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where T"& is the usual Klein-Gordon energy-momentum If we de6ne expectation values in the natural way
tensor,

T)„=4)),*8„4+8„43*4), g—),„(C„*C" —m'4)*4). (eA„)= d'x j'(x)A„(x),

As x, ~ —~, (p") tends to the expectation value in the
free-particle state specified by p. If p is sharply peaked
around some value of p, so that C closely approximates
C~'", then (p") must tend to p" in the remote past.
However, (p&) is not time-independent. Its time de-
pendence may be found from the relation

(
e—vzP~" = dax j), x F~" x,

p0

then we find that (p") satisfies the classical equation of
motion

where
B),T""=j),8&A",

j),= ie(4)*4 g
—4 ),*4)).

In particular, the expectation value of (p"—eA") during
the presence of the beam is on the average equal to p&.
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The paper contains a quantum theoretical analysis of laser beam fluctuations and of the light beat ex-
periments with two lasers. With the help of experimental results on photon counting fluctuations in a single-
mode laser field, some correlation properties of the field are derived, It is shown that the correlation equa-
tions are satisfied by states of the field which are much more general than "coherent" states. The equations
lead directly to the spectral density of the intensity operator in the light beat experiments, which can be
obtained from photoelectric measurements. The resulting expression is practically identical to that found
by Forrester for light having thermal statistical properties. The reasons for this are discussed by a compari-
son of the corresponding probability distributions of photon counts and of the classical wave amplitude.

1. INTRODUCTION

'HE problem of determining the optical spectrum
of a laser beam from beat experiments with two

or more lasers is of interest, not only because of its
practical importance, but because it involves the Auctua-
tion properties of the optical field. Immediately after the
development of the first continuously operating laser it
was recognized that the spectral profile of one mode of
the extremely narrow band light beam could not be de-
termined by conventional interferometry. The 6rst
order of magnitude determination of the spectral line-
width was based on a photoelectric analysis of the
"beats" resulting from the superposition of two similar
but independent laser beams, ' and variations of this
method have become standard practice. '

If we picture each Fourier component of one light
beam as "beating" against each Fourier component of
the other, we are naturally led to regard the spectral

*This research was supported in part by the U. S. Army Re-
search OfIice (Durham) and by the U. S. Air Force Cambridge
Research Laboratories.' A. Javan, E.A. Ballik, and W. L. Bond, J.Opt. Soc. Am. 52, 96
(1962).' See, for example, D. R. Herriot, J.Opt. Soc. Am. 52, 31 (1962);
B. J. McMurtry and A. E. Siegman, Appl. Opt. 2, 767 (1963);
M. S. Lipsett and L. Mandel, Nature (London) 199, 553 (1963).

excursion of the beat notes, rejected in the spectral
range of the photoelectric signals, as a measure of the
spectral width of the light itself. To an order of magni-
tude this measure will undoubtedly be valuable. How-
ever, in order to arrive at a quantitative relation be-
tween the spectral densities of the light beams and the
spectral density of the measured photoelectric signal,
we need to have information on the statistical proper-
ties of the optical fields. This information was not
available to the first experimenters, and indeed the
proper description of a laser field is still the subject of
debate. a s

By treating the classical wave amplitude of the optical
field as a Gaussian random process, Forrester' obtained

' W. E. Lamb, Jr., Phys. Rev. 134, A1429 (1964).
H. Paul, W. Brunner, and G. Richter, Ann. Physik 12, 325

(1963).
5 I . Mandel, Phys. Rev. 134, A10 (1964).
'T. F. Jordan and F. Ghielmetti, Phys. Rev. Letters 12, 607

(1964).
~ L. Mandel, Phys. Letters 10, 166 (1964).' H. Haken, Phys. Rev. Letters 13, 329 (1964).
~ A. T. Forrester, J.Opt. Soc. Am. 51, 253 (1961),and Advances

in Quantum E/ectronics (Columbia University Press, New York,
1961), p. 233. Actually Forrester did not make the Gaussian
random assumption explicitly, but implicitly, in treating the
Fourier components of the classical wave amplitude as statistically
independent variates.
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a simple relation between the spectral densities, but the
assumption was very properly criticized as inapplicable
to a laser field. " I'orrester's formula has consequently
tended to be discounted.

