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Theoretical formulas that include finite-nuclear-size corrections and higher-order matrix elements are
given for the analysis of first-forbidden beta transitions. The formulas are arranged so that the contribution
of the higher-order matrix elements can be seen clearly. Examples are given that illustrate when the higher-
order terms must be included and when they can be neglected. The procedure for determining nuclear-matrix
elements with a computer is discussed. Particular attention is given to the problem of setting limits of error.
Nuclear-matrix elements for Rb8 and Rb# are discussed. The results show that the By; matrix element
dominates in both transitions. The agreement with the predictions of conserved-vector-current theory is
good. Further experiments are suggested which would set better limits on the nuclear-matrix elements.

I. INTRODUCTION

HIS is the first paper in a series that will report on
a systematic analysis of the nuclear-matrix
elements of first-forbidden beta transitions. When
matrix elements are known for many nuclei, systematic
trends should be evident which will suggest improved
nuclear models. The matrix elements are also useful to
test predictions based on the conserved-vector-current
(CVC) theory. 37Rb4% is an interesting nucleus to study
because it has one neutron hole in the 50 shell. The
shell model predicts that the beta transition will be
dominated by the B;; matrix element. The same predic-
tion applies to s7Rb4;3 except that in this case there are
three neutron holes and it is less likely that the predic-
tion will be correct. Since there are many nuclear-
matrix elements to be determined, it is necessary to use
as many experimental parameters in the analysis as
possible. The energy dependence of the 8-y directional
correlation, the angular dependence of the 8-y circular
polarization, and the shape-correction factor were used
for the analysis reported in this paper.

The analysis was performed on an IBM-7094
computer using formulas given by Biihring.! These
formulas include the third-forbidden matrix elements
and corrections for the finite size of the nucleus. In
addition to the usual six matrix elements for a first-
forbidden transition, there are a number of higher-order
matrix elements to consider. The effect of the higher-
order matrix elements is discussed so that one can see
when these matrix elements must be included and when
they can be neglected. In his original paper Biihring
gave formulas so that the electron wave functions of
Bhalla and Rose? could be used to calculate numerical
parameters. The screening of the nuclear charge by the
atomic electrons was not included in the tables of Bhalla
and Rose. In a later paper Biihring? gives formulas for
the parameters which include the effect of screening. He
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also gives some numerical examples. The effect is
largest at low energy; it is greater for positrons than
electrons, and of course it increases with the nuclear
charge. For Rb% and Rb3S, the correction is not large
in the energy range of the experiments. However, it
will be significant for many other isotopes. The com-
puter program was designed so that limits of errors on
the results could be given that were accurate and easy
to interpret. The predictions of the conserved-vector-
current (CVC) theory were investigated, and calcula-
tions were performed to consider the possibility of
further experiments which could set better limits on the
nuclear-matrix elements. An analysis of these isotopes
has been reported previously,* but precise formulas were
not used and the meaning of the limits of error was
unclear. Furthermore the results reported here differ
substantially from those previously reported.

II. THEORY

The first complete presentation of the theoretical
formulas for first-forbidden transitions was given by
Morita and Morita.® Later a valuable series of papers
by Kotani and Ross®7? arranged the formulas so that
the major characteristics of the experimental observ-
ables were easily seen. The application of these formulas
has been discussed in the preceding paper. The notation
of Kotani and Ross has been widely used, but their
formulas are not in the most convenient form to include
the effect of higher-order matrix elements. In a more
recent paper, Biihring! gives formulas which are both
precise and convenient. These formulas include many
more matrix elements than the six which are usually
considered for first-forbidden transitions. The additional
matrix elements are of two types—those due to the
finite nuclear-size corrections and the third-forbidden
matrix elements from the usual multipole expansion.
The most important matrix elements are listed with
their selection rules in Table I. Matrix elements which
contain (r/p) to a power of four and higher have been
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dropped. All of the higher-order matrix elements are
listed on the right side of the table and the parameters
associated with them are identified by a prime mark.

The general notation of Kotani and Ross has been
retained in defining parameters to represent the matrix
elements. Two significant changes in notation have been
made. The matrix elements that contain the radius
vector are normalized and the parameter D is used in the
same general way as the parameter ¢ was used by
Kotani and Ross:

D=}aZ+Wep, 1)

Z is the charge of the daughter nucleus. It is taken as
positive for 8~ decay and negative for 8+ decay. a is the
fine-structure constant, Wy is the maximum energy of
the beta particle, p is the nuclear radius. These changes
in notation are intended to make it easier to estimate
the order of magnitude of the higher-order terms and to
see the energy dependence which they introduce. If
there are no selection rules operating, the matrix
elements that do not contain the relativistic operators
will have an order of magnitude of unity. Of course the
relativistic matrix elements will be considerably smaller.
Thus the factor D’ has been included in the definitions
so that the relativistic matrix-element parameters will
also have an order of magnitude of unity. A convenient
and reasonable procedure for numerical estimates is to
set D'=|D|. Nevertheless D’ will be distinguished from
D in the formulas as a reminder of the physical reason
for the relative size of the various terms. All of the
parameters have been defined as the ratio of the matrix
element to a standard matrix element » which will be
determined from the ff value. The notation of Biihring
for the matrix elements is the same as that used by
Morita but it differs slightly from that of Kotani and
Ross. Kotani and Ross changed the phase of the matrix
elements by a factor of “4,” and they defined the
operator a such that it has the opposite sign.

If all of the fifteen matrix-element parameters were
treated as unknowns to be determined, the analysis
would be unnecessarily complex. One must realize that
combinations of matrix elements are responsible for the
size, energy dependence, and angular dependence of the
experimental observables. The individual matrix ele-
ments in a combination can be determined if they occur
in a different arrangement in other combinations which
can also be measured experimentally. It is also possible
to extract the individual matrix elements if the relative
order of magnitude of the matrix elements in a combina-
tion can be estimated theoretically. The CVC theory is
one valuable aid in this type of calculation. The first
step in arranging the theoretical formulas is to select
combinations of matrix elements which one cannot
expect to break up by practical experimental measure-
ments. In this process, it is necessary to make reasonable
estimates of the relative order of magnitude of the
various terms. The basic assumption will be that only
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TaBLE I. Matrix elements and matrix-element parameters for
first-forbidden beta decay.

