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The frequency shift predicted by Brown and Kibble, and by Goldman, for a photon scattered out of an
intense beam by a free electron is re-examined. It is shown that the effect has a very simple classical inter-
pretation, as a Doppler shift arising from the nonzero average velocity of the electron in the beam. The
discrepancy between this prediction and the recent perturbation calculation of Fried and Eberly is shown to
arise from the use, in the latter, of a pure monochromatic beam rather than a wave train of 6nite length. It
is shown that the effect should arise for a quantized photon beam as well as for a classical one. The question
of energy-momentum conservation is discussed. With the help of a one-dimensional model which exhibits all
the essential features of the effect, it is shown that the extra energy and momentum which are generated in
the scattering process are taken up by the beam itself in the form of an extremely small shift in the aver-
age momentum of a photon in the beam. The possibility of experimental detection of the effect is briefly
discussed.

1. INTRODUCTION

HE interaction of intense laser beams with matter
exhibits many interesting and unusual features. '

It is therefore of considerable interest to examine their
interaction with a simple system for which the effects
to be expected can be calculated with precision. In a
previous paper, ' here referred to as BK, th, e interaction
with a single free electron was examined, using a semi-
classical treatment in which the laser beam was rep-
resented as a classical plane-wave field. It was shown
that the frequency of a photon scattered out of the beam
should be shifted by an amount depending on the beam
intensity, though quite small for presently available
intensities. The same result was obtained independently
by Goldman, ' using similar methods.

In this paper, we shall examine certain aspects of this
effect in greater detail. In particular, we hope to eluci-
date an apparent paradox concerned with energy-
momentum conservation, and to show that, contrary to
a recent assertion of Fried and Eberly, 4 the effect should
occur for a quantized beam as well as for a classical one.

We begin by presenting, in Sec. 2, a simple discus-
sion of the origin of the effect. We show that the fre-
quency shift is simply a Doppler shift due to the fact
that an electron initially at rest acquires a nonzero
average velocity in the direction of th, e beam. This
velocity arises from the circumstance that, when the

*The research reported in this document has been sponsored
in part by the Air Force OfFice of Scientific Research under Grants
AF EOAR 62-87 and 64-46 through the European Ofhce of Aero-
space Research, (OAR), U. S. Air Force.

fA preliminary version of this work was presented at the
Conference on Quantum Electrodynamics of High-Intensity
Photon Beams held at Durham, North Carolina on 26—27 August
1964, under the auspices of the U. S. Army Research Ofhce.

' See, for example, P. A. Franken and J. F. Ward, Rev. Mod.
Phys. 35, 23 (1963);Z. Fried and W. M. Frank, Nuovo Cimento
27, 218 (1963).

'L. S. Brown and T. W. B. Kibble, Phys. Rev. 133, A705
(1964).
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amplitude is varying, the phase difference between the
electron velocity v and the electric field E is not exactly
2'x, so that there is a nonzero force v x B in the beam
direction. This provides an acceleration when the ampli-
tude is increasing, and a deceleration when it is de-
creasing. Quantum-mechanica1ly, the eA'ect arises, as
was shown in BK, from the mass shift of an electron
propagating in an intense beam. It may also be re-
garded as an effect complementary to the refraction of a
photon passing through a cloud of electrons.

In Sec. 3, we shall show explicitly that a quantum-
mechanical calculation of this process is necessarily
equivalent (so long as radiative corrections are neg-
lected) to a semiclassical calculation in which the field
is treated as an unquantized external field. This equiva-
lence is essentially a statement of the correspondence
principle for such processes. The differences between
our calculation and that of Fried and Eberly are
analyzed in Sec. 4, and the discrepancy is shown to arise
from the use, in the latter work, of a monochromatic
beam from the outset of the calculation. Such a beam
must necessarily occupy the whole of space, and it is
therefore inconsistent to regard the electron as free
even in the remote past. Instead, we should use a wave
train of finite length, and treat the monochromatic beam
as a limiting case obtained when the length of the beam
tends to infinity. This limiting procedure is unusually
delicate for problems involving beams of finite density.
We shall show that a calculation using a beam of finite
length must yield a frequency shift, which persists
even in the limit. Classically, it is clear that the effect
arises from the acceleration of the electron during the
process of switching the beam on and off. The velocity
of the electron inside the beam depends only on the
beam intensity. If the beam is switched on more gradu-

ally, the acceleration is slower, but the final velocity is
the same. Thus, the precise way in which the amplitude
varies with time is not important.

There is one reservation to be made at this point. It
is essential that the amplitude should be a slowly vary-
ing function of time, or equivalently, that the frequency
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spread in the beam should be small. If the beam possesses
a sharp cutoff there are edge e8ects which modify the
conclusions, and which could be quite large. ' These
eGects are discussed in Sec. 5, and shown to be small in

physically interesting situations, except conceivably for
high-velocity electrons and sharply focused beams.

In Sec. 6 we examine the nature of the limiting proc-
ess involved in going to the monochromatic limit. By
considering the case of an exponentially varying ampli-
tude, we show explicitly that in this limit we recover the
results of BK.

Because the use of coherent photon states makes it
rather difficult to discuss in detail any changes in the
energy and momentum of the beam, we shall consider
in Sec. 7 a simplified one-dimensional model which ex-
hibits all the important features of the effect. For this
model, a calculation involving states with definite photon
number can be carried through even when the photons
are not in pure momentum eigenstates. The calculation
is considerably simplified by employing coherent states
as generating functions for the N-particle states. It is
possible in this model to see explicitly where the energy
corresponding to the frequency shift goes. In fact, it is
taken up by the beam itself in the form of a very small
shift in the average momentum of a photon in the
beam.

The conclusions are summarized in Sec. 8, and some
remaining unsolved problems are discussed. We also
include a discussion of the possibility of experimental
detection of the effect.

For simplicity, we shall treat the electron as a scalar
particle throughout. The spin is in any case unimpor-
tant in the optical region of frequencies, and does not
affect the frequency shift, but only the cross section.

2. ORIGIN OF THE FREQUENCY SHIFT

The predicted frequency shift is a purely classical
effect (though, as we shall show explicitly later, it does
not disappear in a quantum-mechanical calculation).
We shall therefore begin by discussing its origin in
classical terms.

Let us consider a circularly polarized wave propaga-
ting in the s direction, with an amplitude which in-
creases slowly to its maximum value, and after some in-
terval decreases again to zero. As the electron enters the
beam, it will start to oscillate with increasing amplitude.
Now, if the amplitude were constant, the velocity v
would follow E exactly ~x out of phase. However, when
the amplitude is increasing, the phase difference is less
than 2'm, and there is a nonzero accelerating force
v x B in the s direction. Similarly, when the amplitude
is decreasing, there is a decelerating force. If the elec-
tron is initially at rest, then, while in the beam, it has a
nonzero average velocity in the direction of propaga-

~ Because these effects were neglected, the discussion of a beam
with sharp cutoff in an earlier (unpublished) version of this paper
was incorrect.

tion. The frequency shift is simply a Doppler shift pro-
duced by this mean velocity.

