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Theoretical formulas that include Gnite-nuclear-size corrections and higher-order matrix elements are
given for the analysis of Grst-forbidden beta transitions. The formulas are arranged so that the contribution
of the higher-order matrix elements can be seen clearly. Examples are given that illustrate when the higher-
order terms must be included and when they can be neglected. The procedure for determining nuclear-matrix
elements with a computer is discussed. Particular attention is given to the problem of setting limits of error.
Nuclear-matrix elements for Rb" and Rb~ are discussed. The results show that the 8;; matrix element
dominates in both transitions. The agreement with the predictions of conserved-vector-current theory is
good. Further experiments are suggested which would set better limits on the nuclear-matrix elements.

I. INTRODUCTION

HIS is the first paper in a series that will report on
a systematic analysis of the nuclear-matrix

elements of erst-forbidden beta transitions. When
matrix elements are known for many nuclei, systematic
trends should. be evid, ent which will suggest improved
nuclear models. The matrix elements are also useful to
test predictions based, on the conserved-vector-current
(CVC) theory. »Rb4sss is an interesting nucleus to study
because it has one neutron hole in the 50 shell. The
shell model predicts that the beta transition will be
dominated by the 8;;matrix element. The same predic-
tion applies to 37Rb47'4 except that in this case there are
three neutron holes and. it is less likely that the pred. ic-
tion will be correct. Since there are many nuclear-
matrix elements to be determined, it is necessary to use
as many experimental parameters in the analysis as
possible. The energy dependence of the P-y directional
correlation, the angular dependence of the P-y circular
polarization, and the shape-correction factor were used.

for the analysis reported. in this paper.
The analysis was performed on an IBM-7094

computer using formulas given by Buhring. ' These
formulas include the third-forbidden matrix elements
and corrections for the finite size of the nucleus. In
addition to the usual six matrix elements for a Grst-
forbidden transition, there are a number of higher-order
matrix elements to consider. The effect of the higher-
order matrix elements is discussed so that one can see
when these matrix elements must be included and when

they can be neglected. In his original paper Buhring
gave formulas so that the electron wave functions of
Bhalla and Rose' could be used to calculate numerical
parameters. The screening of the nuclear charge by the
atomic electrons was not included in the tables of Bhalla
and Rose. In a later paper Buhring' gives formulas for
the parameters which include the eAect of screening. He
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1 W. Biihring, Nucl. Phys. 40, 472 (1963).' C. P. Bhalla and M. E.Rose, Oak Ridge National Laboratory

Report, ',No. ORNL-3207 (unpublished).' W. Buhring, Nucl. Phys. (to be published).

also gives some numerical examples. The effect is
largest at low energy; it is greater for positrons than
electrons, and. of course it increases with the nuclear
charge. For Rb" and Rb", the correction is not large
in the energy range of the experiments. However, it
will be significant for many other isotopes. The com-
puter program was designed so that limits of errors on
the results could be given that were accurate and easy
to interpret. 'fhe predictions of the conserved-vector-
current (CVC) theory were investigated, and calcula-
tions were performed to consider the possibility of
further experiments which could set better limits on the
nuclear-matrix elements. An analysis of these isotopes
has been reported previously, 4 but precise formulas were
not used. and the meaning of the limits of error was
unclear. Furthermore the results reported here dift'er

substantially from those previously reported.

II. THEORY

The first complete presentation of the theoretical
formulas for first-forbidden transitions was given by
Morita and Morita. ' Later a valuable series of papers
by Kotani and Ross'~ arranged the formulas so that
the major characteristics of the experimental observ-
ables were easily seen. The application of these formulas
has been discussed in the preceding paper. The notation
of Kotani and Ross has been widely used, but their
formulas are not in the most convenient form to include
the e8ect of higher-order matrix elements. In a more
recent paper, Buhring' gives formulas which are both
precise and convenient. These formulas include many
more matrix elements than the six which are usually
considered for 6rst-forbidden transitions. The ad,ditional
matrix elements are of two types —those due to the
finite nuclear-size corrections and the third, -forbidden
matrix elements from the usual multipole expansion.
The most important matrix elements are listed with
their selection rules in Table I. Matrix elements which
contain (r/p) to a power of four and higher have been

4 J. Eichler and S. Wahlborn, Phys. Letters 4, 344 (1963).' M. Morita and R. S. Morita, Phys. Rev. 109, 2048 (1958).
'T. Kotani and M. Ross, Progr. Theoret. Phys. (Kyoto) 20,

643 (1958).' T. Kotani, Phys. Rev. 114, 795 (1959).
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Whenever the higher-order matrix elements are not
much larger than the first-order matrix elements,

Rr =—',aZp &0.004/MeV.

Even if the higher-order matrix elements are much
larger than the erst-order matrix elements,

Er =nZp/2d &0.025/MeV.

Only in the extreme case where e' is much larger than
~, zv, and, m' will the energy dependence be signi6cant.
In that case

Rr nZ=p/2a& 0 12/M. eV

The same arguments apply to the energy dependence of
Y. Unless measurements can be made that are an order
of magnitude more accurate than those presently
available, V and Y can be considered to be energy-
independent.

