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We have formulated a theory of massive electrodynamics which admits gauge invariance of the second
kind. In so doing, a massless scalar field is needed. However, if the conserved-current condition B„j&=0is
satisfied, this scalar field has no dynamical consequences. This theory then reduces to the conventional
theory. When the conserved-current condition is not satisfied, a generalized current must still be conserved
in order to have consistency of the theory. In an addendum, a brief discussion of the generalized Stueckel-
berg formulation is given.

HE connection between gauge invariance' ' of the
second kind and the observed mass of a vector

particle has been a subject of discussion recently. There
are essentially two schools of thought:

(1) It is proposed that a (bare) massless vector field
can generate a nonvanishing observed mass through
interaction. '4 In this program, explicit gauge invari-
ance' is never a problem. The situation is exactly the
same as in quantum electrodynamics. We have nothing
to add to this approach, except to point out the probable
computational difFiculty.

(2) This applies only to a conserved-vector-current
theory. ' ' There is the view that since only the (four-
dimensional) transverse components of a vector field
are coupled to a conserved vector current, one may as
well confine one's attention to gauge invariance of these
components only. Whereas physically this is the correct
picture, nonetheless, some modifications are necessary
for our purpose later.

It is our intention to give another approach to this
problem here. We shall see that it is indeed possible to
present a formulation, such that the vector field can
have a nonvanishing bare mass and that all observables
in the theory will be explicitly gauge-independent. In
so doing, it is necessary to introduce a massless scalar
field as a vehicle to maintain gauge invariance. This
scalar field can be gauged away when we have a con-
served (conventionally defined) vector current. We
shall prove that, in this case, our theory is exactly the
same as the conventional massive electrodynamics.
Indeed, its gauge invariance is trivial. In general, when
such a vector current does not exist, a generalized vector
current, as we shall define below, must still be conserved
in order to have consistency of the theory.

In a separate note, we shall discuss the implication

' C. N. Yang and R. Mills, Phys. Rev. 96, 191 (1954).
See also, R. Utiyama, Phys. Rev. 101, 1597 (1956).

3 J. Schwinger, Phys. Rev. 125, 397 (1962).' D. G. Boulware and W. Gilbert, Phys. Rev. 126, 1563 (1962).' By this we mean that all physically relevant expressions must
be gauge-independent.' G. Feldman and P. T. Matthews, Phys. Rev. 130, 1633 (1963);
132, 823 (1963).

V. I. Ogievetskii and I. V. Polubarinov, Zh. Eksperim. i Teor.
Fiz. 41, 247 (1961) LEnglish transl, : Soviet Phys. —JETP 14,
179 (1962)j.
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of this conserved current concept on elementary inter-
actions. ' In particular, we shall show how this massless
scalar field makes contact with a model recently pro-
posed by Lee' to explain the apparent CP violation. "

MASSIVE ELECTRODYNAMICS

Gauge invariance of the second kind of massive
electrodynamics has been discussed previously by
several authors. "When one deals with a conserved
(conventionally defined) vector current, which acts as
the agent that generates these massive photons, one
can still bypass the gauge problem by explicitly
coupling the current to the 4-dimensional transverse
photons only. In order to have a local Lagrangian
density, an indefinite metric has to be introduced to the
longitudinal photons. Since the longitudinal photons
are not coupled to the physical observables through the
conserved current anyway, this process does not raise
any difficulty in probability interpretation. On the other
hand, when a nonconserved vector current is involved,
this method obviously fails. We would like to give a
diGerent formulation of this problem here, in which no
such difFiculty may arise. We shall see that all physically
meaningful quantities —Hamiltonian density, currents,
etc.—are explicitly gauge invariant.

The Lagrangian density of a massive spin-1 field
coupled to a spin--,' field is"

Zi —— P(y„(1/i)—8&+M)f ', G&"(B„A—„-B„A„)—
+ 'G&"G ,'m'A-&A„+—A—„j~,

where

is the conventionally defined current. Except for the
mass term, it is invariant under the gauge trans-

Y. P. Yao (to be published).
~ T. D. Lee (to be published)."J.H. Christenson, J. W. Cronin, V. L. Fitch, and R. Turlay,

Phys. Rev. Letters 13, 138 (1964); A. Abashian, R. J. Abrams,
D. W. Carpenter, G. P. Fisher, B.M. K. Nefkens, and J.H. Smith,
Phys. Rev. Letters 13, 243 (1964).

"We use the metric (—1, 1, 1, 1). p, =o, 1, 2, 3. k=1, 2, 3.
{p„,y,}= —2g„„, p&t= —pj„and pop=go. Appropriate symmetri-
zation and antisymmetrization over the Bose-Einstein and Fermi-
Dirac fields, respectively, are implicitly assumed.
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formation

alid

k(x) ~ e'"'V(x)
A„(x) ~ A„(x)+B„A(x),

G„.(x) ~ G„„(x),

where A(x) is an arbitrary function of space-time
coordinates x.