To be specific, let us consider the field represented by
the vector potential

A, =a(r) costs, A„=a(r) sin&or, r= I s, —
where a(r) is a smooth function of ~ vanishing at
7 =~~ . The electric and magnetic fields are then

E~= 87J= GG7 SlnG0T 8 COSMT ~

E„=—8,=a~ costs+ a' sin&sr.

To find the electron momentum, we have to integrate
the Lorentz force equation. It is not hard to verify
that, if the electron is initially at rest at the origin, then
its momentum and energy at proper time' 7 are (with
c= 1)

p, (r) = —ea coscor,

p„(r)= —ea sin&or,

p, (r) = e'u'/2m

po(r) =m+ e'a'/2m.

The mean velocity of the electron in the beam is there-
fore in the s direction, and of magnitude~

Thus for low frequencies, co((m, the wavelength of light
scattered at an angle 8 is shifted by the amount

In a quantum-mechanical calculation, the origin of
the frequency shift may be traced to the fact that the
mass of an electron propagating in an intense electro-
magnetic field is increased by the amount'

Am'= ( e'A„A—").»= p'm'

where the brackets denote a time average over many
oscillation periods. This may be seen either from the
Klein-Gordon equation or, in terms of Feynman dia-
grams, by noting that the e'2' term in the interaction
yields a constant (or slowly varying) mass correction as
well as an oscillatory term. '

To acquire this mass, the electron as it propagates into
the beam must take up some energy and momentum
from it. If the energy-momentum is initially p&, then in-
side the beam it must be p"=p"+ak&, where k& is the mo-
mentum of a photon in the beam. (Classically, k"= am&,

where e& is a null vector in the direction of propaga-
tion, and co is the angular frequency. ) The constant n

6 It is characteristic of propagation in a unidirectional field that
the proper time is linearly related to t—z. This may easily be
veriffed by integrating (1) to 6nd the coordinates as functions of r.

7 The parameter p' was denoted by 7' in BK.This was, however,
an unfortunate choice of notation, since s might be confused with
the frequency.

8 +le use natural units with c=A = 1, and a metric with signature
(1—1—1—1) and scalar product a'b=apbp —a.b.

9 This is also evident from the structure of the electron Green's
function. See BK, Appendix A.
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where the dimensionless constant t is given by

(10)

FIG. 1. Kinematics of the
high-intensity Compton scattering
process.

It is the fk term in (9) which gives rise to the fre-
quency shift. From (8) or (9) we easily find

iiP

n,hp = npi, hk —=Xrpnenpi, . (6)

It is easy to verify that this agrees with (5).For an elec-
tron initially at rest (which is of course implicit in the
discussion of optical-path length), (5) yields

hp= 6m'/2m=-', p'm.

But, using the relation between amplitude and photon
density, we easily find from (2)

p' = 2' oni, i,/m,

and this clearly reproduces (6).
If the electron passes right through the beam with-

out scattering, its momentum reverts from p to p on
emerging from the other side. However, if some proc-
ess occurs within the beam to change its momentum,
this will not be the case. In particular, if the electron
scatters a photon of energy-momentum k' out of the
beam, as shown in Pig. 1, then, looking at the proc-
ess from inside the beam, we find that the energy-
momentum conservation equation takes the form

p'+k'= p+k.

Equivalently, in terms of the momenta outside the
beam,

(9)p'+k'= p+k i k, —

may be determined. from the condition

P=p'+ Am'.
This yields

@~=p~+(a m/2p k)k& (5)

This momentum p is simply the average value of the
classical momentum (1).

It is interesting to note that this relation may be ob-
tained in yet another way, by considering the propaga-
tion of a photon through a cloud of electrons. It is well

known that the optical-path length l in a medium with
electron density m, is increased. by the amount

Al/l =n,X'rp/27r,

where ro e'/4rrm is the ——classical electron radius. This
change in optical-path length must be reQected in a
corresponding decrease in the photon momentum.
Hence, if the photon density is e», the total transfer
of momentum per unit volume is

p k= p k'+(hm'/2p k)k k'+k k'.

For co&(m, the last term on the right is negligible, and
we recover the expression (3) for the wavelength shift.
(The general expression is given in Sec. 8.)

From (9) we may conclude that the total energy-mo-
mentum of the beam must change in this process by the
amount (1—i)k. So long as we regard the beam as a
classical electromagnetic wave, this conclusion poses no
particular problems. However, when we consider a
quantized photon beam, we are immediately faced with
an apparent difhculty. Since the number of photons in
the beam can only change by an integer, it seems at
6rst sight impossible to change the momentum of the
beam by any amount less than k. These considerations
have led Pried and Eberly4 to conclude that the fre-
quency shift is an exclusively classical eGect which
cannot occur for a quantized beam.

On the other hand, there is a general correspondence
between the semiclassical and quantum-mechanical de-
scriptions of a radiation field' which would lead one to
believe that the two methods of calculation ought to
lead to the same answer, so long as radiative corrections
are neglected. Indeed, we shall prove that this is true
for our problem in the next section, and exhibit the
equivalence explicitly in Sec. 4. Any failure of the
equivalence would in fact be tantamount to a viola-
tion of the correspondence principle.

We are still faced, of course, with the problem of what
happens to the momentum f'k. However, there is another
way in which the momentum of the beam can be
changed, apart from removing photons from it. This is
to change the average momentum of the remaining
photons. We shall try to show in the following sections
that this is indeed what happens. This conclusion may
seem less surprising when it is realized that the mo-
mentum of the beam is in any case decreased, albeit
by a minute amount, during the presence of the elec-
tron. (If many electrons were present, the amount
could even be large and lead to refraction of the beam. )
If the electron scatters inside the beam, the momentum
does not revert precisely to its original value at the end
of the process.

A simple analogy may perhaps help to explain the
mechanism of this process. Consider a potential which
has the eGect of splitting a degenerate energy level into
two components with separation hE. Let us slowly
switch on the potential. Then, if the system is in the

"See E. C. G. Sudarshan, Phys. Rev. Letters 10, 277 (1963).
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upper state, we can wait till it decays emitting a photon
of energy hE, and then switch off again. The amount
of energy extracted from the potential hE is clearly
independent of the rate at which it is switched on and
off. In this case, it is of course clear where the energy
has come from. The work done in switching on the po-
tential exceeds that recovered when it is switched off by
just this amount. It is our contention that a similar
mechanism operates to produce the frequency shift.
The work done by the beam in accelerating the electron
as it enters is not quite equal to the energy recovered
when it is decelerated on emerging from the other side.

