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(a'=0). On the other hand, (jo+rrsBesk+c7eG r—rs'Ao)

does not allow for any reahstic physical interpretation
as a local current density. The third term B&G is not a
physical quantity. The fourth term —ePA& is actually
the mass term of the vector particle; to look. at it as a
part of a current density is just too artificial. Thus, we
have to conclude that when the scalar 6eld acquires a
bare mass, no physically meaningful conserved local
current density ca,n be constructed (when 2;„&=0,
Beano= 0 follows).

(A3) is modified into

where

Together with (A1) and (A2), we have

8qj"=mJ,

which is the counterpart of (10) in the massless case.
We can define

Jo{x)= jo(x)+rasa D{x—x')J (x'),

—8'a= 1,

as a conserved current density'.

8 J~=O.
but it is nonlocal.
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An effective-range theory for systems of many coupled two-body channels is given using the S/B formal-
ism. The eBective-range expansion is carried out in the amplitudes M;; (where 3f is essentially the matrix
T ' with the right-hand cut removed). Quite in analogy with the single-channel eRective-range theory, the
diagonal elements 3II;; are given by an expression quadratic in k;, the relative momentum in channel i. The
effective ranges E;; are given by certain principal-value integrals which depend on the position of the left-
hand singularities in the corresponding channels and can be taken to be energy-independent to the same
extent as in the one-channel theory. The nondiagonal elements 3E;;, in general, have a weak energy de-
pendence and can approximately be treated as constants. A two-channel computer experiment is performed
to test these proposals in detail. Three different situations for the left-hand cut are considered: (i) a set of
monopoles, (ii) a set of dipoles, and (iii) the left-hand cut produced by the exchange of scalar particles in the
"crossed" t reactions. For a large number of situations considered, the simple features proposed for the
multichannel effective range theory were found to exist. The above formahsm is similar to the multichannel
eBective-range theory of Ross and Shaw in the potential model.

I. INTRODUCTION
~

~ ~

K wish to discuss the energy dependence of the
partial-wave amplitudes for many coupled two-

body channels. We assume that these amplitudes satisfy
the coupled X/D partial-wave dispersion relations. The
purpose is to obtain a simple efI'ective-range theory by
removIng the right-liRnd cuts explIcItly Rnd Rppl oxlmat-
ing the rest of the scattering matrix that contains only
the left-hand singularities. We assume that only e
channels need be considered explicitly. The inverse of
the nXss scattering matrix T(=SD ') can be written
from unitarity as T-'=M(s) —s'p(s) (s is the square of
the total energy in the center-of-mass system), where
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p(s) is a diagonal right-hand cut function. The matrix M
is both real and symmetric to the right of the left-hand
singularities. Over an approximately small physical
region of energy, therefore, an effective-range expansion
in M can be carried out.

We propose an effective range formula for M, M(s)
=8—'(s) —I'(s), where B{s) contains the unphysical
singularities of the scattering amplitude T and P{s) is
a diagonal matrix and contains most of the energy
dependence of M(s). If the left-hand singularities
carried by M(s) do not lie very close to the energy
region of interest, a further simphGcation in the
eGective-range formula for M follows. The nondi;agonal
effective ranges in this situation are small (the effective-
range matrix R is approximately diagonal), and for
small value of k2 (see the computer experiment in
Sec. III) we have the linear relationship M=M(0)
+-,'R&k' —k'(0) j. The diagonal effective ranges can be
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related to the position of the singularities in the corre-
sponding channels. These features of the multichannel
effective-range theory obtained from the E/D formalism
are common to the multichannel effective-range theory
of Ross and Shaw' obtained in the potential model.

In order to test our proposals for the multichannel
e8ective-range theory we perform a two-channel corn-
puter experiment. The calculations described in Sec. III
are done for the case when both the channels are con-
sidered to be in relative I' waves and three difI'erent
situations for the left-hand cut are considered. The
three different situations considered for the left-hand
cut are (i) the left-hand cut is replaced by a set of
monopoles, (ii) it is replaced by a set of dipoles, and
(iii) it is produced by the exchange of scalar particles in
the crossed I reactions of the corresponding channels.
For a large number of situations investigated, the
simple features of the multichannel effective-range
theory were supported by the two-channel computer
experiment.

In a many-coupled channel problem where a full
analysis of the problem, numerical or otherwise, is in
general very complicated, effective-range approximation
can be of considerable value. Effective-range theory
provides a useful tool for studying the general features
of multichannel reactions as well as for an efIicient
parametrization of reaction cross sections. It may be
stressed that all channels near the energy region of
interest must be considered explicitly in order that the
eGective-range theory be accurate.