All of the matrix-element combinations used by
Buhring in his formulas for the transition probability
are listed. below. In Buhring's notation for the combina-
tions Ml, ,~„&~&, the tensor rank of the matrix elements is
given by E while k. and k„are the quantum numbers
for the electron and neutrino partial waves.

(1+a)M&&&e&= DV, —

(1+a)rr&g, &'&= ',p( +-',wa—-),w
(1+a)K&~&' =DP+2qL(u+au') —D's'(D —j)7,
(1+a)m„&'& = ',pf (x+ ;a—x'-)+ ( +--u; )a7u,

(4)

(5)

(6)

(&)

units (m&&= c=6= 1) for numerical estimates. Then

W= 1+E(MeV)/0. 511, p'= W' —1

q= 8'0—W, p= (0.00312)A~&3,

where the value of the nuclear radius p is that used by
Bhalla and Rose.' For Rb",

Wo= 2.39
&

p= 0.0135
&

D= 0.149,
u= —0.032, d =—0.162.

The notation. j and p is convenient because it shows the
energy depend. ence and serves as a reminder that these
terms are very small. The order of magnitude of g or
P for 0.5 MeV is 0.0045.

One might ask why these matrix elements have been
collected together when in principle the higher-order
matrix elements could be separated from the erst-order
matrix elements by the energy dependence which they
introduce. It can easily be seen that the energy depend-
ence of V and Y is smaU in any case and most likely
completely negligible. The most important contribution
to the energy dependence of V comes from the term
(z'a). Thus the relative change in V as a function of
energy can be estimated from the following formula:

(6V/t& W) —znZpz'
Rp=

z+ av&'+ w+ dw'

(1+a)Mgz "&= (1/%2))t 2(x+ax')+ (u+au')
+ (D 0)D (s +'3")7 (8)

(1+ea)Mzg&'& = (1/V2)PP2(x+sax') —(u+ zzau')

+ (9/5)s'D'(D —g)7 (9)

(1+a)M &z
&'& = -',%3$$(z+as')+2r'D'(D —

hazy)

-t'D'(D-(8/»@7, (10)

(1+5a)Mqq&z& = 2v3pLz+ zaz')+2r'D'(z3D+ zz j)—t'D'(lD —(8/5M)7, (11)
(1+a)m&z&'& = —,'V3g(-', p)D'(2r' —t'):, (12)

(1+-,'a) m2&
' ———',v3p(-', p)D'(2r' —t') .

The difhculties in determining the first-order matrix
elements will be considered erst. Then the contribution
due to the higher-order matrix elements will be dis-
cussed. The combination of matrix elements has been
arranged so that one can see the energy dependence
that they introduce. When there is no selection rule or
cancellation effect, M~~& ' and 3f~~~') are of order of
magnitude D and there is only a minor energy depend-
ence in M~&('&. Even though most of the other matrix
elements depend directly on p or g, they are a factor p/D
smaller than M~~&'& and K~~"'. Thus it is clear that,
when V and Y dominate the transition, it is dificult to
determine the other combinations by the additional
energy dependence that they introduce. If V and Y are
the only parameters which can be measured experi-
mentally, the individual matrix elements cannot be
determined, unless the relative order of magnitude of
the matrix elements in V and Y can be estimated
theoretically.

Next, one needs to consider what will happen to the
experimental observables if V and Y do not dominate
the transition. If only one of these combinations is
reduced, it is likely that it will still be diKcult to
determine the matrix elements. This is particularly true
if V or Y is reduced by a selection rule. In that case, the
corresponding energy-dependent combinations may
also be reduced. However, one should keep in mind
that evidence for selection rules is very important for
nuclear-model considerations even though the matrix
elements cannot be accurately determined. When one
observes that V or Y is small and the energy-dependent
terms are not present, this is a clear indication of a
selection rule.

Certainly the best situation for determining the
matrix elements occurs when V is small and there is a
cancellation in Y. Then M~~&'& is energy-dependent, and
the combinations 3fg2&'~ M2g&'& Mg2&'& and M2g&'& are
important. This situation has been observed in most
cases where it was possible to determine the nuclear-
matrix elements. When one considers the prediction of
the CVC theory, it is not surprising that a cancellation
occurs in Y. Fujita' and Kichler' have calculated the

8 J. I. Fujita, Phys. Rev. 126, 202 (1962).
9 J. Eichler, Z. Physik 171, 463 (1963).
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DV =D'v p+D[w+dw'7, (16)

DY=D'yo —D[(x+dx')+ (I+dg')], (17)

M„«)= —DV,

mii«& = ——,'Pm p,

M11&'& =DY+2guo,

m11&'& = ——',p(xp+No),

(18)

(19)

(20)

(21)

M12 "&= (1/v2) j(2xp+up), (22)

M21" = (1/v2)p(2xp —Np), (23)

M g2(') =—,'v3gsp,

M21&'& =-'vSpsp (25)

These equations were obtained by making substitutions
of the general form given in Eq. (15) and by neglecting
the third-forbidden matrix elements s', r', and t'. One

ratio of the matrix elements J'n and fir/p on the basis
of the CVC theory. With the parameters used here,
the prediction is that

D v/x= +1.2nZ+p(Wp&2. 5) (14)

where the upper sign is for P decay and the lower sign
for P+ decay. When terms of the order (Wpp) are
dropped, it is seen that