It is clear that to see an effect of this kind, we must
use a beam of limited extent. The important feature is
the acceleration of the electron while the amplitude is
increasing, and its deceleration when it falls again to
zero. The calculation of Fried and Kberly was based on
a description of the beam as a state of definite momen-
tum. However, such a state must necessarily occupy the
whole of space, and it is therefore inconsistent to assume
that the electron is initially outside the beam. To avoid
this problem, it is necessary to use a wave packet to de-
scribe the beam, and only go to the limit of a mono-
chromatic beam at the end of the calculation. For a
beam of finite intensity, this limiting procedure is un-
usually delicate. In most scattering problems, it is
equally satisfactory to use a pure momentum eigenstate
normalized in a box. The reason for this is that, as the
volume of the box is increased to infinity, the particle
density tends everywhere to zero. Thus, although the
particles are not localized, they are on the average in-

finitely far apart and may consistently be treated as
free. The situation in our problem is quite different
however. If we let the number of photons tend to in-

finity with the size of the box, then the electron is al-

ways moving in a beam of finite density and cannot be
regarded as free. Therefore, any results obtained using a
pure monochromatic beam from the outset of the cal-
culation must refer to momenta measured inside the
beam, not to free-particle momenta.

A similar situation obtains in the example of the po-
tential quoted above. If we do not switch off the po-
tential, but consider a constant potential which is al-
ways on, then the initial and final states of the system
are not the unperturbed energy levels, but have energies
which include the perturbation. It is only with this in-
terpretation that energy can be conserved in the
process.

It is actually unnecessary for our purposes to limit
the extent of the beam in transverse directions. It is
sufhcient to take it to be a wave train of finite length,
with infinite plane-wave fronts. It is then consistent to
assume that the electron is free before the arrival of the
beam and after it has passed. Such a beam possesses a
unique propagation direction, which may be covariantly
characterized by a null vector e& lying on the forward
light cone. It is described classically by a vector poten-
tial A„which is a function only of r=e z(=t s, —

say). Quantum-mechanically it is described as a super-
position of many-photon states in which each photon
has a momentum parallel to e&, but with a spread of
frequencies.

It is not impossible that the results would be affected
by limiting the extent of the beam in transverse direc-
tions also. This is a point which deserves further study.
However, it is very unlikely that the effect would be
to remove the frequency shift altogether.

3. EQUIVALENCE OF SEMICLASSICAL AND
QUANTUM —MECHANICAL CALCULATIONS

The semiclassical method of BK seems adequate to
describe scattering processes occurring in the intense,
coherent electromagnetic field produced by a laser.
However, its validity has recently been questioned by a
number of authors, 4""who assert that qualitatively
different results are obtained when the field is quantized.
It is therefore necessary to show that a fully quantum-
mechanical calculation leads to the same results, so long
as radiative corrections are neglected. This result, which
is of quite general validity, is essentially a verification
that the quantum theory possesses the correct classical
limit.

In discussing the classical limit of the quantized
radiation field it is convenient to employ the "coherent"
states, "defined as eigenstates of the positive-frequency
part of the vector potential operator A„&+&(z),'4

These states are the analogs of the classical-limit states
of a quantum oscillator. Each coherent state corresponds
uniquely to a classical solution of the wave equation,
A „(x)=2 Ret a„(x)$.It is essentially the quantum state
which most closely approximates this classical field.
(The classical-limit states of the oscillator may be de-
fined as those states which minimize the product Aqhp,
and simultaneously, for given (q) and (P), minimize the
energy expectation value (8).) Because these states
form an overcomplete set, all matrix elements of any
operator 8 may be obtained from its diagonal matrix
elements (a

~

B
~
a).

Now, to be specific, let us consider a calculation of
the Compton scattering process by standard Feynman-
Dyson perturbation theory, representing the beam as a
coherent state

~
a) of the radiation field. In evaluating

the contribution of the diagrams of any particular order,
we have to calculate the matrix element of a time-
ordered product,

"P.J. Redmond, paper presented at the Conference on Quan-
tum Electrodynamics of High-Intensity Photon Beams, Durham,
North Carolina, August 1964 (unpublished)."P.Stehle and P. G. deBaryshe (unpublished).

"See J. Schwinger, Phys. Rev. 91, 728 (1953);S. S. Schweber,
J. Math. Phys. 3, 831 (1962); R. J. Glauber, Phys. Rev. 131,
2766 (1963).' We use a circumflex to denote an operator.
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F1G. 2. A typical
Feynman diagram for
the one-dimensional
model calculation.

C,'"(x)=P
n (2s)"

dr1 ~ dr2dq1 dq

where C~'"(x) represents the sum of all diagrams con-
taining a single electron path which begins with a free
electron line of momentum p, and ends at the vertex x,
and C~ '"'(x)* is defined similarly. This expression
simplifies enormously if we make the restriction to a uni-
directional beam, for which A„(x) depends only on
r =e x. We can then perform three of the four integra-
tions over x at each vertex, and obtain 8 functions which
tell us that the momenta of successive electron lines can
differ only by a multiple of ii„(C.ompare Fig. 2, which
actually refers to the one-dimensional model discussed
later, and therefore contains no one-photon vertices. )
Writing p„+q,e„ for the momentum vector of the jth
line, we obtain

where V is the interaction operator of scalar electro-
dynamics,

V=icy*8„qA& —e'A„AI"q*q .

To do this, we have to rewrite the time-ordered product
as a sum of normal-ordered products. However, the
approximation of neglecting radiative corrections is
equivalent to omitting all internal photon lines, that is,
all contractions between A. „operators. Hence for these
operators (but not for &p), we may immediately replace
the time ordering by normal ordering. Now the matrix
element of a normal-ordered product between coherent
states is very simple. Each A„~+) yields a factor of a„,
and each A„& ) yields a„*, except for one which is
attached to the scattered photon line. Hence, except at
this one vertex, we may replace the operator A„(x) by
the classical field A„(x). The net result is that the
scattering amplitude has the form

(p', lr' ',al Sl p,a)= (p', lrV IS(A) I p), (12)

where S(A) is the scattering operator in the presence of
the classical external field A„(x).

4. SCATTERING FROM A FINITE
PARALLEL VfAVE TRAIN

The general discussion of the preceding section is
sufFicient to demonstrate the equivalence of the two
methods of calculation but, in order to see where the
differences between our calculation and that of Fried
and Eberly originate, it will be useful to examine the
perturbation calculation in more detail.

It is clear from the structure of the Feynman dia-
grams that

&p' ir'e'IS(A)
I p) = —i d4x e".."