For AJ=0

1 1 r?
D'v'——-—CA/'Ys D'v'=—CA/'y§(—>
n n P
1 or 1 orfr\?
w=——CA/i— 'w'=——C.4/i———<—>
n p n e \p

For AJ=1

1 1 7\ ?
D’y=—Cv « D'y’=—CV/a -
n i g
1 r 1 r/r\?
x=—Cy [ i~ ¥'=-Cy | | -
n P n P\p
1 oXr 1 oXr/r\?
-Ca | —|-
P \p

u=-Cy
]
1 (e r)r—3ar?
D's'=-Cy | =—————
n

n P

the selection rules on total angular momentum and
parity apply. The consequences of other selection rules
will be considered later. All of the numerical estimates
will be for the case of Rb%. The values for Rb%* are
similar, and it should be evident how to apply these
estimates to other isotopes. The parameters V (for
AJ=0) and ¥ (for AJ=1) are defined to represent the
two combinations which are frequently most important.

DV=D"[v+v' (a—D§+¢*) ]+ D[w+dw'], (2)
DY=D'Ty+y (a+3Dj— 33" ]

— D[ (x+da")+ (utdu’)], (3)
where

a=—3[(Wpt+3aZ)*—p*],

4=%rq,

ﬁ = %PP )

d=—1[}aZ—e(3D+20)1/[aZ+3Wo],
W and p are the electron energy and momentum,
respectively, and ¢ is the neutrino momentum. If there
is no selection rule operating and there is no internal

cancellation, V and Y are defined such that their order
of magnitude is unity. It is convenient to use natural
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units (mo=c¢=%=1) for numerical estimates. Then

W=1+E(MeV)/0.511, p=W2—1,
q=Wo—W, p=(0.00312)41/3

where the value of the nuclear radius p is that used by
Bhalla and Rose.? For Rb?,

We=2.39, p=0.0135,
a~—0.032, d=-—0.162.

The notation ¢ and $ is convenient because it shows the
energy dependence and serves as a reminder that these
terms are very small. The order of magnitude of § or
P for 0.5 MeV is 0.0045.

One might ask why these matrix elements have been
collected together when in principle the higher-order
matrix elements could be separated from the first-order
matrix elements by the energy dependence which they
introduce. It can easily be seen that the energy depend-
ence of ¥V and Y is small in any case and most likely
completely negligible. The most important contribution
to the energy dependence of V comes from the term
(v’a). Thus the relative change in V as a function of
energy can be estimated from the following formula:

(AV/AW)
v Nv-}—av'—{—w—l—dw’ '

D=0.149,

—3aZpv

Il

14

Whenever the higher-order matrix elements are not
much larger than the first-order matrix elements,

Ry=~1aZp<0.004/MeV.

Even if the higher-order matrix elements are much
larger than the first-order matrix elements,

Ry=~aZp/2d<0.025/MeV.

Only in the extreme case where ' is much larger than
v, w, and w’ will the energy dependence be significant.
In that case

Ry=~aZp/2a<0.12/MeV.

The same arguments apply to the energy dependence of
V. Unless measurements can be made that are an order
of magnitude more accurate than those presently
available, V and Y can be considered to be energy-
independent.

All of the matrix-element combinations used by
Biihring in his formulas for the transition probability
are listed below. In Biihring’s notation for the combina-
tions My, ), the tensor rank of the matrix elements is
given by K while k. and %, are the quantum numbers
for the electron and neutrino partial waves.

(1+a) My ©=—DV, )
(A+a)mn®=—3p(w+3aw’), (5)
(1+a) M, =DY+24[ (u+aw’)—D's'(D—§)],  (6)
(1+aymn® = — 3 (x4-Faa")+ (ut5an) ], (7

P. C. SIMMS

(I+a)M1,W = (1/V2)4[2 (x+ax’) + (u+au’)
+D=9D'(s'+4y)], (®)

(1430) M = (VDBL2 (e $aa') — (u-+Jaw’)
+(9/5)sD'(D~9], ()

(1+a)M1,® =3V34[ (z+az)+2r'D' (D—29)

—D'(D—(8/5)9)], (10)

(1+30) M 2, ® =3V3p[ 2+ 2az")+2r' D’ (3D+29)
—vD'(3D—(8/5)p], (11)
(1+a)m®=3v34(3p) D’ (2" ~1')., (12)
(A+30)ma®=3V3p(3p)D’ (2r' 7). (13)

The difficulties in determining the first-order matrix
elements will be considered first. Then the contribution
due to the higher-order matrix elements will be dis-
cussed. The combination of matrix elements has been
arranged so that one can see the energy dependence
that they introduce. When there is no selection rule or
cancellation effect, M1; @ and My, are of order of
magnitude D and there is only a minor energy depend-
ence in M1; V. Even though most of the other matrix
elements depend directly on p or g, they are a factor p/D
smaller than M and My, ®. Thus it is clear that,
when V and ¥ dominate the transition, it is difficult to
determine the other combinations by the additional
energy dependence that they introduce. If V and ¥V are
the only parameters which can be measured experi-
mentally, the individual matrix elements cannot be
determined unless the relative order of magnitude of
the matrix elements in V and ¥ can be estimated
theoretically.