DY= (a1.2nZ)x —(a 21nZ) (x+u)

Thus if x=m, a cancellation should occur.
The contribution of the higher-order matrix elements

to V and I' has already been considered. It was shown
that it is usuall. y experimentally impossible to break up
combinations of the type (x+ax') unless x' is much

larger than x. Fortunately this is not a serious problem.
Even if the ratio (x'/x) can not be determined ac-
curately, the uncertainty is quite small ( 3% for Rb").
Thus, unless there is a theoretical reason to suspect
that the first-order matrix elements are smaller than
the corresponding higher-order matrix elements it is
certainly safe to replace these combinations by param-
eters of the following type:

po (p+ap'); wo ————(w+aw'); yp
——(y+ay'); etc. (15)

The contributions of the third, -forbid, den matrix
elements s', t', and r' are seen to be of the order

D'D =D'= 0.022.

The additional energy-dependence they introduce is
even smaller.

D'p= iDp=0.0007.

Unless the first-order matrix elements are greatly
reduced, the third, -forbidden matrix elements also
represent only a small uncertainty.

It should, now be clear that if the first-forbidden
matrix elements are not abnormally small, the combina-
tions of matrix elements can be simplified considerably.

should notice that even though xp and. Np occul in several
combinations so that they can be determined, there is
still a rather large uncertainty in determining yp. Since
d is approximately 20% for any nucleus, xp and. Np

cannot be substituted into I' in order to accurately
determine yp unless x' and I' can be estimated theoret-
ically. The same limitation applies to a determination
of ep from V.

The following formulas for the particle parameters
b~~ &"& in terms of the matrix-element combination are
those given by Biihring. ' Note that it was necessary to
change the sign of b~~. &" and b~~. ~') to be consistent
with the usual convention for circular polarization. A
few other minor changes have been made to be con-
sistent with the definition of the angular correlation
function given in Eq. (39).

bop&'& = (M»&")'+ (m»&")'
—2&&11y1(1/W)M&1&'&m11&'&, (26)

b &'&=(M &'&)'+(m &'&)'—2&«1y1(1/W)M&1«'m&1&1&

+ (M»&'&)2+F2(M21&'&)2, (27)

b22"'= (M12"')'+~2(M21&")', (28)

b «&= 2(p/W)[M— &'&M &'& —m &'&m &'&j

+242[2&12M11&"M21 "&

—&&»(1/W)M21 "m11 "]) (29)

b11&'& = —V2(p/W) [(M11&'&)'—(m11 "&)'j
—2[2&»M 11&'&M21 &'& —

AD&2 (1/W)M21&'&m11 &'&j
+(1/v2)(p/W)[(M12&'&)' —X2(M21&'&)2] (30)

b12
"&= —2+5[»12M&1&'&M21&2&—j&2(1/W)3II21 "&m11&"]

++10(p/W) [M12&'&M12&'&

+pX2M21«'M21"'$ (31)

b "'= (5/2)'"(p/W)[(M»"')'+-'~2(M»"')'j (32)

b11&'& = —243[v» (p/W)M 11&'&M21&'&

+v»n'Z'(1/W) M21 «'m&1&1'j
+ (K3/%2)X2(M21&'&)' (33)

bo2"' = —
2%2[v 12 (p/W)M 11&'&M21&'&

+ v12u'Z'(1/W)M»&'&m»&'& j, (34)

b1 &'& = —2%3[v»(p/W)M11&'&M21 "&+v12u2Z2(1/W)

XM„& &m„&»)—(6)» ~2M»& &M»& & i35)

b„&'&= —(g7/v2)X2(M21&'&)', (36)

b»&'& = —(6&3/+5)X2(p/W)M21 "&M21&'& (37)

b22&'& = —(3v2/+5)X2(p/W) (M21 ')' (38)

The numerical parameters J-p, pi, yi, X2, vi2, &i2, gi2,
and, q» are d.efined by Biihring. ' ' They are all of order
one and are only weakly dependent on Z and 8'.
Results for the parameters without screening corrections
are given in Tables B and III. The parameters yi, P~2,

and p, i were set equal to one since they only occur in
terms which are very small.
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TABLE II. Numberical values of Lp, X2, v1~, g12, g12 for Rb".

Lp 'gl2

1.077
1.166
1.280
1.414
1.562
1.720
1.886
2.059
2.236
2.416
2.600

1.247
1.043
0.977
0.948
0.934
0.927
0.923
0.921
0.920
0.920
0.921

0.919
0.922
0.925
0.928
0.930
0.932
0.933
0.935
0.936
0.937
0.939

0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0
2.2
2.4

1.023
0.967
0.950
0.943
0.940
0.939
0.939
0.939
0.940
0.940
0.942

0.983
0.984
0.984
0.985
0.986
0.987
0.988
0.989
0.990
0.992
0.994

Ro(Z, W)pWq'S(W)dW,

where the average value of S is dined as

S(W) is the shape-correction factor defined in terms of
the matrix elements, cot the matrix-element param-
eters —that is,

0.886 $(W) =&0))'Ao(W). (48)
0.889
0.893 For first-forbidden transitions, the following definition

0.898 of the Fermi integral is most consistent with the
0'900 definition for allowed transitions:
0.902
0.903 W'p

0.904 f= (S) —' (49)0.907
0.906 I

The general beta-gamma angular correlation func-
tion in terms of the particle parameters is presented in
the following formulas:

8=(W0—1) '
Ãp

$(W)dW. (50)

X(W,8$)=Ao(W)+SAi(W)P1(8)+A2(W)P2(8)
+SA, (W)P2(8),

Ao(W) =&00")+41")+&22") (4o)

The coupling constants can be removed from S by

39 setting Cv=1.0 and C~= —1.2 and using the experi-
mental value" for the vector coupling constant. Then

ft= 6150/8.