In the following we shall approach the problem phe-
nomenologically in quantum-mech, anical terms. We
first examine the implications of some recent experi-
mental results on photon counting Quctuations in a
single-mode laser field for the correlation properties" "
of the field. The equations obeyed by the correlations
are satisfied by states of th, e field which are much more
general than the coherent states often taken to char-
acterize a laser 6eld. Moreover it is pointed out that
"coherent" states do not satisfy the requirements of
stationarity and ergodicity that one might reasonably
expect for this physical process. However, an explicit
form for the field density operator turns out to be un-
necessary. It is shown that the phenomenological cor-
relation equations, together with the assumption of
stationarity, lead directly to the spectral density of the
light-intensity Quctuations in the "beat" experiment.
The resulting expression is practically identical to that
given by Forrester, ' despite the fact that the properties
of the field are here very different from those implicitly
assumed by him.

The result is partly a reQection of the situation that
the Geld resulting from the superposition of two inde-
pendent laser modes has quite diGerent statistical
properties from the Geld of one mode. This is illustrated
by a comparison of the photon counting distributions
and of the distribution of the classical wave amplitude
for the two cases.

2. MOMENTS AND CORRELATIONS OF
PHOTON NUMBERS

It has been emphasized by Glauber" " th, at the
operator of the field which most nearly corresponds to
the "observable" in a photoelectric measurement is the
complex-Geld or configuration-space annihilation opera-
tor A(x, t) corresponding to the detection of a photon
at the space-time point x,f We can exp.and A, (x,t) in
the form

A;(x, t) = P~„at,„(aq„);expi(k x—ckt), (1)I s/2

where 1.' is the normalization volume, a~, , is the an-
nihilation operator for a photon of momentum hk and
polarization s, and the a~, , form a set of complex or-
thogonal unit vectors, defined up to a unitary trans-
formation. The operators A;(x, i) and A, t(x, i) obey the
equal time commutation rules"

LA;(x, t),A;(x', t))=0= LA;t(x, i),A;t(x', i)g

LA, (x,i),A it(x', t)i= b@P(x—x')

k
exp t'ik (x—x')]a'k,

k'

(2)

and can be used to construct the number operator for
the number of photons in a volume 6V of linear dimen-
sions large compared to the wavelength at a given
time, '4

%w', ~=K~ A;t(x, t)A;(x, t)d'x. (3)

In many problems encountered in practice, one is in-
terested in the number of photons E(S, t, i+7) falling
on a given photoelectric surface S, of linear dimen-
sions large compared to the wavelength, in a time in-
terval t to t+ T, when a plane beam of light strikes the
surface normally. Under these conditions we evidently
have for the expectation value of any function of the X
operators

(fL&(S ~ i+2')3)=(fL&sr.~j) (4)

as the light-intensity operator of the beam. In the fol-
lowing we will for simplicity restrict ourselves entirely
to plane and polarized beams falling normally on
detectors.

In the statistical description of the field we have to
distinguish between moments and correlations of the
number operator X."'s The rth moment (X") is ex-
pressed by

when the volume 8V is taken to be the cylinder of base
S and length cT. We may look on

g; A;t(x, t)A, (x,i)=—P;I,(x,i)

(1V )=P;, P;, (A;, (xt,t)A;, (xt, t) A;„(x„t)A,,(x„t))d xt ~ d x„, r=1, 2, 3, etc.,

'0 A. W. Smith and G. W. Williams, J. Opt. Soc. Am. 52, 337 l1962).
» R. J. Glauber, Phys. Rev. 130, 2529 (1963)."R.J. Glauber, Phys. Rev. 131,2766 (1963)."R. J. Glauber, Quantum Electronics III, edited by P. Grivet and N. Bloembergen (Columbia University Press, New York,

1964), p. 111.
'4 S. S. Schweber, An Introduction to Relativistic Quantum Field Theory (Harper and Row Publishers, Inc., New York, 1961),p. 172."L.Mandel, Phys. Rev. 136, 81221 (1964). My attention has been drawn by Professor M. L. Goldberger to the fact that the

second term in the commutator given in Eq. (2) was dropped prematurely in this paper, although it makes no contribution ulti-
mately. The more correct derivation of the equation connectmg moments and correlations is given in the Appendix.

'6 T. F. Jordan, Phys. Letters 11, 289 (1964).
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whereas the rth order correlation of E is given by the normally ordered integral

~ (A;, (xr,t). A;, (x„t)A;,(xr, t) A,„(x„,t))d xr d x„, r= 1, 2, 3, etc., (6)

where:0: denotes normal ordering of the operator O.
The relation between these two quantities (5) and (6)
can be obtained by repeated application of the com-
mutation rules for the A and At operators. "Alterna-
tively it can be shown that the characteristic generating
functions for (N') and (:N":) are very simply con-
nected by'~

(expiyN) = (:exp(e'" —1)N: ),
or

(8)

from which the relation between the (N") and (:N":)
follows by direct comparison of the coefEcients of y"."