Next, one needs to consider what will happen to the
experimental observables if ¥V and ¥ do not dominate
the transition. If only one of these combinations is
reduced, it is likely that it will still be difficult to
determine the matrix elements. This is particularly true
if V or ¥ is reduced by a selection rule. In that case, the
corresponding energy-dependent combinations may
also be reduced. However, one should keep in mind
that evidence for selection rules is very important for
nuclear-model considerations even though the matrix
elements cannot be accurately determined. When one
observes that ¥ or ¥ is small and the energy-dependent
terms are #zof present, this is a clear indication of a
selection rule,

Certainly the best situation for determining the
matrix elements occurs when V is small and there is a
cancellation in ¥. Then M1, ® is energy-dependent, and
the combinations M1s®, M@, M1,®, and My, @ are
important. This situation has been observed in most
cases where it was possible to determine the nuclear-
matrix elements. When one considers the prediction of
the CVC theory, it is not surprising that a cancellation
occurs in Y. Fujita® and Eichler® have calculated the

8 J. I. Fujita, Phys. Rev. 126, 202 (1962).
9 J. Eichler, Z. Physik 171, 463 (1963).
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ratio of the matrix elements / @ and /"ir/p on the basis
of the CVC theory. With the parameters used here,
the prediction is that

D'v/x==+1.2aZ+p(W,F2.5), (14)

where the upper sign is for 3~ decay and the lower sign
for B+ decay. When terms of the order (W) are
dropped, it is seen that

DY = (£1.202)x— (£3aZ) (x+u).

Thus if x~u, a cancellation should occur.

The contribution of the higher-order matrix elements
to V and Y has already been considered. It was shown
that it is usually experimentally impossible to break up
combinations of the type (x+ax’) unless &’ is much
larger than x. Fortunately this is not a serious problem.
Even if the ratio (x’/x) can not be determined ac-
curately, the uncertainty is quite small (~3%, for Rb®®).
Thus, unless there is a theoretical reason to suspect
that the first-order matrix elements are smaller than
the corresponding higher-order matrix elements it is
certainly safe to replace these combinations by param-
eters of the following type:

v=(v-+av'); wo=(wtaw); yo=(y+ay’); etc. (15)

The contributions of the third-forbidden matrix
elements s/, ¢/, and 7’ are seen to be of the order

D'D=D*=0.022.

The additional energy-dependence they introduce is
even smaller.

$D'p=%Dp=0.0007.

Unless the first-order matrix elements are greatly
reduced, the third-forbidden matrix elements also
represent only a small uncertainty.

It should now be clear that if the first-forbidden
matrix elements are not abnormally small, the combina-
tions of matrix elements can be simplified considerably.

DV=D'v+Dw-+dw], (16)
DY =D'yy—D[ (x+dx')+ (utdw’)],  (17)
My®=—DV, (18)
mu® = —Fpwo, (19)
Myu®=DY+24u,, (20)
mu® = —3%p(xo+u0), 1)
M1p®=1N2)§(2x0+u0), (22)
Mo ® = (1V2)p (20— o) , (23)
M15® =234z, (24)
Moy ®=13pz. (25)

These equations were obtained by making substitutions
of the general form given in Eq. (15) and by neglecting
the third-forbidden matrix elements s’, 7/, and #. One
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should notice that even though xo and # occur in several
combinations so that they can be determined, there is
still a rather large uncertainty in determining y,. Since
d is approximately 209, for any nucleus, xo and uo
cannot be substituted into ¥ in order to accurately
determine v, unless %’ and %’ can be estimated theoret-
ically. The same limitation applies to a determination
of vo from V.

The following formulas for the particle parameters
bxg™ in terms of the matrix-element combination are
those given by Biihring.! Note that it was necessary to
change the sign of bxx® and bxx/® to be consistent
with the usual convention for circular polarization. A
few other minor changes have been made to be con-
sistent with the definition of the angular correlation
function given in Eq. (39).

boo(O) = (M11(0))2+ (mu(o))z

—2ury1(1/W)M1;Omi @, (26)
b, ©= (Mu(l))2_|_ (mu(l))2_2”171(1/W)Mu(1)m11(1)
4 (M 12PN (Mo D)2, (27)
Bos @ = (M 15®)24-No (M5 ®)2, (28)
bo=—2 (P/W) [Mu(o)Mn(l) _mu(o)mn(l)]
+2\/7[’/)12]Wu(0)M21(1)
— a1/ W)M 1 Omi @],  (29)
bW =—VZ(p/W)L(M1:®)*— (m1: )]
—2[1eM 11 O M 5y ® —H19(1/ W) M 31 D1 ]
+ (1/V2) (p/ W)L (M 12®)2—No (M )*],  (30)

b12® = —2+/5[n12M 1, O M 5, @ *‘ﬁlz(l/W)Mm(”mu(l)]

+4/10(p/W)[M 12O M 12®
FRMAOM®], (31)
baa® = (5/2)2(p/ W)L (M @)+ oM @)1,  (32)
b1 @ = "2\/3[1’12 (P/W)Mu(l)Mmm
+ 17120[222(I/W)MZI(I)mll(l):l
+ (VN2 (M1 @), (33)
b02(2) —_— 2.\/2[:”12 (p/W)Mll(O)MZI(”
+ 912022 (1/ W) M 1 ®Pm, @], (34)
b12® = —2V3[w12(p/W)M 11O M 1@+ 910222(1/ W)
X Moy Py ]— (6)AM 0 O Mu®,  (35)
baa® = — (/TN (M1 ), (36)
b1s® = — (6V3/n/SNa(b/ W) M3 O M 5, | (37)
bo2® = — (3V2/n/5Ma(p/ W) (M1 ®)2. (38)

The numerical parameters Lo, p1, Y1, A2, V12, P12, M2,
and #;2 are defined by Biihring.!®* They are all of order
one and are only weakly dependent on Z and W.
Results for the parameters without screening corrections
are given in Tables IT and IIT. The parameters v1, 12,
and p; were set equal to one since they only occur in
terms which are very small.
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TABLE II. Numberical values of Ly, Ns, v12, 712, 112 for Rb#.