A l(W) =&01"'Gol"'+&ll"'~ll&"+&12"'&12"'

+P (1)Q il)

A2 f 11 %1 +f 02 C02 +f 12 ~12

+f22")&22"' (42) Wp

Rp(Z, W)pWq'C(W)dW, (52)g'=6150 t

The scale for the first-forbidden matrix elements is
(41) defined relative to the Fermi matrix element for

super-allowed transitions $i.e., (j'1)=%2]. Thus

A2= bio")%2")+&22")~22") (43)

where
$(W,8) = 1+0(W)P2(8),

0(W) =A2(W)/Ap(W).

(44)

The beta-gamma circular polarization correlation can
be dehned as

P„(8) are Legendre polynomials, and G)rid i")(&0,A,A)
are combinations of Racah and Clebsch-Gordan coeKi.-

cients which are dined and tabulated for some
important spin sequences (Jp~ Jl ~ J2) by Kotani. 2

The helicity factor s is +1(—1) for right- (left-) hand
circular polarization. For beta-gamma directional-cor-
relation measurements, the circular polarization of the
gamma rays is not observed, and s= 0. The directional-
correlation function it usually written in the following
fol Dl:

where C(W) is the shape-correction factor defined in
terms of the matrix-element parameters.

C(W) =1.0A0(W) =$(W)/2)2 (53)

In these formulas p, W, q and the Fermi function
Rp(Z, W) are in natural units and the half-life t is in
seconds.

There are several reasons why it seems desirable to
use the formulas presented here rather than those of
Kotani. Certainly it is easier to see the eGect of the
higher-order matrix elements. Even if the 6rst-order
matrix elements are large, the uncertainty in determin-
ing ~0 and yo is important. The particle parameters given
by Buhring include small terms which were previously

TABx,E III. Numerical values of Lp, X2, v12, g12, j1q for Rb8p.

$(W,8, +1)—E(W,8, —1)
P~(W, 8) =

X(W,8, +1)+X(W,8, —1)

A 1(W)P1(8)+A 2(W)P2(8)

A 0(W)+A 2(W)P2(8)

S'

~on
1.166Then, 1.280

P7(W, 8) = (46)
1.414

1.720
1.886

If the direction of emission and the spin of the electron
2.236

and neutrino are not observed, the transition probability 2'416
A, ls

0.4
0.6
0.8
1.0
2.5
1.4
1.6
1.8
2.0
2.2

Lp

0.963
0.963
0.962
0.961
0.960
0.960
0.958
0.957
0.956
0.955

1.272
1.066
0.997
0.970
0.956
0.949
0.947
0.946
0.947
0.948

V12

1.005
0.958
0.944
0.939
0.938
0.938
0.939
0.940
0.941
0.942

0.980
0.905
0.913
0.920
0.924
0.927
0.931
0.933
0.936
0.938

gl2

0.855
0.869
0.877
0.883
0.887
0.890
0.892
0.895
0.897
0.899

Wp

X =— Rp(Z, W)pWq'$(W)dW, (47)
x3

' R. K. Bardin, C. A. Barnes, W. A. Fowler, and P. A. Seeger,
Phys. Rev. 127, 583 (1962).
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neglected, and they contain better approximations for
the electron wave function. Since the formulas are so
complex, it is dificult to make a general statement
about how much more accurate the results are with
these improvements. The results reported. in this paper
differ substantially from the previous results' which
were obtained using Kotani's formulas, so it would
seem that the improvements are important. A final
point of comparison is that the corrected Fermi integral
fo defined by Kotani is not equal to the f defined here.
fo will be equal to f only when C(W) average is one.

When the particle parameters of Buhring are used,
it is still necessary to decide whether or not the simple
expressions LEqs. (16)-(25)] for the combinations of
matrix elements are adequate. Before the analysis is
begun, the ft value is the only guide that is available.
If the ft value is not much larger than (6150/p'), the
simple formulas will probably be satisfactory. However,
one should remember that the results of the analysis
will provide the best check on the validity of the
approximation. For example„ if (exp) turns out to be
approximately one, the contribution of x' or s' to M2~&'&

could not be significant. The inatrix element (J'ir/p)
has the expected physical size and the higher-order
matrix elements are not important. There are many
cases where the ft value is much larger than (6150/p').
The more accurate formulas given in Eqs. (4) through
(13) must be used for these isotopes. The analysis for
this type of transition will be considered in a subsequent
paper.