XC„," (x)*[iea„—e'A„(x))C '"(*) (1 )

In(r )
Xe '"'* II exp[ —iq, (r;+i—r,)], (14)

i=1 gg'+Zc

C '"(x)=e '" ~exp— dr'I„(r') (16)

Since we are considering a wave train of finite length,
the electromagnetic Geld F„„(r) must tend to zero as
r —+ ~~. Hence we can certainly choose the gauge so
that

A„(r) —+0, r & —~. —
This choice is implicit in the discussion above, for other-
wise the integral in the exponent of (16) would not be
convergent. There is, however, a possible complication
(unimportant for the original argument of BK) which
may arise when we come to calculate C~. ""(x)*.For in
general we cannot simultaneously impose the analogous
condition at r =+~. In fact, if

F„„(r)= (e„e„e„ri„)F(r), —
then

A„(+~)= e„ dr F(r),

and this integral will be nonzero unless the zero-
frequency component of Ii vanishes. In that case,
it is clear that we cannot expect to 6nd a solution
of the Klein-Gordon equation satisfying the boundary
condition

C ""'(x)*~e'i"* x'~+~
unless p' is interpreted as the caiiolical momentum

where r +1=7 =e x, and

I„(r)= [2ep A (r) eA (r)]—/20 p.

We can then perform the integrations over q; and recog-
nize (14) as the expansion of the expression obtained in
BK, Eq. (2.6), by solving the Klein-Gordon equation,
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rather than the physical momentum p' —eA(~). It
will be more convenient to retain the usual physical
significance for p', and write instead the boundary
condition

,out(~)4~e([y'+eA(re)] o ~o ~ + ooJ 7

The corresponding solution is then easily found to be

scattering amplitude we obtain

(&',1 '.'IS(A) II»

= —i(2')' dq ()4[p'+eA(~ )+k' p
—g—n]f(q), (23)

where

f(q) = d«'" expl i dr'P'(r') ~.(r—')]
I

(.
,out(g)@ ei[y'+ed(co)i ~ o eXp « In'(r ) (20)

X I
2ee' p —2e'e'. A (r)]. (24)

where I„(r) is defined exactly as in (15) but with A(r)
replaced by A(r) —A(oo). The factor involving A(oo)
clearly exhibits the dependence of the wave function on
the chosen gauge. Its physical significance will be dis-
cussed further in the next section.

We can now see clearly where this calculation differs
from one involving an infinite wave train. If A(r) were
chosen from the start to be strictly monochromatic,
then the integrals over r, in (14) would yield 8 functions
which have the effect of reducing the integrations over

q, to discrete sums. Many of the resulting terms would
involve vanishing Feynman denominators, arising from
intermediate states in which equal numbers of photons
have been absorbed and re-emitted. Such infinite terms
were encountered by Fried and Eberly, and were re-
moved by a process of normalization of the wave func-
tions. The normalization constant involved is infinite,
and this is not a purely formal infinity, but the mathe-
matical expression of the fact that the Klein-Gordon
equation in the presence of a truly monochromatic field
possesses no solution with the prescribed boundary
condition

This expression agrees with that found in BK, except
for the neglect of electron spin and the appearance of
the extra term eA(~) in (23). We shall discuss the origin
of this term in the next section.

5. EDGE EFFECTS

We have already seen that it is necessary to consider
a wave train of limited duration, but we have not
examined the question of whether the actual shape of the
amplitude function is important. We shall see that
within reasonable limits it is not. It is essential, how-
ever, to consider a smoothly varying amplitude, for the
use of a sharp cutoff introduces some additional and un-
wanted effects."We shall discuss these effects in this
section, and show that for any physically reasonable
choice of the amplitude function they will be negligibly
small.

In the discussion at the beginning of Sec. 2 we made
the implicit assumption that the average value of A„
over several periods is always zero. Now, if F„„has the
form (18), then

C 'u(x)-e-'&' x' —+ —~ . (21) A.(r) =" dr'F(r'), (25)

e'= c'—(n. e'/n k )k', (22)

which satisfies e e'=0. Then, substituting the wa, ve
functions (16) and (20) into the expression (13) for the

Physically, this is because the electron cannot be a free
particle even in the remote past. In the form (16) this
fact makes its appearance in the circumstance that the
integral in the exponent fails to converge. For a beam of
limited extent, we could drop the contribution from the
lower limit of integration, replacing the integral from
—~ to v by one from 0 to 7., say. The only effect is to
multiply the scattering amplitude by an unobservable
phase factor. For an infinitely long beam, however, this
is impermissible because the phase factor is infinite.
Indeed, the wave function obtained in this way, though
a solution of the Klein-Gordon equation, would not
satisfy the boundary condition (21), and would there-
fore not represent a,n asymptotically free electron.

It is convenient, as in BK, to utilize the gauge in-
variance of the scattering amplitude by introducing the
gauge-invaria, nt polarization vector

and for an amplitude function with a sharp cutoff this
quantity can have a nonzero average value. For ex-
ample, suppose that

F(r) = (a/co) sin&or, 0& r&n7r/(d,
=0, otherwise.

Then clearly

A„(r)=0, ~&0,
= ae„(1—cos~r), 0&r&n~/c),
=ae„L1—(—1)"], r)nrr/a).

In this case, as is easy to verify, the average velocity of
the electron in the beam will have a component in the
transverse direction defined by e„. Thus the Doppler
shift will be altered by the corresponding amount.
Physically, this average velocity arises from the initial
acceleration of the electron during the first quarter
period. Its direction is that of the electric field during
this time.

"See footnote 5.
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If e above is odd, then A „(~) is also nonzero, and the
electron velocity is changed even in the absence of any
scattering. This is because of the acceleration produced
by the excess half-period. It is just this net change in
momentum which is described by the additional term
eA(~) in the 6 function of (22).

It is clear that these effects are a consequence of the
sharp cutoff. In fact, it is easy to see that they will nor-
mally be small if the amplitude function is smooth and
slowly varying. I.et us introduce the Fourier transform
of F(r),

dr e*"'F(r) . (26)

6. THE MONOCHROMATIC LIMIT

To illustrate the nature of the limiting process in-

volved in going to an infinitely long wave train, we shall

consider a specific example, in which the cutoff function
has an exponential form,

A„(r)=2 Re(a„e '"' »~'~), (27)

where a„ is a constant complex vector describing the
amplitude and polarization of the beam. "

"Note that u„here corresponds to ~8„ofBK.

Then A„(oo)= QpF(0) so that there can be an appreci-
able transverse momentum transfer only if the zero-
frequency component of Ii is significantly different from
zero. If the amplitude function is smooth, this can
happen only if the spread of frequencies p is of the same
order of magnitude as the frequency co itself, that is for
very short pulses. Moreover, the average value of

A„(r) over many periods is also related to the behavior
of F(a&) near pp= 0. In fact,

t+7 dpp sin(uT F(a))
dr A „(r)=p„—e '"'

2T g r 2s coT —uo+p

The contribution to this integral from the neighborhood
of co=0 is of the same order of magnitude as F(0), and
therefore very small. If T is chosen to be an integral
number of periods, then the contribution from near the
peak &pp of the spectrum F(&p) is also small —in fact,
smaller than the maximum value of A„by at least a
factor (y/ppp)'.

