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Coupled-Channel Scattering with Complex Angular Momentum*
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A study of some problems in nonrelativisitic multichannel scattering is made in the context of complex
angular momentum. A generalization of the Mandelstam symmetry is obtained. It is shown that the well-
known "cusp" behavior in the elastic cross section when an inelastic channel opens up is not only present for
S waves, but is a persistent feature as the (real) angular momentum is varied continuously from ——,

' to +-,'.
The existence of the "indeterminacy points" is indicated. Using the factorizability condition on the residues
of the S matrix, it is explicitly exhibited how a part of the S matrix decouples when a resonance pole drifts to
the real axis.

I. INTRODUCTION

HE analytic properties of nonrelativistic scattering
amplitudes have been studied by several authors

in the context of complex angular momentum, both for
single-channel' and multichannel' ' potential scattering.
The purpose of the present paper is to make explicit
some of the consequences of these properties for the
multichannel case. Most pertinent features of the single-
channel Regge trajectories are well known and have
been veri6ed by numerical computation. '

In Sec. II various quantities are defined and the
generalization of the Mandelstam symmetry is derived
and translated into trajectory language. The factoriza-
tion of residues and the decoupling of channels when a
pole crosses the positive energy axis is discussed in
Sec. III. In Sec. IV the cusp behavior in the elastic
cross section when an inelastic channel opens up is shown
to persist as the angular momentum is varied from ——,

'
to +-,'. Indeterminacy points for X= —

2 and X= —1 are
exhibited in the Appendix.

II. MANDELSTAM SYMMETRY FOR COUPLED
CHANNELS AND INDETERMINACY POINTS

equation for this e-channel problem reads

d2

4(r)+KV(r) 4—(r) = V(r)4(r),
dr2 r2

(2 3)

k;= (k' —k(02) '". (2.4)

The wave function P(r) is an e&&n matrix whose rows
indicate the e-channel components and whose columns
differ by their boundary conditions; i.e., the ith column
has an incident wave only in the ith channel for the
scattering solution. One also defines, in the standard
way, matrix solutions of (2.3) by the boundary condi-
tions at infinity and at the origin:

:f;oP„K,r)S,,

~k,r~ '"
e l' ~"+»H—g&'&(k,r) 5;, , (2.5)

2 3

where E is a diagonal matrix with k, the incident
channel momenta:

Assume an e)&e potential matrix V;,(r) of the 4'&(&,Kr) —~4'0(&,K,r)&,,r~o
Yukawa type = 2"I'(1+X)r'"k; 'J),(k,r) 8;, . (2.6)

V;,(r) = ~,,(p) dp, po&0
uo

(2.1) The solutions f and p satisfy the following matrix
integral equations:

with all absolute moments of 0;,(y) existing; i.e., for
any integer P&0,

f(X,K,r) =f'P, K,r)

+ dr'gP, ,K; r,r') V(r') f(X,K,r'), (2.7)

I ~(~) I
~"& (2.2)

y(X,K,r) =qP(X,K,r)
The conditions (2.1) and (2.2) imply the existence of

rV@(r) and all its derivatives. The radial Schrodinger + dr'g(X, K;r,r') V(r')y(X, K,r'), (2'.8)
* Supported in part by the U. S. Atomic Energy Commission.
'R. G. Newton, The Complexj Plane (%. A. Benjamin Inc. ,

New York, 1963).' A. M. Ja8e and Y. S. Kim, Phys. Rev. 127, 2261 (1962). Our
de6nition of Jost matrix differs from the one in this reference and
that of Ref. 3. J.M. Charap and E. J. Squires, Ann. Phys. (N. Y.)
20, 145 (1962);21, 8 (1963);25, 143 (1963).' Hong-Mo Chan, J. Math. Phys. 4, 1042 (1963).

where the Green matrix function, g(X,K;r,r') is a
diagonal matrix with elements

g;(X,K; r,r') = —-,'~(rr') '"
X [Jg(k,r') V),(k,~)—Jg(k,r) V),(k;r')]. (2.9)
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Here J~ and Fq are the Bessel functions of the first
and second kind. The various symmetries of g;, q, and

f may be listed as

The Wronskians4 of p(h, E,r) and f(h,E,r) are given by

W[f(h,K,r),f(h, —K, r)]=2sK,
1

W[P(h, E,r),g(—h, E, r)]= ——1 sin2Irh. (2.15)(2.10)g, (h, —k, ; r,r') =g;(h,k;; r,r'),

g;(—h, k;; r,r') =g;(h, k, ; r,r'),

y(h, E, r) =—4I4(h,E,r),

f( h, K,—r)= f(h,E,r)