II. MULTICHANNEL EFFECTIVE—RANGE THEORY

Let us consider the usual E/D equations for a system
of e strongly coupled two-body channels. The invariant
partial-wave amplitude T is defined in terms of the
S matrix by'

B(s)=
(s+m)

(2.8)

D(s) =1— ~ ~p(s').V(s')
(s' —S) (S'—Ss)

i—8p(s) V(.s), (2.4)

where the "generalized potential"s B(s) is regular in the
physical region and the function g ensures that the right-
hand cuts in T ' start at the appropriate thresholds s;:

8;,= 8@tt(s—s;) . (2.5)

Note that the solutions T are independent of the sub-
traction point ss in D. Moreover, A (s) is symmetric if
thc ulpll t B(s) 18 sy111111ctl'1c as 1cqu11'cd by 't1111c-

reversal invariance. ' In order that a unique solution to
(2.3) may exist, the kernel of the integral equation
should be Ls; then (2.3) is an inhomogeneous Fredholm
equation of the second kind.

Now we introduce the M matrix defined by
TI=M-(s)—ip(s)— (2.6)

so that
M(s)=RC(D)E '—i(e—1)p(s), (2.7)

where 8 is given by (2.5). Thus, M is symmetric, real to
the right of the singularities in B(s), and due to the
second term in (2.7) remains an even function of all the
momenta k; as one continues in energy below a threshold
S;. In the One-Channel CaSe, M = }'IsI+I/S"s COt5

Solutions to coupled integral equations are in general
complicated. However, if the left-hand cut is replaced
by a set of poles, the solution to the integral equation
(2.3) reduces to quadrature.

I et us consider first the simplest situation in which
the left-hand cut is replaced by g/(s+m), where g is an
Nge matrix of constants, ~

—lj2
P

2i

5—1
T'—P'D—1—

p
—lt2 (2.1)

Now choose the subtraction point sp= —ns. The kernel
X(s,s')=0 so that solution to (2.3) and (2.4) can
immediately be written down;

where the numerator function Ã has only left-hand cuts
and the denominator function D has only the right-hand
cuts. p ls R dlRgonRl matrix.

P .2l s+i

~v=~e (2.2)
gs

k, and l, are the momentum and orbital angular momen-
tum in channel i. The E and D equations are'

s—sp

&()=B()+- B(")-, B()
Q s —so

&&~p(s') ~(s'), , (2 3)
s —s

' M. H. Ross and G. L. Shaw, Ann. Phys. (N. Y.}13, 14'I (1961}.
'%e use units 5=c=m = 1.' J. Uretsky, Phys. Rev. 123, 1459 (1961); D. V. Wong, ibad.

126, 1220 (1962).

(s+m)s " 8p(s')ds'
M(s) =g '(s+m) — P

S fÃ S —S

-'(~-1)p(), (2.9)

where P implies a principal value integral in (2.9). The
integrals in (2.9) can be explicitly evaluated and the
relativistic result for the S-wave case and particles of
equal mass m; in channel i is

M;;(s)= (g
—');;(s+m)

1 m+s s;(s+m)+2m(s~+m) (m+s, )'~' —m"s
+ + ln

m 2m[m(mgs, )j"s (m+s~)"'+m"

(
s—s,)"' s"'+ (s—s~)"'

+ i
ln— (2.10)

s J s'I' —(s—s,)"'
' G. Chew and S. Frautschi, Phys. Rev. 124, 264 (1961).' A. W. Martin, Phys. Rev. 135, 3967 (1964).' J.D. Sjorken and M. Nauenberg, Phys. Rev. 121, 1250 (1961).
7 See, e.g., %. Frazer, S. Patil, and N. Xuong, Phys. Rev.

Letters 12, 178 (1964).
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for s&s;. For i4 j,
C(s') by C(s) in all integrals over 1V(s') to get

M(s) =B—'(s)
(2.11)M;, (s)= (g-');, (s+m).

-1 "f'(s)ep(s')ds'
+p(~—1)p(~) (2 16)

w p f'(s') (s' —s)
A simple (and familiar for the single-channel case)
nonrelativistic result can be obtained (where we define
4k, p' =—s,+m):

(2.17)

When the potential B(s) does not have the form (2.14)
( 1 ) a more general form for M(s) is expected":

M, ;=
~

4(g '),k p' — I+~ 4(g "),,+ ~k,'. (2.12)
2rip, i «2m, k,ph M(s) =B '(s) —P(s),

The relativistic P-wave scattering produced by (2.8) is
given by

1 s
M,, (s) = (g '),;(s+m) ——8;, (s+m) (es+s;)

Sm ms;

-1 "p, (r')B;i'(s')ds'
Pv(~) = 5

(s' s)B,P (—s)