The Eqs. (5) and (6), which apply to a single volume
8V can be generalized for r separate volumes. In prac-
tice, the moments are usually measured for a single
region, whereas the correlations are most readily meas-
ured for diferent regions of space time. Corresponding
to (6) we may write

(A, , (xr,t) A,„(x„,t)A;, (xr, t)

XA;„(x„t))d'xr dsx„. (9)

Following (4), with a special choice of 8Vr, 8Vs, etc.,
we may also look on this expression as an autocorrelation
of the number operator at the same surface S at difer-
ent time intervals T (with bV=ScT), when a plane
beam is falling normally on the surface. For short T, (9)
then represents the rth order autocorrelation of the
intensity operator.

tions were analyzed. Similar experiments have also
recently been carried out with a continuously oscillating
gallium arsenide laser." It has been found that the
mean-squared fluctuation of the photoelectric current
agrees with the expected shot-noise fluctuation of a
current of the given average magnitude. Moreover
it appears that no intensity correlation of the type
observed by Hanbury Brown and Twiss22 is detectable
when a single-mode laser beam is split into two beams
by a half-silvered mirror and each beam falls on a de-
tector."As shot noise is well known to be a Poisson
process, " it follows that the photoelectric counts have
the variance of a Poisson distribution.

If we look on a photoelectric detector as a photon
counter, which allows us to determine the expectation
values of the projection operators

~
N)(N

~
from a histo-

gram of counts, these results have an immediate inter-
pretation in terms of the properties of the Geld. That a
photodetector may be consistently viewed in this way,
even when the quantum eKciency is below unity, has
been conGrmed in several recent analyses. '~26 Accord-
ingly we interpret the experimental results as implying
that the number operator E for a laser beam has the
variance of a Poisson distribution.

Now, from a comparison of coefficients of y' in the
expansion of (8) it follows that (as shown directly in
the Appendix)

(N') = (:N':)+(N)

and, as (N') = (N)+(N)' for a Poisson process,

which we may write in the form

3. DEDUCTIONS FROM EXPERIMENTS ON
LASER BEAMS 1) 2

(10a)

The Geld of a gas laser wh, ich is oscillating continu-
ously in a single mode above threshold has been studied
photoelectrically by several workers. ""In these in-
vestigations the laser beam was allowed to fall normally
on a photoelectric detector, whose photocurrent Quctua-

~~Various derivations of this result may be found in J.
Schwinger, J.Math. Phys. 2, 407 (1961);W. H. Louisell, Radiation
and E'oise in Qgentum E/ectronics (McGraw-Hill Book Company,
Inc. , New York, 1964); F. Ghielmetti, Phys. Letters 12, 210
(1964), and in Ref. 15.

"For some explicit relations between the coefficients see, for
example, L. Mandel, ProgressinOptics II, edited by E.Wolf (John
Wiley St Sons, Inc. , New York, 1963), p. 181."J.A. Bellisio, C. Freed, and H. A. Haus, Appl. Phys. Letters
4, 5 (1964)."R.L. Bailey and J. H. Sanders, Phys. Letters 10, 295 (1964).

since the relation holds identically for r=1. If this re-
sult holds for a light beam polarized in the j direction
and for any volume bV whose linear dimensions are
large compared with the wavelength (or alternatively
for any counting interval T much longer than a period
when plane waves are falling normally on the detector),

"J.A. Armstrong and A. W. Smith, Appl. Phys. Letters 4, 196
(1964); Phys. Rev. Letters 14, 68 (1965).

22 R. Hanbury Brown and R. Q. Twiss, Nature (London) 177, 27
(1956)."S.O. Rice, Sell System Tech. J. 23, 1, 282 (1944).

~ L. Mandel, E. C. G. Sudarshan, and E. Wolf, Proc. Phys. Soc.
(London) 84, 435 (1964)."F.Ghielmetti, Phys. Letters 12, 210 (1964).

~6 P. L, Kelley and W. H. Kleiner, Phys. Rev. 136, A316 (1964).
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LASER I

I I

PHOTO- FREQUENCY
DETECTOR ANALYSER

3E, E,
(A;t(x, ti) A;t(x, t~) )=0,

(A;(x, ti) A, (x,ter))=0,
(A;t(x, t,) A;"(x,tN)

XA;(x)t++i) ' ' 'Aj(x)ted+jr))=0, if EW3E.