w P Lo A2 vi2 M2 s
1.077 0.4 0.983 1.247 1.023 0.919 0.886
1.166 0.6 0.984 1.043 0.967 0.922 0.889
1.280 0.8 0.984 0.977 0.950 0.925 0.893
1.414 1.0 0.985 0.948 0.943 0.928 0.896
1.562 1.2 0.986 0.934 0.940 0.930 0.898
1.720 1.4 0.987 0.927 0.939 0.932 0.900
1.886 1.6 0.988 0.923 0.939 0.933 0.902
2.059 1.8 0.989 0.921 0.939 0.935 0.903
2.236 2.0 0.990 0.920 0.940 0.936 0.904
2.416 2.2 0.992 0.920 0.940 0.937 0.907
2.600 2.4 0.994 0.921 0.942 0.939 0.906

The general beta-gamma angular correlation func-
tion in terms of the particle parameters is presented in
the following formulas:

N (W 9,5)=Ao(W)+SA1 (W) Py (6)+A:(W) Py (6)
+SA3(W)Ps(6),

Ao(W)=boo @+ b1, O+ 2@,

4 I(W) = bOl(l)GOI(D +bll(l)Gll(l)+b12(l)G12(1)
+h0Gn®,

A5=011PG11 P+ bPGos®+b12PG1o®
Fb2PG®,

As=b13DG1a® + by B Gy ® .

(39)
(40)

(41)

(42)
(43)

P,(0) are Legendre polynomials, and Ggx/ ™ (Jo,J1,J2)
are combinations of Racah and Clebsch-Gordan coeffi-
cients which are defined and tabulated for some
important spin sequences (Jo— J;— Js) by Kotani.”
The helicity factor s is +1(—1) for right- (left-) hand
circular polarization. For beta-gamma directional-cor-
relation measurements, the circular polarization of the
gamma rays is not observed, and s=0. The directional-
correlation function it usually written in the following
form:
where

e(W)=A2(W)/4o(W).

The beta-gamma circular polarization correlation can
be defined as

_]V(W70; +1)—N(W’0: _1)
_N(Wye’ +1)+N(W;0) _1) .
AL(W)P1(6)+A5(W)P3(6)

Pr(m.0)= Ad(W)+A2(W)Po(6) (46)

P, (W,6)
Then,

If the direction of emission and the spin of the electron
and neutrino are not observed, the transition probability
Als

1 [
- / FoZW)pW@S(W)aw,  (47)
™ 1

SIMMS

S(W) is the shape-correction factor defined in terms of
the matrix elements, nof the matrix-element param-

eters—that is,
S(W) = L(mZA o(W) .

For first-forbidden transitions, the following definition
of the Fermi integral is most consistent with the
definition for allowed transitions:

(48)

Wo
r=@r [ mmpresmaw, 9
1
where the average value of S is defined as

Wo
S=W,—1)"1 / S(W)dW . (50)
1

The coupling constants can be removed from .S by
setting Cy=1.0 and C4=—1.2 and using the experi-
mental value' for the vector coupling constant. Then

ft=6150/8. (51)

The scale for the first-forbidden matrix elements is
defined relative to the Fermi matrix element for
super-allowed transitions [i.e., (/'1)=V2]. Thus

—1

Wo
n2=6150|:t [ FO(Z,W)prZC(W)dW] , (52)

where C(W) is the shape-correction factor defined in
terms of the matrix-element parameters.

C(W)=Lodo(W)=S(W)/7". (53)

In these formulas p, W, ¢ and the Fermi function
Fo(Z,W) are in natural units and the half-life ¢ is in
seconds. ‘

There are several reasons why it seems desirable to
use the formulas presented here rather than those of
Kotani. Certainly it is easier to see the effect of the
higher-order matrix elements. Even if the first-order
matrix elements are large, the uncertainty in determin-
ing voand y,is important. The particle parameters given
by Biihring include small terms which were previously

TasLe III. Numerical values of Lo, A2, v12, M2, #12 for Rbse.

w P Lo A2 vz N2 T1a
1.077 0.4 0.963 1.272 1.005 0.980 0.855
1.166 0.6 0.963 1.066 0.958 0.905 0.869
1.280 0.8 0.962 0.997 0.944 0.913 0.877
1.414 1.0 0.961 0.970 0.939 0.920 0.883
1.562 2.5 0.960 0.956 0.938 0.924 0.887
1.720 14 0.960 0.949 0.938 0.927 0.890
1.886 1.6 0.958 0.947 0.939 0.931 0.892
2.059 1.8 0.957 0.946 0.940 0.933 0.895
2.236 2.0 0.956 0.947 0.941 0.936 0.897
2.416 2.2 0.955 0.948 0.942 0.938 0.899

1 R. K. Bardin, C. A. Barnes, W. A. Fowler, and P. A. Seeger,
Phys. Rev. 127, 583 (1962).
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neglected, and they contain better approximations for
the electron wave function. Since the formulas are so
complex, it is difficult to make a general statement
about how much more accurate the results are with
these improvements. The results reported in this paper
differ substantially from the previous results* which
were obtained using Kotani’s formulas, so it would
seem that the improvements are important. A final
point of comparison is that the corrected Fermi integral
fc defined by Kotani is #ot equal to the f defined here.
fe will be equal to f only when C(W) average is one.
When the particle parameters of Biihring are used,
it is still necessary to decide whether or not the simple
expressions [Eqgs. (16)-(25)] for the combinations of
matrix elements are adequate. Before the analysis is
begun, the f¢ value is the only guide that is available.
If the f¢ value is not much larger than (6150/p?), the
simple formulas will probably be satisfactory. However,
one should remember that the results of the analysis
will provide the best check on the validity of the
approximation. For example, if (yxo) turns out to be
approximately one, the contribution of ' or s’ to Mo, @
could not be significant. The matrix element (/S ir/p)
has the expected physical size and the higher-order
matrix elements are not important. There are many
cases where the f¢ value is much larger than (6150/0%).
The more accurate formulas given in Egs. (4) through
(13) must be used for these isotopes. The analysis for
this type of transition will be considered in a subsequent

paper.