III. PROCEDURE FOR ANALYSIS OF
THE EXPERIMENTAL DATA

The 2 -2+ transitions considered in this paper are
considerably more dificult to analyze than the 3 -2+
transitions which have received most of the attention
in this field. Even with the simplification made in the
preceding section, there are six unknowns to consider
rather than four. It is usually not dificult to find sets of
matrix elements which fit the experimental data satis-
factorily. The difhculty comes first in ascertaining that
no important sets of matrix elements have been missed
and second in establishing meaningful limits of error
on the results. Since acceptable sets of matrix elements
are located by trial and error, the obvious procedure is
to take fine steps over a wide range for all six unknowns.
Even with a high-speed. computer, this procedure
consumes too much time. Fortunately the combination
of matrix elements presented by Buhring suggest a
procedure which reduces the time required by an order
of magnitud, e.

An examination of the formulas shows that at 8'= 8"p
the value of the directional correlation depends pri-
marily on V, F, sp and the combination (2xp —Np).
That is, when q=0,

M„&')= I' and M (') =0.
It is reasonable to assume that the contribution from

m~~&') and m~~&'& is small. Thus zp is set equal to 1.0,
0.1 or 0.01, and V and I"are stepped over the range 1.0
to 0.01. The quantity (2xp —Np) can be estimated from
the experimental value of p(Wp).

There are several reasons why this procedure saves
time in the analysis. In the initial phase of the program,
xp and. Np do not need to be considered separately, and
xp is neglected. This red, uces the number of parameters
to be stepped from six to four. Even the combination
(2xp —Np) does not need to be stepped at random, but
rather can be stepped around the value estimated for
each set (s'p, V, F'). Not only is the number of steps
reduced, but also it is possible to test the validity of the
value of V and F chosen in the initial phase of the
program. The expression for (2xp ttp)—is quadratic, so
the sets of (sp, V, F) which give an imaginary solution
can most likely be discarded. Before they are discarded,
further precautions must be taken to insure that no
valid sets are being overlooked. One source of error
occurs because p(Wp) can not be measured directly. It
is obtained by extrapolating the experimental data for
W&Wp. Also, the small terms containing no~~&'~ and
mii&'& have been neglected. Before a set (sp, V, Y) is
discard. ed, the computer tries to find a real solution to
the quadratic equation by making reasonable adjust-
ments in the uncertain parameters.

For each set of sp, V, V, and (2xp —Np), the energy
dependence of p(W) is used to estimate a starting point
around which up can be stepped. The remaining param-
eter mp is taken through very course steps since the
formulas are very insensitive to mii&'&. Each set (sp, V,~op,

F,xp, lp) which is developed in this process is used to
calculate the experimental observables, and a chi-
squared test is performed on the experimental data.
Any set of parameters which does not satisfy the desired
statistical criterion is discarded and the remaining sets
are retained for the second stage of the program.

An important point must be made concerning the
calculation of the angular dependence of the circular
polarization. These measurements are usua11y made
with integral beta-energy selection. Serious errors can
result if the circular polarization is calculated at the
average energy quoted, with the experiment. In this
program the average value of P, (0) is calculated by
numerical integration over the energy range of the
experiment.

A section has been included in the first stage of the
program to assist in the design of future experiments.
The energy dependence of P~(8,W) is calculated for
each set of matrix elements which fit the experimental
data. In this way it can be seen whether or not measure-
ments of the energy dependence of P~ would be useful
in setting better limits on the matrix elements. The
program is designed to use this type of experimental
data when it is available.

The second stage of the program is used to set limits
of error on the results. The first set of matrix elements
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Unless there is some theoretical reason to believe that
they are so restricted, it is improbable that 3f;~ is the
correct value. On the other hand, if M;& occurs in many
sets, it is likely that one of these is the real one, and
the probability function for M;~ should be large. Thus
the probability 8;I,should be proportional to the number
e of acceptable sets in which M;~ occurs, and it should
be influenced by the quality of the fit. P;I, was defined as
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FIG. 1. Rb ' beta-gamma directional-correlation parameter
as a function of beta energy.

which fit the experimental data is taken as a starting
point. Zp is held constant, and the parameters V pp,
xp, and lp are stepped in a random manner through
progressively larger ranges until no new set can be
found that fits the experimental data. If necessary, the
steps are made smaller until at least 20 values of each
matrix element are found which fit the data. Since the
steps are small, many thousands of sets are frequently
produced which 6t the experimental data. It is not
necessary to record all of these sets. Rather, one would
like to take these sets and determine the most probable
value for each matrix element and the range into which

C(WI
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et I

0.5
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FIG. 3.Rb" shape-correction factor as a function of beta energy.
The verticle scale was chosen arbitrarily.

P,I„——Lg R„]—',
m=1

E';~; is inversely proportional to the sum of the residuals
for the experimental data.

-0.3 I I I

Rb INTEGRAL CIRCULAR POLARIZATION

AS A FUNCTION OF ANGLE

where there are m' types of experimental data. The
general definition of the residual E is,
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FIG. 2. Rbs~ beta-gamma circular polarization as a function
of angle. Integral pulse-height selection was used for the beta
detector.
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each matrix element can be restricted by the experi-
mental data.

It is not dificult to determine the range of the
matrix elements. The computer simply keeps track of
the maximum and minimum values that occur for the
matrix elements. There are certainly many ways to
estimate the most probable value of the matrix elements.
The following point of view was adopted here: If the
value M;& of the matrix element 3f;occurs in only a few
sets, then 3f;~ cannot be the correct value unless all of
the other matrix elements are restricted to the values
they have in these sets. However, the experimental data
does not restrict the matrix elements to these values.