In a laser beam y is of course many orders of magni-

tude smaller than coo, so that these edge e6ects will cer-
tainly be negligible at least as long as the approximation
of treating the beam as unidirectional is valid. At first

sight, one might think that they could be important for
a focused beam, since the amplitude changes rapidly in

the vicinity of the focus. However, for nonrelativistic
electrons they should still be negligible. The significant

quantity is the amplitude "seen" by the electron, and
this will not vary rapidly unless the electron velocity is

large. The relevant parameter is the square of the ratio
of the period of oscillation to the time spent in the beam,
which is of order (s/c)' or less.

In one respect, this is a rather unphysical example,
since the electromagnetic field changes discontinuously
at 7=0. This difFiculty could be avoided by choosing
slightly different amplitudes for positive and negative
values of r. If we replace a„ in (27) by

(28)

is real. We also define

(29)

in agreement with (10) and (4).
We can now evaluate the exponential factor appearing

in (24) explicitly. Since we are assuming that p((a&, we
shall make the simplifying approximation of replacing
denominators of the form pp& ',iy by -a&. (This is not
strictly necessary. These factors may be carried through
the calculation, but do not significantly affect the re-
sults. ) We then obtain for the exponent the expression

i& sin(vr e+l&'Wit'(pp/y)(e+&' 1)—
according as ~&0 or 7.&0. Expanding the oscillatory
term in a series of Bessel functions and inserting in (23)
and (24), we find that the integral from —&0 to 0 is
just the complex conjugate of that from 0 to ~.Hence
we obtain

f(q) =Q 2 Re drD„(&e lr', ae»')

where
)&exp[i(q —r&p) r—(i&co/y) (e r' 1)7, (3—0)—

D,(),a) =2ee' pJ, (—$)
—2e'[p' aJ„ i(—&)+p' a*J,+i(—&)7. (31)

Apart from the exponential cutoff factors, the functions
D„are identical with the erlA, of BK, Eq. (3.24).

Let us concentrate on a particular value of r. Then the
leading term in D„depends on r through the factor
e &"~'. So we have to examine integrals of the form

f,(q)=2 Re dr exp i(q rM)r—
0

Zfpp

',ryr (e ~'—1,) —.-(32—)
7

a„+(iy/2(u) Rea„

for v) 0 and v&0, respectively, then both A„and its
first derivative are continuous at v=0. However, this
replacement does not affect the analysis in any signifi-
cant way, and we shall be content with the simpler
form (27).

For simplicity, we shall restrict the discussion to the
case of a circularly polarized wave, for which a'=0, and
choose the phase of a„so that the quantity
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Because of the damping factor e &"&', only values of
v&1/ry will contribute significantly to the integral.
Thus we may expect to be able to expand the coefhcient
of f in powers of pr. If we retain only the leading (linear)
term, then we obtain

r7
f.(c)=

(C ~~+&~) +I~ v
(33)

Then we see that the distribution of values of q is peaked
around the points (r—g)co, in agreement (for r = 1) with
the energy-momentum conservation equation (9).There
is no peak near the values rco which would correspond to
scattering at unshifted frequencies. In the limit p —+ 0
we obtain a sum of 8 functions of precisely the form
given in BK.

This conclusion is not changed by including higher
order terms. When the second-order term is included,
we obtain an error function. We write

k= i(q —ra)+—g(o)+ ,'ry, -
C=2Zf(0+'
x=k/2c'".

Then we find

piete discussion would be rather lengthy, and we
shall therefore give only a brief indication of the
results. One finds that, except in the immediate
vicinity of the peak, the leading term is indeed
given by (33), except for certain values of q
for which additional terms can arise because the
imaginary part of the exponent in (32) becomes
stationary within the range of integration. However,
these terms are rapidly oscillating functions of y and

q, whose contributions are vanishingly small when aver-
aged over a small range of values of q. The precise
shape of the peak is hard to determine, but of no im-
portance for our discussion, for which only the position
of the peak is relevant.

We may note that if we had chosen a monochromatic
beam from the outset of the calculation, and discarded
the infinite phase factors, then the term in f above
would have been absent and we should have obtained
no frequency shift. However, the correct procedure is to
take initially a finite value of p, and only let p —+ 0 at the
end of the calculation. This procedure yields the final
result

f(q) =P D„((,a) 2m 8(q r(u+—P(u),

f„=2Re[c ' 'e" Erfc(x)], (34) and hence

where Erfc(x) is the complementary error function. '~

Provided that g ra&+ (~ is —not precisely zero, x be-
comes large as y —+ 0. Thus we may use the asymptotic
expansion in inverse powers of x, and obtain

(p', ~'e'Is(w)
I p)

i g —D,($, )a(2~)'4(p'+k' —p —rk+gk), (37)

(2n)! 1 c
f 2x R„e -(—) (35)

in agreement with BK, Eqs. (3.13) and (3.23). (There is
a difference of a factor 2', which arises from the use of
different normalizations for spin-0 and spin--, particles. )

The 6rst term in this expansion yields precisely (33).
The higher terms are peaked around the same point,
and serve only to modify the shape of the peak.

These somewhat heuristic arguments can be rein-
forced by a more detailed examination of the integral
in (32), which can be expressed by a simple change of
variable in the form

f,=2 Re[(1/y)s*s —
'y(p, s)], (36)

where y(p, s) is the incomplete gamma function, " and
the arguments are given by

p= (ih)(~ r)+r/2, — —
s=ig(a/y.

Since we are interested in small values of p, we may use
the known asymptotic behavior of this function. Un-

fortunately, this behavior is rather complicated, par-
ticularly when p and s are nearly equal in the asymptotic
region (that is, when the parameter k is small). "A com-

'7 See Batemae 3Eaeescri pt Project, FIigher Transcendental
Fgnctioes, edited by H. Krdelyi (Mcoraw-Hill Publishing Com-
pany, Inc. , New York, 1953), Vol. 2, p. 147."See Ref. 17, Vol. 2, Chap. 9."See F. G. Tricomi, Math. Z. 53, 136 (1950).

'7. ONE —DIMENSIONAL MODEL

In order to substantiate our assertion that the mo-
mentum of the beam itself is altered by the interaction
with the electron, it is necessary to examine the beam in
more detail. The coherent states we used earlier are
rather inconvenient for this purpose, and it is better to
use states with a de6nite photon number (though such
states are of course a rather poor representation of a
laser beam). However, the number of photons in a beam
with finite intensity and infinite plane wave fronts is
clearly infinite, so that to do this we should have to
limit the extent of the beam in transverse directions
also. Then the problem would lose its essentially one-
dimensional character, and become very dificult to
handle. So, instead of examining this problem directly,
we shall set up a one-dimensional model which exhibits
all the essential features of the effect, and for which the
calculations are much easier.