(13)

LASER R

FIG. 1. The principle of the beat experiment.

we see from (3) that (10a) implies

As an example of the more general type of solution of
Kq. (10), valid at the point x, consider the following
density operator p, which we write in the "diagonal"
Sudarshan representation" " in which the

~
fvk, ,})

states are the basis states:

OI

(PA;~(x, t)]'LA, (x,t)]")= (A;t(x, t)A, (x,t))",

(:I,(x,t)":)= (I,(x,t))" r = 1, 2,
(10b) k, s &k, s k, s jI 3/2

where I,(x,t) is the intensity operator. More generally
we interpret the absence of Hanbury Brown-Twiss type
of intensity correlation to mean that

(:I,(x,ti)I;(x&t2): )= (I,(x&ti))(I,(x,t2)) ~ (11)

Although the higher order moments of the photo-
electric fluctuations have not so far received any atten-
tion experimentally, it is interesting to note the con-
sequences of making the plausible assumption that
they also correspond to a Poisson process. If we take Ã
to obey a Poisson distribution, its characteristic func-
tion will have the well-known form"

(expiylV) =expL(e'" —1)(E)], (12)

&k, e = k, e &k, s

where
~
vj. ..) is any eigenstate of the aj...operator, satis-

fies (10) and (11), but that much more complicated
solutions are possible. In any case a coherent state does
not describe a stationary held, ~ and the device of aver-
aging over the total pb, ase to ensure stationarity does
not ensure the ergodicity that one might reasonably ex-
pect for this physical process. For a stationary quasi-
monochromatic light beam we require the expectation
values of all operators to be independent of the origin of
time, and that, at least for small integral values of

» J. F. Kenney and E. S. Keeping, mathematics of Statistics,
Part 2 (D. Van Nostrand Company, New York, 1951),p. 74.

and comparison with Kq. (7) and expansion of the ex-
ponential then shows immediately that Eqs. (10) will

hold for all positive integral values of r. It is possible
to make a similar plausible generalization of (11).
Fortunately, however, Eqs. (10) and (11) with r=1, 2
are sufFicient for determining the spectrum of the in-
tensity fIuctuations in the light beat experiments.

The state of the single-mode laser held can be de-
scribed by the most general density operator satisfying
Eqs. (10) and (11).Unfortunately this general solution
does not appear to have a simple explicit form. We can
see at once that any "coherent" state" of the field

Xexpi(k x ckt—) ~ ~ {v~„})({v~,,}~d'{v&,.}. (14a)

Here, {v~,,}stands for the set of all vq, „and the integral
extends over the entire complex {v~,.}plane. 8 is a real
positive number, and f({v~,,}) is any function of the
{v~,,} which ensures the required normalization and
stationarity of p. Stationarity requires f({v&,,}) to be
chosen so that the expectation value of the complex-
field operator A;(x,t) is zero. In view of (1), the eigen-
value of A;(x, t) is evidently

V;(x,t) = Pq„vq, ,(zq, ,); expi(k x—ckt), (14b)I3/2

and the vk, should have random phase. It is easy to
show that (14a) satisfies (10) for all positive integral r,
with (I;(x,t))=B'.

Fortunately, for the problem of calculating the spec-
tral density of the intensity operator it is not necessary
to know the general form of p explicitly, and the dehning
relations (10) and (11) can be used directly.

4. ANALYSIS OF THE LIGHT BEAT EXPERIMENT

Consider the experiment outlined in Fig. 1, in which
the beams from two independent lasers 1 and 2 are
brought together and superposed with the aid of a 45
half-silvered mirror. The beams strike a photoelectric
detector normal to the two wave fronts (assumed to be
plane) whose output is to be analyzed. We suppose that
both beams are l'inearly polarized in the same direction

j as viewed from the detector.
Insofar as a spectral analysis of the photoelectric

current corresponds to a spectral analysis of the total
held-intensity operator, ""we begin by considering the

~' E. C. G. Sudarshan, Phys. Rev. Letters 10, 277 (1963)."E.C. G. Sudarshan, in Proceedirrgs of the Symposium orI, Optical
Masers (Polytechnic Institute of Brooklyn, New York, 1963),
p. 45.

"See J. R. Klauder, J. McKenna, and D. G. Currie, J. Math.
Phys. (to be published), for a rigorous proof of the representation.
An alternative proof has recently been given by C. L. Mehta and
E. C. G. Sudarshan, Phys. Rev. 138, 27 (1965).