In order to remove the singularity of q at negative
integer and half-integer h s, we deftne a function p in

analogy with the single case' and satisfies the relationship

(2 11) The solution g can now be expressed in terms of f:

(2.12) P(h, K&r) =—{f(h, K,r—)K 'DT(h —K)
2i

(2.13)
—f(h,E',r)E' 'DT(h, K)}, (2.16)

where the Jost matrix D(h, +E) is given by

D(h, +E)=W[P(h,K,r),f(h, WK, r)] (2.17)

y(h, E,r) =y(h, K,r)/r(1+2h) . (2.14) D(h E)K 'D (h, —E)=D(h K)K—'D (h E). (2.18)

A scattering solution can now be de6ned

P(h E r) —=P(h E r) D ' (h K)K'"

1—={f(h E r)K—I/2[K —I/2DT(h K)D—1T(h K)KI/2] f(h K r)E—I/2}
2i

(2.19)

which gives as a definition of the S matrix

S(h K) S (h K) K'/'D '(h E)D(h — E)K '/'e4~&x ''/— —

The definition of D(h, E) leads to the relation

W(&I,&s)=4ID(h, —E)K IW(fl, fs)K 'DT( —h K)—4ID(h, E)K IW(ft, fs)K 'DT( —h E)—
Substituting from (2.15) for the Wronskians, we obtain

D(h4 —E)K 'DT( —h, K)—D(h4E)K 'DT( —h, E)= (2i/s. ) sin2Irh—l.
The symmetry (2.22) can be written in terms of the S matrix to read'

S(h K)e '~" S( hK)e' "=r( /—2)I(rsi—2nr I) h'ED/'(h K)D ' (—h E)E' '

which gives the matrix analog of the Mandelstam symmetry

S(——',N, E)= (—)~S(-',N, K)

(2.20)

(2.21)

(2.22)

(2.23)

(2.24)

for integer and half-integer X's.
We can understand the implication of the symmetry (2.23) better if we rewrite our S matrices for the two-

channel case now in terms of their eigenvalues and a mixing parameter e(h, K):

(cos'e+)Sl+(sin'e+)Ss sine+ cose+(Sl—Ss) )
S(X,K) = !

sine+ cost+(Sl —Ss) (sin'e+)Sl+(co's'e+)Ssl

A pole of S& or S2 therefore generally appears in all matrix elements of the S matrix.
Similarly

(2.25)

S(—h, E)=
(cos'e )Sl(—h, E)+(sin'e )Ss(—h, E) sine cosa [Sl(—h, K)—Ss(—h, E)] )

(2.26)
sine cosa [Sl( h E) Ss(—h E)] (sill e )Sl( h K)+(cos e )S2( h E)/

4 The Wronsi4ian of two matrix functions A(r), B(r) is defined by WLA (r),B(r)]=AT(r)B'(r) AT'B(r). Here T mean—s "trans
pose, " and primes mean differentiation with respect to r.

'Analogous symmetry satis6ed by a generalized Jost function for the case of elastic scattering of two particles of spin —, was
shown by B. R. Desai and R. G. Newton, Phys. Rev. 129, 1437 (1963).
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The Mandelstam symmetry (2.24) then implies that
when ) =-,'Ã

= e +grill'

Si(-',N, K)= (—)"Si(——,'N, K), m even (2.27)

Si(2N, E)= (—)~Sg(—-', N, E), m odd.

We see from (2.27) that when Si(—',N,E) has a pole,
i.e., a trajectory passing through a positive integer or
half-integer X, then either Si(—2N, K)or Sq(—'~N, E)

must have a pole, or a corresponding trajectory passes
through the negative integer or half-integer X.An S2-type
trajectory with e+-,7r is quite indistinguishable from an
S&-type with mixing parameter e, except possibly by its
history, if one can define sin& as being zero in the high-

energy uncoupled limit.
A trajectory can also pass through negative integer

and half-integer values through the existence of in-

determinacy points. An indeterminacy point is defined

by the vanishing of the residue P(X,K) when the S matrix
in the neighborhood of a pole is written from (2.25) as

p(X,E) ( cos2e(X,E) cosa(X,K) sine(X~E) )
S(~,E)=

X—o,(K) (sine(X, K) cosc(X,K) sin'e(X, K) )
(2.28)

III. FACTORIZABILITY OF THE RESIDUES
AND RESONANCE POLES

The S matrix can be expressed in the neighborhood
of one of the poles of its eigenvalues S„by a Regge-pole
form:

Sg =P. n(K)] 'P—g"(E).