—0.25 -0,30
uo

-0.35

Fto. 4. The probability function I deaned in Eq. (49)g for the
matrix-element parameters xo and eo of Rb'. The scale on the
horizontal axis gives the ratio of the parameter to so.
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TABLE IV. Matrix-element parameters for Rb'6.

Set

2
E. BZ W.a

Sp

1.0
1.0
1.0

—0.0524—0.0524—0.06+0.012

Z00

+0.02
+0.04—0.12~0.06

—0.0107—0.0086—0.07~0.015

gp

—0.426—0.445
—0.170—0.132—0.14~0.07

Qp

—0.245—0.304—0.30&0.10

D'yp/xp

0.366
0.490

a See Ref. 4.

where there are e diferent measurements e; of the
experimental parameter $e.g. , e(W), C(W), I'~(8)j.
c; and 6; are the calculated value and the experimental
error of the parameter, respectively.

Each set of matrix elements that was retained in the
erst section of the program is considered in turn. The
set is ignored if it falls within the limits of a probability
distribution which was calculated previously. Thus if
the sets of matrix elements found in the first section are
all similar, only one probability distribution will be
calculated. Otherwise a separate probability distribution
will be developed for each distinct type of set.

While the matrix elements are being varied in the
probability calculation, the computer records the
maximum and minimum ratios for various pairs of
matrix elements. These ratios are used to test the
predictions of the CVC theory and nuclear models.
The matrix element mo is not included in the stepping
process since the theoretical parameters are very
insensitive to m~~('&. A separate section of the program
sets an upper limit on mo. In all phases of the program,
the statistical controls in the tests for agreement with
the experimental data can be varied, and restrictions on
agreement with the CVC theory can be imposed if this
is desired.

IV. RESULTS

A. Rb"

parameters V, ye, xe, and Ne (se——1.0) are shown in
Figs. 4 and 5. One can see from the probability distribu-
tions that the matrix elements which change the total
spin by 0 or 1 units are suppressed compared to the
8@ (AJ=0) matrix element.

The two sets of matrix-element parameters given in
Table IV were selected to illustrate the application of
the CVC theory to this transition. From Kq. 14 it is
seen that for Rb"

(D'y)/x =+0.323.

It should be remembered that the value of (D'y&)/xe
given in Table IV is most probably too high. If x'=x
and I'=I, then the ratio would be 16%%u~ smaller. Thus
set 1 is in good agreement with the prediction of the
CVC theory and set 2 gives a ratio which is at least
30% too large. When all of the sets of matrix elements
which were found are considered, the following limits
can be set on the ratio of (D'yp) to xe.

0.28 & (D'yp)/xp &0.58.

The uncertainty in estimating the ratios x'/x and I'/I
has been included in the lower limit. Thus it is seen
that the results are in very good agreement with the
calculation of Fujita, but it is not possible to set good
limits on the ratio.

One can see from Figs. 1 and 3 that it would. be very
dificult to improve the experimental data on, e(W) or

The experimental data used in the analysis of Rb" is
shown in Figs. 1, 2, and 3. The directional-correlation
data was obtained from the work discussed in the
preceding paper. The anisotropy for Rb" is unusually
large. The circular-polarization data combines the
results of Boehm and. Rogers" with the results given in
the preceding paper. Both experiments clearly show
that there are contributions from the Es(8) term as
well as the E,(8) term in. the polarization correlation.
The shape-correction factor was measured. by Robinson
and Langer. "Two curves are shown in each figure which
6t the experimental data equally well. The sets of
matrix-element parameters from which these curves
were calculated are given in Table IV. The results of
Kichler and YVahlborn4 are included for comparison.
Their parameters V and F' have been divided by P
so they can be compared. to the parameters used here.
The probability distributions for the matrix-element

Pn. 5. The prob-
ability function Lde-
fined in Eq. (49)g
for the matrix-ele-
ment parameters V
and yp of Rb". The
scale on the horizon-
tal axis gives the
ratio of the param-
eter to sp.

i

—0.04 0.06

"F. Boehm and J. Rogers, Nucl. Phys. 45, 392 (1963)."R. L. Robinson and L. M. Langer, Phys. Rev. 112,481 (1958).
-0.40

I-0.60
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limits on the matrix elements would b te o measure the
rgy epen ence of I'~ at an angle close to 180'.

In order to de termine the absolute magnitude f h
matrix elements and

iueo te
n s and make final conclusions about th

accurac of the re
sa ou e

standard matrix element g. The half-life of Rb" is 19
days, and the fraction of the transitions which o to t e

e results for g and log ft are:

g= 0.78+0.15, log ft= 7.94.

One should remember that th e matrix-element param-
eters and g were defined so that it is clear h si

uc o ese two quantities cannot be

i3 SNclear Data Sheets, corn iled bpi e y K. Way etal. (Printingand

Research Co cl W hin t C
ce, ational Academ of

as ington, . C., 1960), NCR 60-3-45.
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Pro. 10. Theoretical prediction for the energy dependence of the
Rb84 beta-gamma circular polarization.