LASER BEAM FLUCTUATIONS AND BEAM MIXING 8 757

second-order autocorrelation of this operator. In view of
the statistical independence of the two superposed fields,
the density operator p of the combined field will fac-
torize into the product p&p2 of the density operators p&

and p2 for the two separate fields. We represent each in
the "diagonal" Sudarshan form, so that we may write

p~((», '))P2((», "))I(», ")&I(», '&&

&&({",'& I ((».*")
I
d'(», .')d'(», .") (15)

The second-order autocorrelation of the intensity
operator at the point x at times t and t+r will depend
only on x and v for a stationary field, and, from the dis-

cussion of Sec. 2, will be given by

R(x,r) =Tr[pA, t(x, t)
XA,t(x, t+r)A, (x,t)A, (x, t+r)]. (16)

The operators A here act on the combined Geld, so that

A, (x t) [ {»,.')&I {»,.")&=[A~(x t)
I {»,')&]I{».")&

+ i (»,,') &[A;(x,t) i (»,,")&]. (17)

By introducing (15) into (16) and making use of (17),
together with the fact that the trace remains invariant
under cyclic permutation of operators, we can express
R(x,r) as the sum of 16 terms" (we suppress the index j
and parameter x for brevity):

R(x,r) =Tr[pqAt(t)] Tr[p2At(t+r)A(t)A(t+r)]+Tr[p2A~(t)At(t+r)A(t)A(t+r)]

+Tr[pqAt(t+r)] Tr[p2At(t)A(t)A(t+r)]+Tr[pqA"(t)At(t+r)] Tr[p2A(t)A(t+r)]

+Tr[pqAt(t)A(t+r)] Tr[p2A~(t+r)A(t)]+Tr[pqA(t+r)] Tr[p2At(t)At(t+r)A(t)]

+Tr[pqAt(t+r)A(t+r)] Tr[p2A~(t)A(t)]+Tr[pqA"(t)At(t+r)A(t+r)] Tr[p2A(t)]

+Tr[p&A t(t)A (t)] Tr[p2A'(t+ r)A (t+ r)]+Tr[p&A (t)] Tr[p2A'(t) A'(t+ r)A (t+r)]
+Tr[pqA "(t+r)A (t)]Tr[p2A t(t) A (t+ r)]+Tr[pqA ~(t)At(t+ r)A (t)]Tr[p2A (t+ r)]
+Tr[pqA~(t)A(t)A(t+r)] Tr[pqA~(t+r)]+Tr[pqA(t)A(t+r)] Tr[p2At(t)At(t+r)]

+Tr[pqA"(t+r)A(t)A(t+r)] Tr[p2At(t)]+Tr[pqA"(t)At(t+r)A(t)A(t+r)].

I 11(X T)
gag(x, r) =

(I())
F2~(x, r)

y22(x, r) =
(I (x))

(I~(x)&
=Tr[p~I;(x, t)]

(I2(x))=Tr[p2I, (x,t)]

Of these the 1st, 3rd, 4th, 6th, 8th, 10th, 12th, 13th, functions defined by
14th, and 15th terms vanish by virtue of the stationarity
conditions (13).The 2nd and 16th terms have the form
of the left-hand side of Eq. (11) and, because of sta-
tionarity, reduce to (I2(x))' and (I~(x)&', respectively,
where

are the expected intensities of the separate Gelds before
superposition. The remaining terms are all of the same
general form. If we write

I'n(x, r) =Tr[p~A, (x,t)A, (x, t+r)]
F22(x,r) =Tr[p2A; (x,t)A, (x, t+r)],

(20)

where I' n(x, r) and F22(x, r) are autocorrelations of the
complex-field operators for the two separate fields, "and
correspond to the self-coherence functions introduced
into the classical coherence theory by Wolf" "then

R(x )=L(I (x))+(I (x))]'
+2 Re[I'n*(x, r)r22(x, r)]. (21)

R(, )—[(I ( )&+(I ( )&7'
r(x, r) =

R(X,O) [(Ig(x)&+(I2(x))]

Then (21) becomes

r(x, r) =Re[yn*(x, r)y22(x, r)]. (22)

We now introduce the normalized spectral densities
of both the A;(x, t) and I,(x,t) operators, which are
Fourier transforms of the corresponding autocorrela-
tions. Let

yu(x, r) exp(2n-ivr)dr,

It is convenient to make use of normalized correlation
$22(X)v) = y2~(x, r) exp(2sivr)dr, (23)

3' See also Ref. 5 for a method of simplifying the expression for
intensity correlations."See M. Born and K. Wolf, Princi ples of Optics (The Macmillan
Company, New York, 1964), 2nd ed. , p. 500."See, for example, E.Wolf, Qlentl m Electronics, III (Columbia
University Press, New York, 1964), p. 13.

f(x,v) = r(x, r) exp(2mivr)dr,

where v=kc/2s. We observe that, from the definition



L ~ MAN D

+v') exp( 22—«iv'«dp$22(X) P2 P

(25)