The factorization of residues gives'

..n — .n .n

(3.1)

(3.2)

In the two-channel problem this factorization is
manifest because we may write the eth pole term for
Si(X,E) from (2.28)

Indeterminacy points for ) = —
~ and X= —1 are

explicitly derived in the Appendix.

I et us look at this expression below the threshold of
the second channel, but above the first. That is, keep
kP)0 and k2 iK2, E2 r——eal. Then, if n were to pass
through a real value, since 3f's are real analytic func-
tions of k and X,' we have

$3Eii(n, ki2)+kg cot&ra —iki' ]
cV22(n, E2')+E2'~ =3li22(n K). (3.9)

Sln1l G

Taking the imaginary part, we obtain

jectory, then, we have explicitly

L3Iii(n, E)+ki' e ' /sinirn]

XL3I2$(n)E)+k2'~e '~~/sinn+]=Mi2'(n, E). (3.8)

Mi~(n, Ki')+E2' (sinnn) '=0.
pn (X)E) f cos e sine cose)

Of course, from (3.6) this implies that
X—n„'(X,E) (sine cose sin'e )

pii= 0,
Consider now the T matrix defined by'

and hence that

(3.10)

(3.11)

S(X,K) = 1+2iT(X,K), (3.4)
p12 p21 (3.12)

T(X,K) = LK "3E(XK)K "+e '~'/sinn-X] ' (3.5) In other words, for such a situation, the channels 1
and 2 are decoupled, since the trajectory has a zero
residue for 1~ 1 and 1 —+ 2 channels. This corresponds
to the case of a "bound state" of channel 2 (and in
general cases of more channels, to a "bound state" of
all channels having thresholds above the bound state
energy). '

E 2'
+K»T(Z, E) .

»=i X—n '(E)
(3.6)

As usual P„' and n„' give the residue and position of
the eth "resonance pole" in the ith eigenchannel. T
serves to define the nonresonant part of the scattering.

The trajectories ) '0( )K=—are defined by the
solutions of

IV. CUSP BEHAVIOR AND ANGULAR MOMENTUM

DetL1if(X,E)+E'"(e ' "/sinirX)]=0.
Consider X real and to be specific, a two-channel

(3 7) problem. We are interested then in the behavior of Tii
near the threshold k2'=0.

For simplicity consi.der a 2-channel problem. The
argument that follows holds for any S&1. On a tra-

' Y. N. Srivastava (to be published).

For a corresponding discussion in the context of S-matrix
theory, see C. K. Jones, Princeton University, 1964 (unpub-
lished).
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kl"Tli '= M&1(kl')+kl'"
sine%

~
—sxX ——1

—M12' M22(k2')+k2'"
sine%

Since %22 can be written as

Case I:X&0
From Kq. (3.5), we can write

not be important compared to 3122('), for small k2'. So,
let us restrict ourselves to 0&)(1.There are two cases.
(a) k2 above threshold: Then, since in this region (i.e.,
0(X(1), (sinlrX) ' is finite, let us write, to lowest
power in k2'

k12"T„' = (Mll+kl'" c ot 2rX z—kl' )(4.1) I,2 O+

My22
(4.3)

M22+k22" COt2rX —ik22"

M22(k22) = M22&2&+k22M22&1&+
apso

(4.2) Defining

Nil= Mll+kl Cotll X k (4 4)
for X)1, the kinematical factor k22"e ' "/sinlrX would we have

M»2 tr k22"e '~'
k12 "Tll '=Nil —2k12"—

f

1—
M22&'& 5 M22 "& sinlrXJ

(
~12 ~12 SIy22

+ (cot l}kit —t' k,"+ k,'t) .
~22(P) ~22(P) 2 (0)2

After some algebra, one obtains

4X

f
T» f'=

(Nil M12 /M22 ) +kl
This already shows that

(Nil —M 12'/M22i" ) (M»'/M22&'& ') cotlr X+k 1'"M12'/M22 "&'
1—2k22" (4.5)