III. PROCEDURE FOR ANALYSIS OF
THE EXPERIMENTAL DATA

The 2—-2* transitions considered in this paper are
considerably more difficult to analyze than the 3—-2+
transitions which have received most of the attention
in this field. Even with the simplification made in the
preceding section, there are six unknowns to consider
rather than four. It is usually not difficult to find sets of
matrix elements which fit the experimental data satis-
factorily. The difficulty comes first in ascertaining that
no important sets of matrix elements have been missed
and second in establishing meaningful limits of error
on the results. Since acceptable sets of matrix elements
are located by trial and error, the obvious procedure is
to take fine steps over a wide range for all six unknowns.
Even with a high-speed computer, this procedure
consumes too much time. Fortunately the combination
of matrix elements presented by Biihring suggest a
procedure which reduces the time required by an order
of magnitude.

An examination of the formulas shows that at W=W,
the value of the directional correlation depends pri-
marily on V, ¥, 2z, and the combination (2xo— o).
That is, when ¢=0,

Mn(l):Y a.nd M12(1)=0..

It is reasonable to assume that the contribution from
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m1 @ and mq @V is small. Thus 2 is set equal to 1.0,
0.1 or 0.01, and V and Y are stepped over the range 1.0
to 0.01. The quantity (2xo—1,) can be estimated from
the experimental value of ¢(IWy).

There are several reasons why this procedure saves
time in the analysis. In the initial phase of the program,
xo and %o do not need to be considered separately, and
wy is neglected. This reduces the number of parameters
to be stepped from six to four. Even the combination
(20— u,) does not need to be stepped at random, but
rather can be stepped around the value estimated for
each set (20, V, V). Not only is the number of steps
reduced, but also it is possible to test the validity of the
value of V and ¥ chosen in the initial phase of the
program. The expression for (2xo—uo) is quadratic, so
the sets of (2,V,¥) which give an imaginary solution
can most likely be discarded. Before they are discarded,
further precautions must be taken to insure that no
valid sets are being overlooked. One source of error
occurs because ¢(IWo) can not be measured directly. It
is obtained by extrapolating the experimental data for
W <W,. Also, the small terms containing ;@ and
mu® have been neglected. Before a set (2,V,Y) is
discarded, the computer tries to find a real solution to
the quadratic equation by making reasonable adjust-
ments in the uncertain parameters.
~ For each set of 2, V, ¥, and (2xo—uo), the energy
dependence of (W) is used to estimate a starting point
around which %, can be stepped. The remaining param-
eter wo is taken through very course steps since the
formulas are very insensitive to m1;@. Each set (2o, V,w,
Y ,%o,40) which is developed in this process is used to
calculate the experimental observables, and a chi-
squared test is performed on the experimental data.
Any set of parameters which does not satisfy the desired
statistical criterion is discarded and the remaining sets
are retained for the second stage of the program.

An important point must be made concerning the
calculation of the angular dependence of the circular
polarization. These measurements are usually made
with integral beta-energy selection. Serious errors can
result if the circular polarization is calculated at the
average energy quoted with the experiment. In this
program the average value of P,(6) is calculated by
numerical integration over the energy range of the
experiment.

A section has been included in the first stage of the
program to assist in the design of future experiments.
The energy dependence of P.,(0,W) is calculated for
each set of matrix elements which fit the experimental
data. In this way it can be seen whether or not measure-
ments of the energy dependence of P, would be useful
in setting better limits on the matrix elements. The
program is designed to use this type of experimental
data when it is available.

The second stage of the program is used to set limits
of error on the results. The first set of matrix elements
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Fic. 1. Rb® beta-gamma directional-correlation parameter
as a function of beta energy.

which fit the experimental data is taken as a starting
point. Zy is held constant, and the parameters V, v,
%o, and u, are stepped in a random manner through
progressively larger ranges until no new set can be
found that fits the experimental data. If necessary, the
steps are made smaller until at least 20 values of each
matrix element are found which fit the data. Since the
steps are small, many thousands of sets are frequently
produced which fit the experimental data. It is not
necessary to record all of these sets. Rather, one would
like to take these sets and determine the most probable
value for each matrix element and the range into which
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F1c. 2. Rb® beta-gamma circular polarization as a function
of angle. Integral pulse-height selection was used for the beta
detector.

each matrix element can be restricted by the experi-
mental data.

It is not difficult to determine the range of the
matrix elements. The computer simply keeps track of
the maximum and minimum values that occur for the
matrix elements. There are certainly many ways to
estimate the most probable value of the matrix elements.
The following point of view was adopted here: If the
value M j, of the matrix element M ; occurs in only a few
sets, then M j cannot be the correct value unless all of
the other matrix elements are restricted to the values
they have in these sets. However, the experimental data
does not restrict the matrix elements to these values.

SIMMS

Unless there is some theoretical reason to believe that
they are so restricted, it is improbable that M is the
correct value. On the other hand, if M occurs in many
sets, it is likely that one of these is the real one, and
the probability function for M j should be large. Thus
the probability P should be proportional to the number
% of acceptable sets in which M j;, occurs, and it should
be influenced by the quality of the fit. Pj; was defined as

n
Pi= 3 Pi. (54)
=1
T T T T T
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Fi1c. 3. Rb86 shape-correction factor as a function of beta energy.
The verticle scale was chosen arbitrarily.

Pji;is inversely proportional to the sum of the residuals
for the experimental data.

Pii=[2 Ru]™,

m=1

(55)

where there are m’ types of experimental data. The
general definition of the residual R is,

1 » Fei—e?
R=-2 ) (56)
n i=1 A;
Rh"
>
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Fi1c. 4. The probability function [defined in Eq. (49)] for the
matrix-element parameters xo and #o of Rb8, The scale on the
horizontal axis gives the ratio of the parameter to z.
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TasLE IV. Matrix-element parameters for Rbe.
Set 20 14 Wo Y Yo X %o D'yo/xo
1 1.0 —0.0524 +0.02 —0.0107 —0.426 —0.170 —0.245 0.366
2 1.0 —0.0524 +0.04 —0.0086 —0.445 —0.132 —0.304 0.490
E &Wa= 1.0 —0.060.012 —0.12+0.06 —0.0740.015 —0.140.07 —0.30+0.10
s See Ref. 4.

where there are » different measurements e; of the
experimental parameter [e.g., e(W), C(W), P,(8)]
¢; and A; are the calculated value and the experimental
error of the parameter, respectively.