I~v ) =$22(X~ P2+PP»(X& Pl P

23) an& (24) that

758

follows fro

follows that f 11 '
h lf complex «p

p (x v) exp

t 0
the lower al tic»

e

also ana, y
an d P22(x~« ~

van»'h«r
simil & „h t p„(x, ) a

'
arl fo' &" '

an& A2(x~"

exp( 2zrzv2«)

known theorem, a

—&2

nega
'

of v.

v) are spectral den
' '

osities of two

xvl v re
'bl 1 t'o

an e, it see
a ossi e

27iZ P2 Pl

'1 except fo a pare simi ar,
fre uency o

su s into
l h

' cos22«(V2 —vl) «x « —~'r»(x&«cos zr

p ryea

Xr Cos2zr(v2 —vl «.

nd cannot eas' y
e two beams,

cavity an
re uencies of t e w

e s ec
'

of the intensity
(26) Ch

p

v )vl. Wet ere

( )
tlolls x,v 1

0 it to the relations (2x v) vanish for v( '
o11 $»(x,v) ancl $22(x, v vailBecause both p»

4(X,P) = «(x,«) exp(22 ip«)d«

-o0 0 0

—Plr dvdv dr—v )«5 cosL2zr(v2 —vi)«~ (')~ (")-pL2 (.+"'-. ~ ~

ld' f1v" v' v—2+v—l)5dv dvV+P2 Pi)+—8(V+P——V—»(v')4»("')I:~(v+v"-p V2- v v -v
0

p V2+vl)5dv (27)

00

ll dvp»2(v')dv' yil v

0

P(X P) (2
0

ll P +P+V2—Pl)dP4112(v')dv' 4»2 v

0 0

00

v —pl an vl —v2, reSpeC-

~ '(")d '-=&.
0

1 3"

two separa p

can e s

a peak va
t a

'
the sum of twoi ', m

y
ze Optzcs II edited

2 l
orrester'" for a i

Yo ' 93)'p 'ph S 80"See also L. Man e
{1962).

(28)

~ (')L~ ( +.+.,—Pl ll v

r is regarded aas atric detector
cur-

0

h „elecll p van
i t 1 d itized spec ra

It is easy
1 d b the nor '1

correlation unc
'

toelectric signa o
ounter, the same qu

xp

—l/2

yii(X, P iS n) on-negative, we t



LASER BEAM FLUCTUATIONS AND BEAM MIXING

tistical properties of thermal light. While it is remarkable
that similar equations describe the behavior of optical
fields as diferent as thermal and laser fields, it is im-
portant not to overlook certain very important diRer-
ences. Thus, Eqs. (26) and (27) apply only to the super-
position of two independent laser fields, and not to the
separate fields. Indeed, in view of the properties (10)
and (11), r(x, r) =1 for all x, r for a single-mode laser
field, and f(x,v) = 5(v). On the other hand, when v~= vi,
(26) and (27) correctly describe the field of one thermal
source. Thus the superposition plays a much more
significant role for laser fmlds than for thermal ones.
We illustrate this feature by calculating the distribu-
tions of photon numbers and of the classical wave ampli-
tude for a field produced by superposition of two 6elds
described by density operators of the form (14). We
shall refer to the resulting 6eld as a two-mode laser
6eld.

5. SOME PROPERTIES OF A LASER FIELD CON-
SISTING OF TWO INDEPENDENT MODES

For simplicity we again take the two modes to cor-
respond to parallel plane waves with similar polariza-
tions j, and. assume that the density operators p& and
pm for the two modes are both of the form (14a), with
equal values of 8 (i.e., equal expectation values of in-
tensity at x), but not necessarily equal functions

fi({v~,,})and f2({v~,,}).The density operator p of the
combined field will be given by (15), with

P (f., '))=f (( . '))h(&—lv'(, t)I)

p.((",."))=f ((".."))&(&-
I
v'"(, t) I),

where V (x,t) and V/'(x, t) are the eigenvalues of A;(x, t)
corresponding to the states

I {vj...'})and
I {v~,,"}),and

are defined by (14b) with an obvious extension of the
notation. If we introduce these eigenvalues into (17),
the equation becomes

A;(x, t) I (vg, ,') & I {vg,,"))
= [V,'(x,t)+ V;"(x,t) 3I {v,,.')) I (v, ,.")). (30)

However, by Sudarshan's theorem" "
p must also be

expressible directly in the form

4'((v~')) I(», ))({»,.) Id'(», } (31)

where
I {v~,,})is an eigenstate of the annihilation opera-

tor A, (x,t) for the combined field. Hence

A, (x,t) I {vz,,}&=V,(x,t) I {v&,,)&, (32)

where V, (x,t) is given by the corresponding expansion
(14b). Comparison of (30) and (32) shows that the eigen-
states I(v~, ,)) and