There are additional complications in setting limits
on e and m. Although the experimental data is suffi-

ciently accurate to set good limits on V, it is dificult
to set limits on mo because the experimental results are
very insensitive to this parameter. Only an upper limit
on the magnitude of ws could be determined.

~
too )

&0.1.
This means that only upper limits are possible for the
matrix elements in V.

ys &0.02, &0.08.

B. Rb'4

The experimental data used in analyzing Rb" is
shown in Figs. 7, 8, and 9. The data for e(W) were
obtained from the work reported in the preceding paper,
P~(8) was measured by Boehm and Rogers, m and C(W)
was measured by Langerq Spe)ewskl~ and %ortaDl.
The experimental parameters for Rb~ are very di8erent
from those of Rbss. There is a Ps(8) contribution to
P„(8), but it is not nearly as evident as in the case of
Rbs' Also, e(W) is much smaller for Rb~ than for Rb's

Typical sets of matrix elements are shown in Table V
for two very diferent types of solutions. For Rb~,

Pro. 11.The probability function Lde6ned in Eq. (4Q)g for the
matrix-element parameters x0 and eo of Rb~. The scale on the
horizontal axis gives the ratio of the parameter to go.

Eq. (14) predicts that D'y/x= —0.256. In set 1, the
3;; matrix element dominates and there is agreement
with the CVC theory. In set 2, the matrix elements
which change the total spin by one unit arc not small
compared to Bg and the absolute magnitude of the CVC
ratio is 50% too smalL

One can see that it would be very dificult to distin-
guish experimentally between these two sets. The
angular dependence and the energy dependence of I'~
are very similar for the two sets (see Figs. 8 and 10).
It would be very dificult to measure the absolute
magnitude of the circular polarization accurately
enough to distinguish between the two sets. There is
some difference in C(W) and also e(W). It would seem
that the best way to distinguish experimentally between
the two sets would be to improve the measurement of
&(W) at the upper end of the beta spectruxn.

It should be emphasized however that for all sets of
type 2, the absolute magnitude of the ratio of J'I to
Jsr/p is at'least 50% smaller than the prediction of
Fujita. H it is assumed that this prediction is even
moderately accurate, the present experimental data
exclude solutions of type 2. Therefore, the probability
densities were calculated only for solutions of type 1.
Even though some sets of type 1 agree with the CVC
ratio, there are many others which do not. The solid

TssLE V. Matrix-element parameters for Rb'4.

Set

2
E. RK.~

1.0 +0.189
1.0 —0.295
1.0 +0.13~0.031

—0.122—0.122—0.35~0.25

+0.154—0.215
+0.19~0.037

+0.0615 —0.0269-1.44 +1.09—0.07+0.07

—0.189
+0.548—0.30+0.25

D'y0/X0

—0.282—0.161

a gee Ref

"L.M. Lsnger, E. H. Spejewski, and D. E. Wortstn, Phys. Rev. 133, 31145 (1964).
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V. DISCUSSION

The major features of the results can be understood
on the basis of simple shell-model considerations. Both
SqRb49" and 37Rb4q' have neutron and proton numbers
close to the closed-shell con6gurations at nucleon
numbers 38 and 50. The orbitals available in the 28-50
major shell are P», , f»s, Ptas, and g»s. One would exPect
that the odd proton would be in a fq~s or p»s orbital

curves shown in Pigs. 11 and 12 for the probabihty
distributions represent all of the type 1 solutions. The
dashed curves were obtained by requiring that the value
of (D y) jx be within 50% of the predicted ratio. This
restriction changes the limits on t/r and xo much more
than it does the limits on y0 and No.

For the 6nal results for Rb84, it is assumed that the
prcdiction of I ujlta ls Rccul'atc to wltlllII 50%. Tllcll

Ii=0.61+0.25, f5= 7.2,

when the half-life is 33 days and the relative probability
for a p+ transition to the first excited state is 11."/%.'s

Since the matrix elements of the Rb'4 are similar to
those of Rb", the comments given in Sec, IV A about
the accuracy of the results are also applicable here.
One should notice however that in Rb' there is no
cancellation in Y. The primary reason that the experi-
mental observables of Rb" are very diGerent from those
of Rb" is that V and F' are larger for Rb".

while the odd neutron would be in a g9~2 orbital. Only the
f»s and g»s can couple to give the 2 state. Thus one
would expect that in either a P+ or P transition the
total angular momentum must change by at least two
units, and the 8;; matrix element would dominate the
transition. The analysis shows that the 8;; matrix
element is indeed large as this picture suggests. The
presence of the 6J=0 and 6J=1 matrix elements must
be explained in terms of admixtures of other states.

Since it is impossible to have a parity change and a
total spin change of less than 2 in the 28—50 shell, the
admixture must come from adjacent major shells. It is
unlikely that the admixtures are large enough so that
the contribution of transitions between one admixed
component and another admixed component would be
significant. Thus all transitions would involve at least
one of the orbitals fsIs or g»s. Transitions could occur
between the g»s orbital and the f7~a from the 20-28 shell
or the h~~~2 from the 50—82 shell, and transitions could
occur between tile fgs olbl'tal and the d»s l»s ol g7, s

of the 50—82 shell. There are many mor e possibilities
for lU = 1 transitions than for 6J=0 transition. For the
case of Rb" where one would expect these arguments to
be strongest, the analysis shows that the AJ= 1 matrix
elements are larger than the 6J=0 matrix elements.
%ahlborn" has considered the mechanisms by which
this con6guration mixing could occur. He concludes
that the 2+ states of Sr and Kr84 cannot be understood
in terms of two-particle excitations, or in terms of a
purely collective picture. An intermediate description is
required to get agreement with the experimental results.