We consider a model with one spatial and one time
dimension, in which a scalar "electron" field q interacts
with a scalar "photon" field A. It is clearly the quadratic
term in the interaction which leads to the eBect we are
interested in, so we shall discard the linear term. More-
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of the form

2(2S2) r+s+1 // //+1 r
—82(p'+k'+p ip n —p —p io,n)p [2p ~ n((p, i—o +zp)] 1

y fg I i=l i=1 i=l

r+s
[2p' n(id,' i—p~+io) j 1 g 22i2(p, b(&p,

'—ip,) . (47)
i=r+s+1

This is just a symmetrized version of the Feynman
diagram of I'ig. 2.

Now that we have an explicit form for the scattering
amplitude, we are in a position to discuss the changes in
energy and momentum of the beam. In the form (47),
conservation of energy and momentum is quite manifest.
Clearly, the momentum transfer at each vertex must be
small, for otherwise the energy denominators become
large. However, since the number of photons is very
great, there can nevertheless be a significant net trans-
fer of momentum if there is any tendency for these small
momentum transfers to be in the same sense for each
photon.

The amplitude will certainly be small unless there is a
substantial overlap between the wave functions c2(ip)

and i2'(ip), for if not the last term in the square brackets
in (46) becomes very small. (This is normally the largest
term, provided that e' is small in an appropriate sense-
to be made precise below. ) Thus the average momentum
transfer to each photon A~ must be small compared with
the momentum spread y of the wave functions, and must
therefore tend to zero with y. However, if the photon
density is held fixed, then the number of photons N
must tend to infinity like 1/y, so that the total momen-
tum transfer can still be finite.

The crucial question is whether there is in fact a
general tendency for the small momentum transfers to
be all in the same direction. If there is, then the integra-
tion over r in (46) should yield a distribution of values
of q which is peaked not at or, but at a somewhat smaller
value, po —Ship. (Here 1VAM is the quantity we have pre-
viously denoted by f co.) This is the effect we found in
our earlier calculation. There is, however, a second way
in which this tendency should manifest itself. Suppose
we examine the transition probability as a function of
the mean momentum cop' of the photons in the final
state [the center of the distribution n'(op) j. Then we
ought to 6nd that the maximum occurs at a value rather
higher than the mean momentum asap of the initial state
photons. The maximum should occur when Ro =orp' —~p is
somewhere near Ace, though the precise position will de-
pend on the shape we choose for the functions n(ip) and
u'(po). It will occur when n'(cp) most closely approximates
the actual distribution of momenta in the final state.
If the shape is changed, as is likely, this need not happen
when the mean values coincide. In principle, it would be
possible to determine the distribution of momenta in the
final state by evaluating the transition probabilities to
all of a complete set of final states, and taking the appro-

2(xp+M

u(io) =
( — )'+h'

26Ep +co
a'(ip) =

(p1—ihip ) +o'r

1(p1 1/2

2&~o&

Provided that y«co, we may extend the lower limit of
integration in (41) to —~, and obtain

12(r) /2pS iopr—//yl r-l-
~r(r) ~ r~—iaido'r //y( r(—

Substituting in (42), (43), and (46), we find

(48)

f(q) —2g2P7+ 1)1/212 dr sir(g rao) fy[r(—

where

&iS~r—~(r(

X C+iAi
L8M Vo(T)'

( 1
hco = epn p'i2p(

EP' n P n&'
(50)

priate phase-space average. However, the determina-
tion of the position of maximum probability for a fixed
shape is sufhcient to demonstrate the existence of a
shift, though not to determine its precise magnitude.
(For that, we must rely on finding the distribution of
values of q.)

One point which might perhaps be a source of con-
fusion should be mentioned here. The transition proba-
bility is in fact very close to its maximum value even
when the wave functions coincide, and bee=0. Thus one
might think that there should be a large probability
that the total momentum transfer is zero, or even of the
wrong sign. There is indeed a significant probability
that a measurement of the momenta of photons in the
beam would not reveal such a shift, but this in no way
contradicts conservation of energy and momentum. The
point is that the momentum transfer to each photon is
much less than the uncertainty in its momentum. The
determination of the average Anal-state momentum re-
quires a large number of measurements, which will pro-
duce results of varying sign, but with positive values
slightly predominating.

We now wish to show that both these manifestations
of the frequency shift do indeed occur. We shall again
choose an exponential cutoff function. We set
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and

&o +~o
C= +Rodeo

(bee)'+y' 2((vp'opp)'"

ie'y' 1 1 )+
2(a)p'a) )'~' P' I P nJ

Note that the quantity which here corresponds to
—a* u in our earlier work is Eo,o'0.0. Hence we should
expect the total momentum transfer to the beam to be
Thea, with Apr given by (50). We shall show below that
this is indeed the case. Note that Ace is proportional to
y, so that Theo remains constant as y tends to zero.

We are interested in the expression (49) for small
values of p and large values of E. We have already re-
marked that Ro must be small compared to y, so that
both h~ and 1/1V must go to zero with 7.Thus the square
bracket in (49) may be approximated by

CNerwkurlc[\+0(+) j
For Scan«y and e' small in the sense that e'/nuop«1, C is
approximately equal to unity, so the leading term in
(49) is

2e'(1V+ 1)'~'Q.pC~y

f(q) =
(q—(op+PA(o)'+-,'y'

(52)

It is clear from this expression that f(q) is peaked, as
expected, around q=~o —XA~, and not around q=MO.

Just as before, in the limit y —+ 0, f(q) becomes pro-
portional to a 8 function, 8(q—~p+SAM).

It is not hard to verify that the second effect we dis-
cussed above also occurs. Clearly, b~ appears in f(q)
only through the factor C~, and so f(q) will have its
maximum value as a function of 8M when

~

C
~

is a maxi-
mum. Now, the second and third terms of (51) are small
compared to the first term, so that

y'+ 8(aha)

(CI =Re(C)=-
&'+(&~)'

Hence the position of the maximum is given approxi-
mately by

The fact that this value differs from zero shows that the
distribution of frequencies in the final state is shifted
relative to that in the initial state. The factor of 2

suggests that the average value des is in fact produced

by relatively few photons acquiring substantially larger
momenta (but with momentum transfers still less
than y), and a larger number for which the momentum
transfer is smaller than Ace.

It is not hard to verify that the inclusion of higher
order terms does not affect these conclusions, and that
similar results would be obtained for other choices of the

shape of the functions u(pr) and n'(&u). However, since
no new points of principle emerge from such a discus-
sion, we shall omit it.