I {v~,,'}&l(vq,,"))will correspond to
the same eigenvalues if

V,(x,t) = V/(x, t)+ V,"(x,t) . (33)

We may use this equation to relate C'({v&,,)) and

pi({vk, ,'}) and p&({vz,,"))by writing

C({vp,,))= pi({vg, })p&((v&,"))8[V,(xt) —V, '(xt) —V,"(x,t)$d'{vz, ,')d'{va, ,"}. (34)

Following the method of Ghielmetti, "we now express the probability distribution p({»,.)) for a particular set
of photon numbers (»,,) in the form

p({», ))=»[t
I (», ))((», ) I 3

=» c((».*})I (», )&(("-, ) I (»..))((», ) I d'(», )

and when we introduce the known scalar product of
I (v~, ,)& and

I (»,,)),i2 this becomes

&k, s &k, s ""'
p({»,.))= c'((»,.})II~.. exp( —v~, ,~v~, ,) d'(v~, ,) .

nk, s ~
f

with
m — k, s nk, s ~

Hence from (35) and (36)
pk kss

p(~) = @((v.,,))p(~. ,) II.,. ' ' —exp( —v.„'v. ,) S„, d'(v, ,),
nk, s ~

t

and, with the help of the multinomial theorem, this can be written

[Z.,.I »,.I'1"
P(~) = @({vk,.))

n!
exp( —E.,.I »,.I

')d'(», .) .

Now the probability distribution p(e) of the total photon number rt is related to p((», ,})by

p(&) =&(~k,,) p((». ))~-,-,

(35)

(36)

(37)
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V;*(x,t) V, (x,t)d'x—= U, (38)

and this allows us to write (37) in the form

U"
p(n)= C'({», })—c 'd'{», }

U'n

P(U) c dU

(39)

We can further rewrite this relation in a more convenient
form, in which it applies to the numbers in a given
volume 8V, by identifying the normalization volume I.'
in Eq. (14b) with the volume 5V, provided the linear
dimensions of 6U are very large compared with the
wavelength of the light. For, by applying Parseval's
theorem to the expansion (14b), we find

where'~

P(U') = C({vg,,})8(U'—U)d'{vg, ,}. (40)

We note that p(n) is now expressed in exactly the same
form as in the usual semiclassical theory of light
Quctuations. '5

For the purpose of the present discussion we choose
the volume 6V to be a cylinder of base S parallel to the
wave front (which we may identify with the surface of a
photoelectric detector) and of height cT (where T is the
counting interval). Moreover we choose T to be very
short compared with the reciprocal frequency spread of
the light, but much longer than a period. Under these
conditions U can be replaced by V,*(x,t)V, (x,t)ScT
when it occurs under the integral (39) or (40), and we

find from (29), (34), and (40)

fi({», '})f2({»,"})8[B
I
~i'(»t)

I
j8[B I

V;"(x,t—) I)

)&8[V,(x,t) —V/ (x,t) V;"(x—,t) j8[U V;*(x,t) V;(—x,t)ScTjd'{v~,}d'{~, v, '}d'{v,~,,"}
fi({v~„'})f2({vq„"})b[U—2B'ScT(1+cos(8'—8"))jd'{vq, ,'}d'{vq„"},

(41)

where
arg V, '(x, t) = 8'

arg V;"(x,t) =8".

We have already noted in connection with Kq. (14b)
that stationarity is assured if the functions fi({v&,,'})
and fm({vq„"}) are such that the phases 8' and 8" are
uniformly distributed over 0 to 2x. The difference 0'—0"
is therefore also distributed at random over 0 to 2m. , and
since according to (41),

U= 2B'ScT[1+cos(8' —8")j,

P(U) =
2ir B'ScT sin(8' —8")

2(U) Une —U

p(n) = dU.
~n![2U(U) —U~ ji~2

(44)

For very large values of (U) this distribution has a
minimum at n=(U), and peaks at n=0 and n=2(U).
It should be compared'4 with the corresponding one-

evident from the density operator (14) for the single-
mode field that the corresponding p(U) must be a 8

function. For the polarized thermal field one obtains an
exponential distribution. "

We may now use (43) to calculate the counting dis-
tribution p(n) from (39). We then obtain

and

v [(2B'ScT)'—(U—2B'ScT)']'"

for 0& U&4B'ScT, (43)

P(U) =0 otherwise.