+ (~( —') —1)P'( ) (2 18)

f (g—$,)p) i~p grip —(g g~)i&p—
(2.13)

s 1 s"'+ (s—s,)'"

s&s;. If one considers higher order poles for the l.eft-
hand cut, an explicit solution to 3f can, in principle,
be written down. However, the solutions become in-
creasingly cumbersome. Furthermore for any given
potential B(s), the kernel of the integral equation (2.3)
would in general be nondegenerate, and one would be
required to solve the coupled integral equations (2.3)
numerically. Effective-range theory, on the other hand,
is known to provide a useful tool for the purpose of
studying the general features of the many coupled
channel problems as well as for a purely phenomeno-
logical analysis of multichannel reactions. ' Such a
theory in multichannel S/D formalism would be
equally interesting. We have just seen that for the
situation in which the left-hand cut is replaced by a
matrix of monopoles, of the form g/(s+m), a simple
effective-range expansion in 3f can be written down. We
would therefore like to examine the effective-range
expansion in M for more general situations. Let us
assume that the potential B(s) has the form

B(s)=g/f(s), (2.14)

where again g is an n&(e matrix of coe%cients. We solve
the X/D equations using the Fulton-Shaw approxima-
tion. ' This approximation has the same degree of
simplicity as the determinantal method, but avoids the
subtraction-point dependence and the lack of symmetry
of the determinantal 'method. ' „Dcine

X(s)=B(r)C(s). (2.15)

We substitute (2.15) in (2.3) and (2.4) and replace

T. Fulton, in Elementary Particle Physics meed Field Theory
(W. A. Benjamin, Inc. , New York, 1963), Vol. I, p. 55.' G. Shaw, Phys. Rev. Letters 12, 345 (1964).

"M. Baker, Ann. Phys. (N. Y.) 4, 271 (1958).

We equate certain principal-value integrals in obtaining
(2.17) and (2.18). Equations (2.17) and (2.18) are ex-
pected to provide a useful effective-range theory for a
large class of problems with relatively simple left-hand
singularities. The energy dependence of the scattering
matrix M(s) is given in terms of certain principal value
integrals which can be easily determined by numerical
integration.

A very simple effective-range theory results if one
makes a further simplifying assumption. We note that
the matrix P(s) is diagonal and contains most of the
energy dependence of M(s) if B(s) itself has a weak
energy dependence. In such situations one may reason-
ably assume that the effective-range matrix R in the
expansion of M(s) is diagonal and for small values of
k' (see the computer experiment in Sec. III) we have
the linear relation

where

M(s) =M(sp)+-', RLk' —k'(sp) j,
d

R,;= 8;;R,= —2 I'g

(2.19)

(2.20)

If the left-hand singularities are very close to the energy
region of interest, B(s) may significantly dominate the
energy behavior of M such that it would necessitate the
use of a full effective-range matrix R. The effective-range
formulas (2.19) and (2.20) allow us to relate the slope
of the scattering amplitudes M; s (and hence the
effective ranges R s), directly to the position of the
singularities. In simple cases like (2.12), one can
directly see the analytic dependence of the slope on the
position of the singularities. In more complicated
situations, however, the slope is given by the derivative
of a principal-value integral (see 2.20) and this depend-
ence may not be immediately clear.

"P. Nath, Ph.D. thesis, Stanford U'niversity, 1964 (un-
published).
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III. NUMERICAL TEST OF THE MULTICHANNEL
EFFECTIVE—RANGE APPROXIMATION

We have proposed in Sec. II a simple effective-range
formula for systems of coupled two-body channels with
angular momenta l;. The familiar scattering matrix M
(which carries only the left-hand singularities and is
thus real and symmetric for real energy to the right of
the left-hand singularities) is used for an effective-range
expansion and we find that, quite in analogy with the
one-channel effective-range theory, the diagonal ele-
ments M, ; are given by expressions quadratic in
momenta k; and the effective ranges R;; can be taken
to be energy-independent to the same degree as in the
one-channel theory. The nondiagonal elements M;, are,
to a good approximation, expected to be energy-
independent.

In this section we test these proposals in detail for the
case of two coupled channels. In the present calculation
we consider P-wave scattering (li——t2 ——t=1) and the
approximations (2.19)—(2.20) are tested under a variety
of different conditions. Later in this section we shall
demonstrate our results by some typical cases. The
quantity of interest to us to compute numerically is the
matrix M, Eq. (2.7). To compute M(s) we solve the
following set of coupled 1V/D integral equations

B(s):
(i) B(s) is a 2X2 matrix of monopoles with elements

(3.4)B,;(s)=g;,/(s+m, ;);

(ii) B(s) is a 2X2 matrix of dipoles with elements

B,;(s)=g,,/(s+ m,,)'; (3.5)

To perform the numerical test we first choose a particu-
lar B(s) and fix the kinematical conditions: the masses
in channels 1 and 2, the orbital momenta (we choose
li=l2=/=1) as well as the coupling constants g,, and
the constants m, , Equations (3.1)—(3.2) are then solved
to compute M(s). Such calculations are performed for
each B(s) (3.4) through (3.6).