Each set of matrix elements that was retained in the
first section of the program is considered in turn. The
set is ignored if it falls within the limits of a probability
distribution which was calculated previously. Thus if
the sets of matrix elements found in the first section are
all similar, only one probability distribution will be
calculated. Otherwise a separate probability distribution
will be developed for each distinct type of set.

While the matrix elements are being varied in the
probability calculation, the computer records the
maximum and minimum ratios for various pairs of
matrix elements. These ratios are used to test the
predictions of the CVC theory and nuclear models.
The matrix element %y is not included in the stepping
process since the theoretical parameters are very
insensitive to m1,©. A separate section of the program
sets an upper limit on wq. In all phases of the program,
the statistical controls in the tests for agreement with
the experimental data can be varied, and restrictions on
agreement with the CVC theory can be imposed if this
is desired.

IV. RESULTS
A. Rb3¢

The experimental data used in the analysis of Rb%¢ is
shown in Figs. 1, 2, and 3. The directional-correlation
data was obtained from the work discussed in the
preceding paper. The anisotropy for Rb® is unusually
large. The circular-polarization data combines the
results of Boehm and Rogers!* with the results given in
the preceding paper. Both experiments clearly show
that there are contributions from the P3(f) term as
well as the P;(6) term in the polarization correlation.
The shape-correction factor was measured by Robinson
and Langer.!2 Two curves are shown in each figure which
fit the experimental data equally well. The sets of
matrix-element parameters from which these curves
were calculated are given in Table IV. The results of
Eichler and Wahlborn* are included for comparison.
Their parameters V and Y have been divided by £
so they can be compared to the parameters used here.
The probability distributions for the matrix-element

11 F, Boehm and J. Rogers, Nucl. Phys. 45, 392 (1963).
12 R. L. Robinson and L. M. Langer, Phys. Rev. 112, 481 (1958).

parameters V, yo, %o, and #o (20=1.0) are shown in
Figs. 4 and 5. One can see from the probability distribu-
tions that the matrix elements which change the total
spin by 0 or 1 units are suppressed compared to the
B;; (AJ=0) matrix element.

The two sets of matrix-element parameters given in
Table IV were selected to illustrate the application of
the CVC theory to this transition. From Eq. 14 it is
seen that for Rb#®

(D'y)/x=+0.323.

It should be remembered that the value of (D’yo)/x0
given in Table IV is most probably too high. If '~«
and »’=u, then the ratio would be 169, smaller. Thus
set 1 is in good agreement with the prediction of the
CVC theory and set 2 gives a ratio which is at least
309, too large. When all of the sets of matrix elements
which were found are considered, the following limits
can be set on the ratio of (D’y,) to xo:

0.28< (D'y0)/20<0.58.

The uncertainty in estimating the ratios '/« and %'/u
has been included in the lower limit. Thus it is seen
that the results are in very good agreement with the
calculation of Fujita, but it is not possible to set good
limits on the ratio.

One can see from Figs. 1 and 3 that it would be very
difficult to improve the experimental data on (W) or

Rb%E

PROBABILITY
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F16. 6. Theoretical prediction for the energy dependence of the
Rb® beta-gamma circular polarization.

C(W) to the point that a distinction could be made
between sets 1 and 2. However, Fig. 2 shows that there
is some difference in P, for the two sets when 63, is
large. The experimental data at 180° seems to favor set
2 which does not agree with the CVC ratio. However,
since set 1 fits the data at 161 and 137° better than set 2,
it is impossible to distinguish between the two sets
using the present experimental results. In Fig. 6 the
energy dependence of P, is plotted for 65,=165 and
120°, For the types of experiments considered in this
paper, it is evident that the best way to set better

0.08 . T T T T

006 Rb" DIRECTIONAL CORRELATION AS A FUNCTION OF ENERGY

To.o4 B
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F16. 7. Rb# beta-gamma directional-correlation parameter
as a function of beta energy.

limits on the matrix elements would be to measure the
energy dependence of P, at an angle close to 180°.

In order to determine the absolute magnitude of the
matrix elements and make final conclusions about the
accuracy of the results, it is necessary to calculate the
standard matrix element %. The half-life of Rb3¢ is 19
days, and the fraction of the transitions which go to the
first excited state is 99,.12 The results for n and log f are :

7=0.7840.15, logfi=7.94.

One should remember that the matrix-element param-
eters and 5 were defined so that it is clear physically
that the product of these two quantities cannot be

18 Nuclear Data Sheets, compiled by K. Way et al. (Printing and
Publishing Office, National Academy of Sciences-National
Research Council, Washington, D. C., 1960), NCR 60-3-45.

P. C. SIMMS

much greater than one. Thus it is easily seen that, since
120=0.78, no significant error is made in setting zo=2.
(The contribution of a2’y is of the order of a—i.e., 39.)
Therefore:

B;;
fi—= 0.65+0.13.
p

Since all of the other matrix elements are considerably
smaller than unity, the corresponding higher-order
matrix elements cannot be neglected without further
consideration. It is quite probable that the matrix
elements are suppressed by an angular-momentum
selection rule. (See Sec. V.) If this is the case, the higher
order and the first-order matrix elements would be
affected to the same degree, and it is reasonable to
assume that the higher-order matrix elements cannot be

-0.4 T T T T T
B RE®* INTEGRAL CIRCULAR POLARIZATION |
=03 AS A FUNCTION OF ANGLE
Set 2
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Fic. 8. Rb#¥ beta-gamma circular polarization as a function
of angle. Integral pulse-height selection was used for the beta
detector.

larger than the first-order matrix elements. Thus the
uncertainty introduced by #’ in determining % from x,
would be small, and the probability distributions in
Fig. 4 have been used to set limits on x and #.

r oXr
—0.18S/i-_<_—0.078, 0.153/————§O,23.
p P

The values of y, given in Table IV and Fig. 5 were based
on the assumption that the contribution of %’ and #’
to ¥ was zero. Even if 2 and #' are no larger than x and
u, this is not a valid assumption because the coefficient
of ' and « is large [d~0.16—see Eq. (17)]. The
uncertainty in estimating ' and #' must be combined
with the uncertainty for y, shown in Fig. 5 to set
limits on y.