8. DISCUSSION

The principal conclusions of this paper are two.
Firstly, we have shown that the discrepancy between
the results of BK and of Goldman, ' and those of Fried
and Kberly4 is due to the use by the latter of an infinitely
long wave train rather than a finite one, and not to any
difference between the results of quantum-mechanical
and semiclassical calculations. (Any such diiference,
apart from radiative corrections, would in fact be a viola-
tion of the correspondence principle. )

Secondly, we showed that the apparent failure of
energy-momentum conservation is not a real failure.
It is possible to see precisely where this energy goes. As
we showed in detail in the case of the one-dimensional
model, the beam itself takes up this extra energy and
momentum in the form of a shift of the average mo-
mentum of the photons remaining in the beam. It may
be well to recall at this point that the magnitude of the
effect is very small indeed. It will be hard enough to see
the frequency shift of the scattered photon. It would be
quite impossible to detect the same amount of energy
distributed among 10"or more photons.

We showed in Sec. 2 that the frequency shift has a
very simple classical interpretation as a Doppler shift
arising from an average velocity of the electron in the
direction of the beam. It is also clear from this discus-
sion that the variation of the amplitude as the beam is
switched on and off is absolutely crucial to the exist-
ence of the effect. No calculation involving an infinitely
long wave train of constant amplitude could ever reveal
such an effect.

Our calculations were made possible by the essentially
one-dimensional nature of the problem, when the beam
is taken to have infinite plane-wave fronts. It would
certainly be desirable to repeat the calculation for a
more realistic shape of beam, and in particular for a
focused beam. In that case, the Klein-Gordon equation
cannot be solved in closed form, so that the calculation
would be much more difficult. In principle, however, it
could be solved numerically, and for some special
choices of the beam shape this might not be too hard. A
perturbation calculation like the one outlined in Sec. 3
would of course be possible. However, as we have seen,
the frequency shift is compounded of large numbers of
very small terms, so that it would almost certainly not
appear until a very high order. From the one-dimensional
model calculation, it is reasonable to conjecture that
one must go to an order comparable with the total
number of photons.

An alternative approach would be to use classical
(relativistic) electrodynamics. At least in the case of a
unidirectional beam, the effect is completely classical,
and the classical calculation gives exactly the same
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answer as the semiclassical or fully quantum-mechanical
ones."In principle, one can solve the equation of motion
for an electron in any prescribed 6eld, and it is then
straightforward, though possibly tedious, to compute
the radiation from it.

Another problem which deserves further attention
concerns the radiative corrections to this process.
Though these corrections are individually small, the
frequency shift itself is an example of a signi6cant eGect
arising from the sum of many small terms, and it is far
from obvious that the corrections are negligible in sum.
It would be desirable to show explicitly that they are so.

It may be useful to conclude this discussion with some
remarks concerning the possibility of observing this
effect experimentally. We shall need a more general
expression for the frequency shift than the one which
was given in Sec. 2. Let us denote the velocity of the
incoming electron by v (in units of c), the angles be-
tween its direction and those of the incoming and scat-
tered photons by n and P, and the angle between the
incoming and scattered photons by 8. (See Fig. 3, in
which the outgoing electron is not shown. ) Then from
(11) we find that the complete expression for the shift
in wavelength is

cosn —cosP

1—8 coso.'

Xc 2(1—v')'" sin'(-', 8) (1—v') sin'(-', 8)
+P (53)

X 1—v cosn (1—v cosn)'

Fro. 3. Definitions of angles in the
Compton scattering process. The out-
going electron is not shown.

](y

(mainly because of uncertainty in the angle 8), but its
sign is always positive. Thus, to verify the existence of
the effect, it is sufhcient to observe an asymmetry in the
distribution (besides that due to the Compton effect,
which will be small in practice). For this, it is enough if
p' is of the same order as v/c.

It is clearly desirable to keep the electron velocities
as small as possible, both to satisfy this criterion, and
because the intensity-dependent shift becomes small for
very large velocities, as may be seen from (53). More-
over, as we pointed out in Sec. 5, the edge e8ects could
conceivably become important for large velocities and
sharply focused beams. However, since the relevant
parameter in that case is p(v/c)', this is not an important
restriction.

If we assume optimistically that the electron kinetic
energies can be kept down to a fraction of an electron
volt, then we require at least p,'= 10 '. Now in cgs units
(54) becomes

p2-4X ~0—18)21

where X~ is the electron Compton wavelength. The 6rst
term of this expression represents the Doppler eGect,
and the second the Compton effect. The third is the
intensity-dependent shift we are interested in. Its
magnitude is determined by the parameter p, ', which
may be expressed in terms of the beam intensity (energy
flux) I by the relation

p'= roI 2I/v mc',

where ro e'/4vmc' i——s the classical electron radius.
It is not hard to obtain intensities sufhcient to give a

shift of measurable size. The real difhculty lies in dis-
tinguishing this from the Doppler shifts given by the
first term of (53).In order to achieve sufficient intensity,
the beam must be sharply focused, and the range of
values of 0, will be considerable. Because of this un-
certainty in 0., the Doppler shift will be uncertain by an
amount of order v/c (quite apart from any uncertainty
in v). Hence the Doppler shifts will dominate unless
p'&v/c. To first order, the Doppler shifts will be dis-
tributed symmetrically about zero. The magnitude of
the intensity-dependent shift may vary to some extent

"See BK, Appendix C.

Thus for X=5000 A we need an intensity I=10" W
cm '. This is beyond the limit of currently available
intensities, but not by an absurdly large factor. In-
tensities of this order might be obtained if the size of the
focal spot could be reduced, approaching the diffraction
limit more closely. For example, to achieve this intensity
with a 10-nsec pulse of 10'J, we should need a focal spot
of radius about 2X10 ' cm.

It is easy to compute the intensity of the scattered
light. Since the cross section is essentially the Thomson
scattering cross section, the number of photons scattered
out of a single pulse per unit solid angle is

e,DVTro'(1+ cos'8)
X=-

4+Ac

where V is the volume of the interaction region, and T
is the duration of the pulse. With the Ggures chosen
above, this yields N= 10 ' m„hewre rl, is in cm—'. (It
should be noted that the probability of a single electron
suffering more than one collision is quite large. How-

ever, this is not serious, because the change in velocity
of the electron at each collision is only of the order of
10-'.) The acceptable value of cV depends on the level



T. W'. B. K I B 8 LE

of background radiation, but it does not seem that it
would be impossible to obtain adequate electron
densities.

It is important to note that the experiment must be
done with genuinely free electrons in vacuum. Bound
electrons would probably not exhibit the effect, since
they are not free to be accelerated by the field. In any
case, at the intensities considered here, any gas present
would be ionized, and the effects of the resulting plasma
would be likely to obscure the effect we are interested
in. A frequency shift of light scattered from such a
plasma has in fact been observed. "This is apparently
also a Doppler shift arising from motion of the plasma,
but it is in the opposite direction to that predicted for
free electrons, and probably of quite different origin.
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tive to changes of momentum occurring in the region of
the beam.

