-range part,
being weak, can be treated by ordinary Goldstone
perturbation theory, which is known to converge very
rapidly; then the three-body effect will be given almost
completely by the third order which should be quite
small (1—2 MeV). Therefore we need only consider the
contribution of the short-range forces. We exaggerate
this contribution by taking only the repulsive core. The
contribution of the core to the particle state potential
can either be calculated from BBP (8.4), or more con-
veniently deduced from the total U(k) for the Wong
potential, Table II, Line 7, bymeans of (8.8):0.90U,„«„
= —50.4 MeV, so that the desired core contribution is

U, = U(k)+50.4=+23 MeV for rs ——1.17. (8.13)

Using (8.4), we can then calculate the contribution of
U, to the energy per particle, E„which is listed in
Line 11 of Table III. This E, may be considered as the
three-body contribution to the nuclear energy, arising
from the repulsive core. It varies strongly with ro, from
2.1 to 0.28 MeV. It is usually smaller than E, : The
two quantities are different because E, is proportional
to U(k, ')—U=U, +U,„«,(k') —U, and U,„„„—U is
usually positive but may have either sign.

E, may be compared with the two-body contribution
to the potential energy which is given by —,U. The ratio
is given in Line 12 of Table III. The ratio is generally
about one-half of 1—s, cf. (8.3) and Line 13 of Table
III; at the observed density, r0=1.12, the ratio is
2.9%. We may then expect that the four-body inter-
action will again be about 2.9% of the three-body con-
tribution, which would make it 0.03 MeV, extremely
small. This will be further discussed in Sec. 9.

If the short-range, attractive force is included with
the core, U, and E, will be reduced to about one-half,
so that the three-body short-range contribution is then
only 0.6 MeV, at the observed density. The four-body
contribution, estimated as before, is then 0.008 MeV,
totally negligible. Thus we have shown that the three-
body (and even more the four-body) diagrams are

4
¹ Azziz and P. Signell, Nucl. Phys. 59, 444 (1964)

(quoted in Ref. 42).
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FIG. 15.A higher order
bubble interaction.

F&G. 16. Main contribution to Brandow's
saturation potential.

small compared with the two-body ones. The Goldstone
expansion, if reordered in terms of the number of inter-
acting particles, thus appears to converge very rapidly.
This is very satisfactory, and shows that nuclear matter
is indeed a "low-density" system. It gives confidence
in the use of the Goldstone method, as modified in this
paper. It also encourages a new look at the problem of
liquid He', where the ratio of core radius to ro is much
larger, of order one.

9. NECESSARY IMPROVEMENTS

The theory developed here is obviously very rough.
The integral (7.1) should actually be found by numerical
calculation. Then the entire nuclear matter calculation
should be repeated.

The calculation must also be done with i and g
appropriate for a soft core. Nonvanishing momenta
must be taken for the three particles. The actual f
depends on k, so that 1—0 in (3.8) is an operator rather
than a function; the eGect of this fact must be
investigated.

We have treated spin sums very superficially. If the
forces depend on spin, and even more in the presence
of tensor forces, the three-body problem is likely to be
much more complicated.

Another question is whether we should still express
three-particle diagrams in the form of potential energies
of "particle" states. This concept was originally intro-
duced so that two or more successive interactions, as in
Fig. 15, could be conveniently treated: H the bubbles
are considered as inserts into particle lines, any number
of such inserts are simultaneously treated. However,
with our treatment of three-body interactions, particles
1, 2, and 3 get inextricably mixed up, so that we can
no longer easily consider the three-body diagrams as
inserts into one or the other particle line.

In exploring this question, we should distinguish
long- and short-range interactions. The long-range in-
teraction of particle 3 in Fig. 10 is not appreciably
affected by the higher order diagrams; in the language

of Eqs. (4.4) and (4.5), we have F(r)=Pi(r) if r)d.
Therefore, for the long-range interaction, we may use
inserts as usual. For the short-range interaction, this
is probably not legitimate, but it is better to calculate
four-body, short-range diagrams on their own merit.
However, as we pointed out at the end of Sec. 8, these
diagrams are quite unimportant (probably less than
0.1 MeV per particle). It is therefore probably a fair
approximation to treat interactions like those of Fig. 10
as inserts into particle lines, as has been customary.

Brandow" has emphasized the importance of de-
fining the potential on a particle in afrite nucleus, for
the purpose of obtaining the wave function. This is,
however, important only for the filled orbitals (hole
states), and thus presents no difficulty in our theory.
Also, the main part of Brandow's saturation potential,
Fig. 16, can still be defined and calculated, but it is
greatly diminished for Yukawa cores, because the
probability of finding a state k(k& empty is now only
6%, if we take just the short-range forces. Tensor
forces will add to this, but the total will be considerably
less than the 20% of Brandow's theory. Whether the
resulting saturation potential will be strong enough is
not clear at present.
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