—0.063_<_/a§—0.034.

T T T T T
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1.0 Set 2 1
I ey
tos B e e a S S
‘ sef | T
C(W)
0.6! 1 1 1 1 L
1.4 1.6 1.8 2.0 2.2 2.4
WB —_—

F16. 9. Rb# shape-correction factor as a function of beta energy.
The verticle scale was chosen arbitrarily.
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There are additional complications in setting limits
on v and w. Although the experimental data is suffi-
ciently accurate to set good limits on V, it is difficult
to set limits on wy because the experimental results are
very insensitive to this parameter. Only an upper limit
on the magnitude of wy could be determined. |w,| <0.1.
This means that only upper limits are possible for the
matrix elements in V.

/ or
P
p

I/‘/s
B. Rb¥

The experimental data used in analyzing Rb® is
shown in Figs. 7, 8, and 9. The data for (W) were
obtained from the work reported in the preceding paper,
P, (0) was measured by Boehm and Rogers,'® and C(W)
was measured by Langer, Spejewski, and Wortam.!
The experimental parameters for Rb® are very different
from those of Rb®, There is a P3(f) contribution to
P,(9), but it is not nearly as evident as in the case of
Rb®e, Also, e(W) is much smaller for Rb# than for Rb3S,
Typical sets of matrix elements are shown in Table V
for two very different types of solutions. For Rb¥%,

<0.02, <0.08.
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F1c. 11. The probability function [defined in Eq. (49)] for the
matrix-element parameters xo and %o of Rb%. The scale on the
horizontal axis gives the ratio of the parameter to 2.

Eq. (14) predicts that D'y/x=—0.256. In set 1, the
B;; matrix element dominates and there is agreement
with the CVC theory. In set 2, the matrix elements
which change the total spin by one unit are not small
compared to B;; and the absolute magnitude of the CVC
ratio is 509, too small.

One can see that it would be very difficult to distin-
guish experimentally between these two sets. The
angular dependence and the energy dependence of P,
are very similar for the two sets (see Figs. 8 and 10).
It would be very difficult to measure the absolute
magnitude of the circular polarization accurately
enough to distinguish between the two sets. There is
some difference in C(W) and also e(W). It would seem
that the best way to distinguish experimentally between
the two sets would be to improve the measurement of
e(W) at the upper end of the beta spectrum.

It should be emphasized however that for all sets of
type 2, the absolute magnitude of the ratio of fe to
JS'ir/p is at least 509, smaller than the prediction of
Fujita. If it is assumed that this prediction is even
moderately accurate, the present experimental data
exclude solutions of type 2. Therefore, the probability
densities were calculated only for solutions of type 1.
Even though some sets of type 1 agree with the CVC
ratio, there are many others which do not. The solid

TaBLE V. Matrix-element parameters for Rb#.

Set ) 14 Wo Y Yo ) o D'yo/%0
1 1.0 +0.189 —0.122 +0.154 +0.0615 —0.0269 —0.189 —0.282
2 1.0 —0.295 —0.122 —0.215 —1.44 +1.09 +0.548 —0.161
E. &W.a 1.0 +0.1340.031 —0.35+0.25 +0.194:0.037 —0.07+£0.07 —0.30+0.25
a See Ref. 4.

41, M. Langer, E. H. Spejewski, and D. E. Wortam, Phys. Rev. 133, B1145 (1964).



B 794 P. C.
Rb&4
g
g lf\\
13 /
a !
/
/ Fi1c. 12. The prob-
1 A ) \ ability function [de-
ol2 014 ol6 fined in Eq. (49)]

018 020 022
—_—

for the matrix-ele-
ment parameters V
and o of Rb8. The
scale on the horizon-
tal axis gives the
ratio of the param-
eter to 2.

PROBABILITY

\

L7 1 1 \ 1

~008 0.0 +0.08 +0l6 +024 +0.32
—Y,

curves shown in Figs. 11 and 12 for the probability
distributions represent all of the type 1 solutions. The
dashed curves were obtained by requiring that the value
of (D'y)/x be within 509, of the predicted ratio. This
restriction changes the limits on ¥ and «o much more
than it does the limits on yo and u,.

For the final results for Rb#, it is assumed that the
prediction of Fujita is accurate to within 50%. Then

1=0.61£0.25, ft=172,

when the half-life is 33 days and the relative probability
for a B+ transition to the first excited state is 11.7%,.1
Since the matrix elements of the Rb3% are similar to
those of Rb?6, the comments given in Sec. IV A about
the accuracy of the results are also applicable here.
One should notice however that in Rb® there is no
cancellation in ¥. The primary reason that the experi-
mental observables of Rb® are very different from those
of Rb%¢ is that ¥ and ¥ are larger for Rb®.

Bij
f i—=140.5120.20,
p

r oXr
—0.04< j -<0.015, 0.06< / ——<0.15,
p P
/‘to-r
—
P

The major features of the results can be understood
on the basis of simple shell-model considerations. Both
37Rb 49?8 and 37Rbys have neutron and proton numbers
close to the closed-shell configurations at nucleon
numbers 38 and 50. The orbitals available in the 28-50
major shell are p3/2, fs/2, pu/2, and gos2. One would expect
that the odd proton would be in a f2 or ps. orbital

—0.015/a50.03, U'yslso.os, <0.2.

V. DISCUSSION

SIMMS

while the odd neutron would be in a gy/2 orbital. Only the
fs2 and go/2 can couple to give the 2~ state. Thus one
would expect that in either a 8+ or 8~ transition the
total angular momentum must change by at least two
units, and the B;; matrix element would dominate the
transition. The analysis shows that the B, matrix
element is indeed large as this picture suggests. The
presence of the AJ=0 and AJ =1 matrix elements must
be explained in terms of admixtures of other states.