(Nil —M»'/M22&")'+kl'"

for0(A&i.
(b) k2' below threshold:

Then,

dkx2 a, -o'

k2 —k +j+2 ok~&21t—2 k221 —+ ok&"k&'f22"

3Ig22

(4.6)

k12xr ll
—1 M»+k12x cotlrX 2k12x

k12 P- M220+ E22"/sinlrX

M»2 ~=
f

Nil — - f+ 1r.221 ik12"'—
'k M22&") M 22"' sinlrl}.

Similar to (4.5) one again obtains

(4 7)

k 4x

f
T» f'=—

(Nll —M 12'/M22&'&) '+ k 1'"

Again, the quantity

(Nll M12 /M22 )M12 /M22 "sinlrX

(N» M»'/M22ro&) 2+k,41
(4.8)

dkP k2 -+0—

klM»2/M22 "&2

2k2
(Mll M12 /M22 ) +k1

(M11—M12'/M22"')'M 12'/M22""

(4.9a)
, -o+ (M„—M, 22/M22ro&) 2+k12

kg2

(4.9b)1—2E2
(Ml 1 M12'/M»"') '+ k1'—'k ' (Mll —M»2/M22rv&) 2+k 12

becomes infinite for X(1.Also, one sees that the coefficients of the lowest term in k, (E2) from a,bove (below) the
threshold are different —explicitly showing the discontinuity in the first derivative (with respect to energy of
trll at k2' ——0).

The expressions (4.5) and (4.7) for S waves become

kg2
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Let

and

C=-
Mll M12 /M22

M122/M22&'&2
8—= . (4.10)

(M 11—M12'/M22"')'+ k 1'

(klk2) '"M12'e
'—i)rX

Tl1 kl Mll+
sinlr11 kl '"M22+e ' "/sinlrX (4.12)

Then, (4.9) takes the familiar form

! Tll! '=c'/(1+c')(1 —28k2), above threshold
="/(1+")(1—2(&/c)E2),

below threshold (4.11)

which shows explicitly the discontinuity and the infinite
derivative (with respect to k') at the threshold. LEqua-
tion (4.11) compares exactly with Eq. (22) of Ref. S.j
Case II:11(0 (and 0—S).

As before, we write

From the above analysis, we obtain for 0)3)—1
that there exists a discontinuity in the 6rst derivative of
gii at the new threshold.
Case III. X=O.

The behavior of the amplitude near this point is much
more complicated. ' lt was shown in Ref. 6 that as
X —+0, near any threshold, the elements T;; have the
"threshold poles" and also the diagonal elements T;;
have "zeros, " at slightly displaced positions. Thus, we
may conclude that the discontinuity in the first deriva-
tive of ! Tll!' found above for cases I and II at the
second threshold is still there for X=O, since the arrival
of the two sets of threshold poles (viz. , k2' ~ 0, E2' —+ 0)
is diGerent.

The above analysis shows that the "cusp" behavior
in the (elastic) cross section as a new channel opens up
is not only present for S waves, as known earlier, but
that this behavior persists as one varies continuously the
(real) angular momentum from l= —

2 to l=+-,'.

APPENDIX: INDETERMINACY POINTS FOR
X= —~~ AND 2= —1

To lowest power in k2..

=3~gg' —j—kg
—2"Mg2'e'~~k2 2~ sine-X,

where

t
V(r) U(r)i

!V' (r) =!
EV(r) W(r))

1i 11 =kl Mll+cotlrX.
(A1)

Again, there are two cases.
(a) k2 real (above threshold). From Equation (4.13), we
obtain Let p(r) be represented by a power series:

Consider the Schrodinger equation (2.3) for a two-
(4 13) channel problem with a potential of the form (2.1)

given by
(4.14)

Tll (1~ 11 kl M12 k2 coslr~ sinlrll)
—2(1+hi 21k —21M122 sin22r11)

where

p ..(r) —Q a . .nrn+1+1/2

which after some algebra reduces to

1
!Tll! '= 1—2kl 21M1" sinlrX

1+1V11"

sine% —iV~~' cosxA
X k

—2x

1+1V11"
(4.15)