Typical results are shown in Figs. 1—5. The matrix
elements Mii, M22, and Mi2 (=M2i) are plotted against
kP. We find the relation (linear in k')

(iii) B,;(s) is produced by the exchange of a scalar
particle (whose mass-squared is m;,) in the "crossed"
t reaction of the scattering channel ij, i.e.,

t
'gs fl1P Blj +Bljj'l

B';(~) =2g'k' '-k '-Q
iii (36)

2k;k;

ReD,, (s) = 8,,—
s—Sp

"p, (s')'V, .(s')ds'

; ('—&)('—&)

s—sp
&' (i~) =Be(~)+ E —B'~(~')—, B'.(~)

~ k=1 p $ —Sp

$1,;(s')ds'
XH (s' —sf) pa (s')

(s'-s)
and

(3.1)

(3.2)

M =M (so)+-', RLk' —k'(so) j (3 7)

for significantly large values of k'. The nondiagonal
element Mi~ (=M,i) is almost constant, so that the
nondiagonal effective range R~2=0. The effective-range
matrix R is thus diagonal and, in the region investigated,
independent of energy as expected. The effective-range
formula (3.7) was found to be good even for the diagonal
effective ranges being significantly different. In addition,
we note that the theoretical estimate of the diagonal

For a given potential B(s), the coupled integral equa-
tions (3.1) are solved by matrix inversion" (after replac-
ing the s' integration by a sum over a discrete set of
values of s') to obtain the 1V functions. Once the X
functions are known, the D functions are given by the
principal-value integral (3.2). To test the accuracy of
our solution, we check the stability of the solutions
against variations on the mesh size and symmetry as
well as subtraction-point independence of the E(ReD) '
solutions. The accuracy of the calculations is verified
by substituting the values of 1V and D thus obtained in
the equation

X(s)=B(s) ReD(s)

I ds
+— B(s') Hp (s').V (s') . (3.3)

7r s —s

-70

-50

-IO "

0
0 l.O 3.0 4,0

In addition, the solutions to case (i) below were obtained
by quadrature and checked against the full computer
program.

We consider three different situations for the potential

Fio. 1. Energy dependence of the HEI matrix using monopoles for
the left-hand cut. The relative orbital angular momentum (in all
the examples considered) is taken equal to one in both channels.
The masses of the particles in channel 1 are 6.6 and 6.6; those in
channel 2 are 7.0 and 7.0. The position of the monopoles is 5.0.
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0,2

l,0 2.0
I

Flo. 2. Energy dependence of the 31matrix using dipoles for the
left hand. cut. The Inasses ln channel 1 ale 6.0 RIld 6.0; those 1n
channel 2 are 6.1 and 6.1. The position of the dipoles is 20.0.

effective ranges as given by Kqs. (2.18) anti (2.20) is
reasonably good for a wide range of cases. For example,
the "range" Eg obtained from the slope of %22 in Fig. 5
is =—0.6, whereas the theoretical estimate of R2 is
= —0.5.

In conclusion, we can say that for relatively simple
left-hand slngularltlcs, the cGcctlve-range formulas
(2.19)—(2.20) is a respectable approximation at least
for low 3;. If the left-hand singularities of M are not very
close to the energy region of interest, the nondiagonal
elements of M exhibit a weak energy dependence
relative to the diagonal ones, and the CBective-range
matrix, therefore, is approximately diagonal. Moreover,

0

I l 1 I t 1 1 1 1 1

0 O.l 0.2 0.3 0.4 0.5 0,6 0.7 O.e 0,9 t.0 I,t

k t

Fzo. 4. Same as Fig. 3 (except for the values of the
coupling constants g;;).

w09

-0 I

1 f 1 1 1 1 I 1 l

G.l 0.2 0.3 0,4 0.5 0.6 0.7 0.8 0.9 I.O

k

l.l t,2 l,3 t,4

pro. 3. Energy dependence of the M matrix with the left-hand
cut given by the exchange of scalar particles. The masses of the
particles in channel 1 are 1.0 and 1.0; those in channel 2 are 1.05
and 1.05. The masses of the scalar particles exchanged are
m1].—3.1 m2g —3.9& and 'Ni1o —7.1.

0
'

l t t s t t I I 1 I

0 O.l GP 03 04 05 06 07 08 09 I,G t.l

k
I

PIG. 5. Same as Fig. 3 except m~2=3. 1. The effective range g2,
obtained from the slope of 3122 is =—0.6. The theoretical estimate
of R2, calculated using Eqs. I,

'2.18) and (2.20), is =—0.5.

under the same conditions the diagonal CBective ranges
are independent of energy over signi6cantly large values
of the relative momenta. Under more general circum-
stances, the use of relation (2.17) may be more
appropriate.