Since it is impossible to have a parity change and a
total spin change of less than 2 in the 28-50 shell, the
admixture must come from adjacent major shells. It is
unlikely that the admixtures are large enough so that
the contribution of transitions between one admixed
component and another admixed component would be
significant. Thus all transitions would involve at least
one of the orbitals fs2 or gos. Transitions could occur
between the go/s orbital and the f/; from the 20-28 shell
or the %15 from the 50-82 shell, and transitions could
occur between the fys orbital and the dgs, ds/s, or gr/e
of the 50-82 shell. There are many more possibilities
for AJ=1 transitions than for AJ =0 transition. For the
case of Rb?® where one would expect these arguments to
be strongest, the analysis shows that the A/ =1 matrix
elements are larger than the AJ=0 matrix elements.
Wahlborn's has considered the mechanisms by which
this configuration mixing could occur. He concludes
that the 2t states of Sr® and Kr® cannot be understood
in terms of two-particle excitations, or in terms of a
purely collective picture. An intermediate description is
required to get agreement with the experimental results.

One would not expect that the results obtained in
this analysis would be very different from the results
obtained by Eichler and Wahlborn* using the formulas
of Kotani.” The higher order matrix elements were not
used in the present analysis except to estimate their
contribution to the limits of error. Small terms which
contain the first-order matrix elements were retained,
and the electron wave functions of Bhalla and Rose
were used, but it is impossible to make a general
statement about the improvement in accuracy which
results from these steps. The results are quite similar
except for one important point. (See Tables IV and V.)
The parameter ¥ obtained here for Rb® is much smaller
than that obtained by Eichler and Wahlborn. This
changes the ratio of /"« to Sr so that the agreement
with CVC theory is much better.

The calculations of Wahlborn'® concerning the con-
figuration mixing will not be affected seriously. He
calculates the parameters x, %, and w. The two methods
of analysis are in good agreement for x and ». However,
the limits of error quoted by Eichler and Wahlborn for
w are certainly unrealistic. In both isotopes w can be
zero and in Rb? it can be positive, as shown in Table
IV. Wahlborn!® uses the argument that w cannot be
zero in his discussion of the configuration mixing. Since

15 5, Wahlborn, Nucl. Phys. 58, 209 (1964).
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V is not zero it is certainly unlikely that w is exactly
zero, but values of w outside the limits of error given by
Eichler and Wahlborn are in perfect agreement with
the experimental data.

A further question arises about the accuracy of the
formulas presented here compared to those of Kotani”
because solutions of type 2 in Table V were missed
completely by Eichler and Wahlborn. An analysis of
the data was performed using the procedure discussed
in Sec. IIT and the formulas of Kotani.” Solutions of
type 2 were found which agreed with the data. Thus it
would seem that these solutions were missed because
of the technique used in the analysis rather than the
formulas that were used.

In order to analyze transitions where all of the
matrix elements are abnormally small, it will be essential
to include the higher-order matrix elements. If the
matrix elements are small because of cancellations inside
the overlap integral, the higher-order matrix elements

DECAY—Rb?8S

AND Rbs¢ B 795
could be much larger than the first-order matrix element
since they have a different radial dependence. This type
of cancellation has been suggested by Kisslinger'® as an
explanation of the small matrix elements of Sb'*. Four
isotopes, Sb? La® Eu'®? and Eu'®, that have
abnormally large f values are now being analyzed with
the higher-order matrix elements included.
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The thermal-neutron capture reaction Sc* (n,y)Sc*® was utilized to populate low-lying states in Sc#® by
means of y-ray cascades from the compound-nucleus capture level. Scintillation singles and coincidence
y-ray spectroscopy techniques were used to study the gamma-ray decay characteristics of the levels ob-
served. A rather complete set of data has been obtained for transitions between levels at excitation energies
up to 0.675 MeV. Levels at 0.142, 0.225, 0.289, 0.445, 0.585, and 0.675 MeV have been inferred, and the
decay characteristics of each of these states have been determined. In addition, many levels up to an excita-
tion energy of 3.62 MeV have been observed and the principal y-ray decay modes of these states are described.
Conventional and time-to-pulse-height delayed-coincidence techniques were employed to establish the
“prompt” (252X 107? sec) lifetimes of the 0.225-, 0.289-, 0.445-, 0.585-, and 0.675-MeV states. The
isomeric character (£y2=20 sec) of the state at 0.142 MeV has been confirmed. A complete decay scheme for
states up to an excitation energy of 0.675 MeV is proposed, and the observed characteristics of these levels
are compared with previous (d,p) stripping studies and recent theoretical calculations. In addition, a decay
scheme is also presented which involves states at higher excitation energies (<£3.62 MeV) and includes
the y-ray decay modes observed in the present work.

I. INTRODUCTION

XPERIMENTAL knowledge and theoretical un-
derstanding of the characteristic properties of
excited states of odd-odd nuclei have not grown as
rapidly as for other classes of nuclei. Various nuclear
models have achieved some degree of success in explain-
ing many features associated with even-even and odd-4
nuclei, for which an abundance of experimental data
has, for the most part, been available. This success has
served to focus added experimental and theoretical

t Work performed under the auspices of the U. S. Atomic
Energy Commission.

attention upon them. On the other hand, the experi-
mental and theoretical difficulties and complexities
associated with odd-odd nuclei have led to the relative
neglect of these nuclides.

Relatively little detailed experimental data concern-
ing the low-lying levels in odd-odd nuclei is available.
Experimental studies of the levels in odd-odd nuclei are
disadvantaged by the fact that, with relatively few
exceptions, the excited states of these nuclei are not
populated by B decay. Application of ordinarily power-
ful v- and B-ray spectroscopic techniques are restricted
to those few (usually one or two) excited states fed from
relatively long-lived isomeric levels. Since odd-odd