0
!I' '(1+2K))

(A2)

Expanding the potential in a power series, we write

r V@(r)=P Vp r"

Hence, (8/Bk12)! Tll! ' would blow up at k2' ——0+,
unless X&—1. The restriction imposed above about
X/ —E really does not hinder us, therefore, since the
interesting region is only till 'A) —1.
(b) k2=e' 'E2 (below threshold). Repeating the pro-
cedure, one obtains

Tll '= jlV11'—kl '"M12'(sinlrX)E2 —'"$—i, (4.16)

which gives us finally

with

~22"=~n )

~12 ~12 Nn ~

(A3)

a"=(Q V"as " ' E2a& ')/p(p+2X). (A—4)

Dropping the matrix subscripts, we obtain the re-
cursion relation for the coefficient a"

A necessary condition that a trajectory for —E co-
incides with a trajectory for K at the same ) is the

(4.17)
condition for an indeterminacy point. This is equivalent

1+%11"

kg Egg My2 sing%
1+2E —21

1+$11" ' The point near 'A =0 and near thresholds has been investigated
in detail by Dr. W. Carnahan (private communication, to be

M. H. Ross and G. L. Shaw, Ann. Phys. (N. Y.) 9, 391 (1960). published).
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to the conditon"

and hence
DetD(X,K)=DetD(X, IC—)=0,

Detpp(X, E,r) =0.
Because of the boundary condition (A2) this condition

may be met at negative integer and half-integer
X= ——,'N, but because of the singular denominator in
(A4) only if Det u" vanishes in the limit X —& —21V.

Bet a~=Bet
&V(A'+2K)

VtpoN rn 1—+2—gN 2——+ 0. (A6)
X~$X

Otherwise only the first X coefFicients a" vanish, and
the solution becomes a solution with 6nite determinant
with all matrix elements having the leading term r ~'+&

and nonvanishing determinant.
In order to apply the condition (A6) at X= —-', and

A, = —j., we note:

a' = V'a'/(1+ 2K),
u2= [V"/(1+2K)+V' —E2]a /2(2+2K) . (A7)

The indeterminacy condition is then satisfied when

which are the ) = —1 indeterminacy in the limit of no
coupling, we have

X= —1: k'=-2'[k. 2+k.P]&-'2[(k.'—k~')'

+4(220&o+ N022ip+Nl)2]' ~ (A11)

The first condition (AS) shows that there are no in-
determinacy points at X= —~. As in the single-channel
case every trajectory which goes through 'A= —-', must
have a compensating trajectory at 'A= ~.

If, however, egep ——Np', then every point is an in-
determinacy point. This means a trajectory "lies
down"" at X= —~~ just as it does in the single-channel
case if vp

——0. In that case, the Mandelstam symmetry
(2.24) does not hold at X= —2, because the right-hand
side of (2.23) will not vanish and trajectories can pass
through X= —

~ without any particular restriction on
the energy.

The indeterminacy points at X= —1 as given by (A11)
are both on the real energy axis. (In the single-channel
case, there is one on the real energy axis. ) For weak
coupling,

[Np(00+%0)+Nl]
klp=k. 2+

(k„'—k ')
(A12)

BetVP = epmp —Np'= 0; (AS) [N0(&0+22'0) +221]
k22 k 2

k.'= klp' —002+01,

kgb = kpp —wp +201, (A10)
' Actually due to the Mandelstam symmetry condition at

integer and half-integer X s, viz. , Eq. (2.24), this is also a sufFicient
condition for an indeterminacy point.

Det[EO+ V"—V']
(k2 k102+0 2 Ol+N02)

k202+W 2 ~1+N02)

—[220(Op+up)+Nl]2=0, (A9)

where kqp and k2p are the thresholds of the two channels.
Letting

(k.'—k ')

In other words, the lower-indeterminacy point is
lowered and the higher one raised by the coupling U(r),
regardless of the sign of the coupling potential. Since the
k„' is lik.ely to be lower than k„' because kxp'(k2p' by
definition, this is in accordance with the statement that
the coupling always appears "attractive" for the channel
with the lower threshold. Obviously, such a statement is
not rigorous and depends on the detailed nature of the
potentials.

"P.Kaus, Nuovo Cimento 29, 598 (1963).