One would not expect that the results obtained in
this analysis would be very diferent from the results
obtained by Eichler and V4hlborn4 using the formulas
of Kotani. ' The higher order matrix elements were not
used in the present analysis except to estimate their
contribution to the limits of error. Small terms which
contain the 6rst-order matrix elements were retained,
and the electron wave functions of Bhalla and Rose
were used, but it is impossible to make a general
statement about the improvement in accuracy which
results from these steps. The results are quite similar
except for one important point. (See Tables IV and V.)
The parameter Y obtained here for Rb ' is much smaller
than that obtained by Eichler and Wahlborn. This
changes the ratio of Jato J'r so 'that the agreement
with CVC theory is much better.

The calculations of %ahlborn" concerning the con-
6guration mixing will not be aGected seriously. He
calculates the parameters x, I, and m. The two methods
of analysis are in good agreement for x and N. However,
the limits of error quoted by Kichler and Wahlborn for
m are certainly unrealistic. In both isotopes m can be
zero and in Rb 6 it can be positive, as shown in Table
IV. Wahlborn" uses the argument that zv cannot be
zero in his discussion of the con6guration mixing. Since

"S. Wahlborn, Nucl. Phys. 58, 209 (1964).
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V is not zero it is certainly unlikely that m is exactly
zero, but values of m outside the limits of error given by
Eichler and %ahlborn are in perfect agreement with
the experimental data.

A further question arises about the accuracy of the
formulas presented here compared to those of Kotani~
because solutions of type 2 in Table V were missed
completely by Eichler and Wahlborn. An analysis of
the data was performed using the procedure discussed
in Sec. III and the formulas of Kotani. ~ Solutions of
type 2 were found which agreed with the data. Thus it
would seem that these solutions were missed because
of the technique used in the analysis rather than the
formulas that were used.

In order to analyze transitions where all of the
matrix elements are abnormally small, it will be essential
to include the higher-order matrix elements. If the
matrix elements are small because of cancellations inside
the overlap integral, the higher-order matrix elements

could be much larger than the erst-order matrix element
since they have a di8erent radial dependence. This type
of cancellation has been suggested by Kisslinger" as an
explanation of the small matrix elements of Sb" . Pour
isotopes, Sb'" La"' Eu'" and Eu", that have
abnormally large ft values are now being analyzed with
the higher-order matrix elements included.
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The thermal-neutron capture reaction Sc"(N, v)Sc" was utilized to populate low-lying states in Sc" by
means of 7-ray cascades from the compound-nucleus capture level. Scintillation singles and coincidence
y-ray spectroscopy techniques were used to study the gamma-ray decay characteristics of the levels ob-
served. A rather complete set of data has been obtained for transitions between levels at excitation energies
up to 0.675 MeV. Levels at 0.142, 0.225, 0.289, 0.445, 0.585, and 0.675 MeV have been inferred, and the
decay characteristics of each of these states have been determined. In addition, many levels up to an excita-
tion energy of 3.62 MeV have been observed and the principal y-ray decay modes of these states are described.
Conventional and time-to-pulse-height delayed-coincidence techniques were employed to establish the
"prompt" (tqia&2X10~ sec) lifetimes of the 0.225-, 0.289-, 0.445-, 0.585-, and 0.675-MeV states The.
isomeric character (tM2 =20 sec) of the state at 0.142 MeV has been con6rmed. A complete decay scheme for
states up to an excitation energy of 0.675 MeV is proposed, and the observed characteristics of these levels
are compared with previous (d,p) stripping studies and recent theoretical calculations. In addition, a decay
scheme is also presented which involves states at higher excitation energies (&~3.62 MeV) and includes
the y-ray decay modes observed in the present work.

I. INTRODUCTION

~ XPERIMKNTAL knowledge and theoretical un-
~ derstanding of the characteristic properties of

excited states of odd-odd nuclei have not grown as
rapidly as for other classes of nuclei. Various nuclear
models have achieved some degree of success in explain-
ing many features associated with even-even and odd-A
nuclei, for which an abundance of experimental data
has, for the most part, been available. This success has
served to focus added experimental and theoretical

t Work performed under the auspices of the U. S. Atomic
Energy Commission.

attention upon them. On the other hand, the experi-
mental and theoretical dHBculties and complexities
associated with odd-odd nuclei have led to the relative
neglect of these nuclides.

Relatively little detailed experimental data concern-
ing the low-lying levels in odd-odd nuclei is available.
Experimental studies of the levels in odd-odd nuclei are
disadvantaged by the fact that, with relatively few
exceptions, the excited states of these nuclei are not
populated by P decay. Application of ordinarily power-
ful y- and P-ray spectroscopic techniques are restricted
to those few (usually one or two) excited states fed from
relatively long-lived isomeric levels. Since odd-odd