The constant 2B'ScT, or 2(Ii(x, t))ScT, is the expecta-
tion value (U) of U. Apart from the factor ScT, U
itself now corresponds to the light intensity in the classi-
cal description of the beam. The distribution P(U) is
illustrated in Fig. 2, in which the corresponding dis-
tributions for a single-mode laser field and for the 6eld
of a thermal source are also shown for comparison. It is

0.5

%11

c
~ass ~

t l i i l I t ~ U/+U+
2,0 5.0

FiG. 2. The probability distributions of U for A, a two-mode
laser field; 3, a single-mode laser field; and C, a polarized thermal
field.

37 This simple representation was suggested by Dr. C. L. Mehta.
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g(&I)) P(X)
Ji

I 0 '-

by integration over I',

&(2I,' l)—X')

o(X)= , -dY,
~(2(r) xf) 7$2L(I)~—(X~+ V2 —(I))']'~2

X&V(2(I)).

mode (Poisson) distribution having a single peak at
e= (e), and the (Bose-Einstein) distribution for a
polarized thermal field which decreases exponentially
from v=0.

Finally let us make use of the distribution P(U)
given by (43) to calculate the distribution p(X) of the
real pa, rt X of the complex eigenvalue U, (x,t) of the
field operator. p(X) is essentially also the distribution
of the instantaneous classical 6eld amplitude. We have
already noted that, for T very short compared with the
reciprocal frequency spread of the light,

II=
i U, (x,t) i'ScT,

and, since stationarity is assured if the phase 8(x,t) of
V, (x,t) is randomly distributed over 0 to 2m, we can
immediately use (43) to write down the joint probability
distribution p'(~ V~,e) of

~
V~ and 8. Thus

2[ V/&c&
P'(I Ul A) = I'(I Ul's I')

(46)
/f2[(I)2 —

(~ U~2 —(I))2]»2

for
~

U~ &g(2(I)),
=0 otherwise.

In this expression the constant

28'= 2(Ii(x, t))= 2(I2(x,t))

has been replaced by (I), the expectation value of the
intensity of the composite beam. Hence, if X and I'
are the real and imaginary parts of V,(x,t), the joint
distribution p"(X,V) of X and V is

p"(X,V) =
~2L(I)2 (X2+ V2 —(I))&]i/2

for X'+ 7' & 2(I),
=0 otherwise, (47)

and the probability distribution (P(X) of X alone follows

C
i I I I 1 t i l 1 I T~U I ~ X/Q(gag)0 I.Q 2.0

FIQ. 3. Probability distributions of the classical wave amplitude
for A, a two-mode laser field; 3, a single-mode laser field; and
C a polarized thermal field.

With the help of the substitution V=L(2(I)—X')
&&(1—x')]'~' the integral may be transformed to

a(X)=-
%2

f21 dS

E (I)) 0 Q(1—x')g(1 —x'L1 —X'/2(I)])

l~(&(1-X/2(I))]
(I))

for X' & 2(I),
=0 otherwise, (48)

where K is the complete elliptic integral of the 6rst
kind. This distribution is illustrated in Fig. 3, where the
corresponding probability distributions for a single-
mode laser beam and a beam from a polarized thermal
source are shown for comparison. "The same distribu-
tion (48) was also found by Hodara" for the super-
position of two strictly sinusoidal oscillations with
random phases.

It is evident from inspection of Figs. 2 and 3 that the
fluctuation properties of the two-mode laser 6eld are in
a sense intermediate between the properties of the other
two fields. Moreover, in some significant respects its
behavior is closer to that of the thermal field than of the
single-mode laser field. Thus, we m.ote that in Fig. 2 a
minimum of the two-mode distribution coincides with
a maximum (an infinity) of the one-mode distribution,
and conversely in Fig. 3. It might well be difFicult to
construct two fields diGering more than this in their
Quctuation properties. It should not therefore be sur-

prising th,at the photoelectric measurement of the super-
position field carries information that measurements of
the separate fields do not. The fact that Eq. (27) for the
spectral density f(x,v) coincides with the corresponding
equation for a thermal 6eld may be said to be a reAec-
tion of the dominance of phase fluctuations for this
problem.

APPENDIX: THE RELATION BETWEEN SECOND-
ORDER MOMENTS AND CORRELATIONS

The general relation of any order between moments
and correlations of the number operator was recently
obtained, "but the integral in the commutator given by
Eqs. (2) was dropped prematurely. We show below
that this term makes no contribution to the 6nal rela-
tion, provided the linear dimensions of the volume 8V
of integration are large compared with the wavelength.

"L.Mandel, Quantum E/ectronics, III (Columbia University
Press, New York, 1964},p. 101.

3' H. Hodara (to be published).
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