To arrive at a correct description of the physical scat-
tering process, it is necessary to use a wave-packet de-
scription of the electron, as well as of the photon beam.
In other words, we should use a normalizable solution
C(x) of the Klein-Gordon equation. Such a solution
may be represented as a linear superposition of the solu-
tions C„' (x), of the form

d3

C'(x) = — C'n'"(x) ~(fi)
(2ir) '2p'

(A1)

C(x)- — e-'& *y(p).
(2m)'2p'

(A2)

It is worth noting that while (21) holds only as a
weak limit (in particular, it is nonuniform in x), this
Eq. (A2) holds as a strong limit in the sense of the norm
topology induced by the scalar product

From the asymptotic condition (21), which is valid for
any fixed values of the spatial coordinates x, we may
conclude that as x'~ —~, C approaches a free-
particle wave function,

APPENDIX (4
~

C)=i d'x(+*C,—%,*C), (A3)

A further argument has recently been advanced by
Stehle and de Baryshe" in support of their contention
that the frequency shift does not appear in a fully
quantum-mechanical calculation. They have evalu-
ated the expectation value of the operator i8/cs-
in the state represented by the wave function C„'"(x),
using box normalization, and shown that it is time-
independent, and, in the limit of an infinitely large box,
equal to p, .

This is, however, precisely the result one should ex-
pect on the basis of the argument presented in this
paper. As these authors remark, the wave function
C ~'"(x) at no time represents an electron spatially sepa-
rated from the beam. In fact, it is a non-normalizable
wave function representing an infinite beam of electrons,
spread over the whole of space. But this does not mean
that the expectation value of momentum in this state
is the average value of the electron momentum in the
beam. For a finite wave train, each electron spends only
a finite time inside the beam. Thus at a,ny time all but a
finite number of the electrons are outside the beam.
The expectation value of momentum in this state is
therefore determined by the momenta of the infinite
number of electrons outside the beam, and is not sensi-

where
iC „=(i8„eA„)C.. —

It has been suggested by Stehle and de Baryshe that
the wave functions C„'" for different values of p may
fail to be orthogonal. In fact, however, they satisfy the
same orthogonality relations as the free-particle states,
namely

(C""
I
C'.'")= (2 )'2p'~ (p' —&) (A4)

0*(1i)~(li)
(2n.)'2p'

The validity of this equation is in fact all that one
means by the assertion (A4). However, (A4) can also be
verified by direct evaluation of the integral.

Now let us examine the expectation value of momen-
tum in the state defined by (A1). It may be defined by

First, let us note that the scalar product (A3) of two
normalizable wave functions is necessarily independent
of time. Therefore it may be evaluated in the remote
pa, st to yield

"S. A. Ramsden and W. E. R. navies, Phys. Rev. I.etters 13,
227 (1964)."P.Stehle and P. G. de Baryshe (unpublished).

(pp) = iPx 2'Op(x)
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where T"& is the usual Klein-Gordon energy-momentum If we de6ne expectation values in the natural way
tensor,

T)„=4)),*8„4+8„43*4), g—),„(C„*C" —m'4)*4). (eA„)= d'x j'(x)A„(x),

As x, ~ —~, (p") tends to the expectation value in the
free-particle state specified by p. If p is sharply peaked
around some value of p, so that C closely approximates
C~'", then (p") must tend to p" in the remote past.
However, (p&) is not time-independent. Its time de-
pendence may be found from the relation

(
e—vzP~" = dax j), x F~" x,

p0

then we find that (p") satisfies the classical equation of
motion

where
B),T""=j),8&A",

j),= ie(4)*4 g
—4 ),*4)).

In particular, the expectation value of (p"—eA") during
the presence of the beam is on the average equal to p&.
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The paper contains a quantum theoretical analysis of laser beam fluctuations and of the light beat ex-
periments with two lasers. With the help of experimental results on photon counting fluctuations in a single-
mode laser field, some correlation properties of the field are derived, It is shown that the correlation equa-
tions are satisfied by states of the field which are much more general than "coherent" states. The equations
lead directly to the spectral density of the intensity operator in the light beat experiments, which can be
obtained from photoelectric measurements. The resulting expression is practically identical to that found
by Forrester for light having thermal statistical properties. The reasons for this are discussed by a compari-
son of the corresponding probability distributions of photon counts and of the classical wave amplitude.

1. INTRODUCTION

'HE problem of determining the optical spectrum
of a laser beam from beat experiments with two

or more lasers is of interest, not only because of its
practical importance, but because it involves the Auctua-
tion properties of the optical field. Immediately after the
development of the first continuously operating laser it
was recognized that the spectral profile of one mode of
the extremely narrow band light beam could not be de-
termined by conventional interferometry. The 6rst
order of magnitude determination of the spectral line-
width was based on a photoelectric analysis of the
"beats" resulting from the superposition of two similar
but independent laser beams, ' and variations of this
method have become standard practice. '

If we picture each Fourier component of one light
beam as "beating" against each Fourier component of
the other, we are naturally led to regard the spectral

*This research was supported in part by the U. S. Army Re-
search OfIice (Durham) and by the U. S. Air Force Cambridge
Research Laboratories.' A. Javan, E.A. Ballik, and W. L. Bond, J.Opt. Soc. Am. 52, 96
(1962).' See, for example, D. R. Herriot, J.Opt. Soc. Am. 52, 31 (1962);
B. J. McMurtry and A. E. Siegman, Appl. Opt. 2, 767 (1963);
M. S. Lipsett and L. Mandel, Nature (London) 199, 553 (1963).

excursion of the beat notes, rejected in the spectral
range of the photoelectric signals, as a measure of the
spectral width of the light itself. To an order of magni-
tude this measure will undoubtedly be valuable. How-
ever, in order to arrive at a quantitative relation be-
tween the spectral densities of the light beams and the
spectral density of the measured photoelectric signal,
we need to have information on the statistical proper-
ties of the optical fields. This information was not
available to the first experimenters, and indeed the
proper description of a laser field is still the subject of
debate. a s

By treating the classical wave amplitude of the optical
field as a Gaussian random process, Forrester' obtained

' W. E. Lamb, Jr., Phys. Rev. 134, A1429 (1964).
H. Paul, W. Brunner, and G. Richter, Ann. Physik 12, 325

(1963).
5 I . Mandel, Phys. Rev. 134, A10 (1964).
'T. F. Jordan and F. Ghielmetti, Phys. Rev. Letters 12, 607

(1964).
~ L. Mandel, Phys. Letters 10, 166 (1964).' H. Haken, Phys. Rev. Letters 13, 329 (1964).
~ A. T. Forrester, J.Opt. Soc. Am. 51, 253 (1961),and Advances

in Quantum E/ectronics (Columbia University Press, New York,
1961), p. 233. Actually Forrester did not make the Gaussian
random assumption explicitly, but implicitly, in treating the
Fourier components of the classical wave amplitude as statistically
independent variates.