The Lagrangian density of a spin 0 field is

&o= p"—81$+ 2@"$1 2p—'qP+ 2;«',
where 2;„,' is the interaction density of tt, A&, and P.
It is seen that we can have a gauge-invariant Lagrangian
density, if we choose

tive 8' appears explicitly on the right-hand side. ) On
the other hand, we have not assigned an independent
conjugate momentum to it. The situation here re-
sembles that in the Lorentz gauge electrodynamics. The
solution is also well known": We introduce a gauge
operator G, which as the property that it annihilates
all the gauge-invariant states 0'; i.e.,

Ge= aoM =0.
These comprise of all the physically relevant states. To
ensure that this condition be satisfied at all space-time
points, we impose the condition

O'G= 0

p=0,
2; g'=mAoB„y+2;„g,

and, under a gauge transformation,

y(x) ~ y(x)+ma(x),
y~(x) ~ yo(x)+mB~3. (x) . (2)

on G. Consequently, all higher time derivatives of G
vanish when applied to a gauge-invariant state.

The extended Lagrangian density is

P(y„(1/i)8—1'+M)P 'G&"(B„A.—-B,A„)—
+—G""G om—oA „AI" Q "8„—'$+ oQ„Q"

+A„(j~+mB~y) GB„A—~

2;„& is invariant under the gauge transformation (1)
and (2). We then have the following gauge-invariant
Lagrangian density, u

We have let 2;„~=0; we shall continue with this
assumption for the rest of this paper.

We shall agree, under a gauge transformation,

P(y—„(1/i)8'+M)P ,'Gl'—"(B-„A. B,A—„)
+—G""G 2moA "A—„Q"8„$+—oQ"Q„

+A„(jo+mB~y)+S;.&.

Then,
2 —+ 2—GOD.

In order to have gauge invariance for a massive vector
field, we have to introduce a massless scalar field.

We must hasten to point out, however, that this
Lagrangian density cannot yield a consistent theory.
The equation

or

BpG'o+m'A'= j'+mB'P

( Bo~+mAo) (1/m) (BpGox jo)

is inconsistent with the fundamental commutation
relation between qt and its conjugate momentum:

(1/i)[Q(x), (—8'Q+mA') (x')]=8(x—x') .

The reason is that the commutator can also be written
as

(1/i) [4» —(1/m) (B~G'"—j')]
which must vanish, because p, G'", and P are all different

independent degrees of freedom.
The cause for this inconsistency is familiar. Due to

the derivative coupling mA„B&p, we have made

A'= (1/m') (j '+mB'P BI,G'")—
an independent dynamical variable. (The time deriva-

'~ This Lagrangian resembles that of D. G. Boulware and W.
Gilbert (Ref. 5), if we replace our mA„B&4 term by mA„+&. How-
ever, in so doing, the theory possesses gauge invariance only when
m=0. We have the freedom of multiplying +&"G„„bya dimen-
sionless number g' which can be used to vary the relative coupling
strengths of A„j& and 2;n&. We shall assume minimal coupling
A„j& between A„and rP. Hence, 2;«=—8;«Lp, g,a j.

By the action principle, the generator of an infinitesimal

gauge transformation (1) and (2) is given by

Gp), = (d'x) (GBpBX—9 BpG) .

Because we are dealing with Abelian gauge fields here,
the order of performing two successive gauge trans-
formations at a common time is immaterial. This
implies the relation

[Gp~„G»,]=O,

which can be satisfied if

[G(x),G(x')]= [G(x),BoG (x')]
= [BpG(x),BpG(x')]= 0.

The canonical equations

(1/i)[A„,Gp),)=B„Q.,
(1/i) y,G»]= iem P,

etc. give us the following nonvanishing equal-time
commutation relations:

(1/i) [P(x),8 pG (x')]= —
ieP (x)5 (x—x'),

(1/i) g (x),BpG(x')]= ieg(x)8(x —x'),
(1/i) [Ap(x),G(x')]=B(x—x'),

(1/i) [A p(x), BpG(x') 7= —81,5(x—x'),
(1/i) [P(x),BpG (x')]= —m5 (x—x'),

"J.Schwinger, Phys. Rev. 130, 402, 406 (1963).
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(1/i) [yo(x),G (x') 7=mb (x—x') .
G is the "conjugate momentum" to A'.

It is intclcsting to obscrvc that

can be written as

coo= T" A—'BI,G A—'(BI,G"+m'A' j—' m—b'p)

O"= T' A'8—),G A—(8 G"+m'A' —j'—mb'P),

which shows that N are indeed gauge invariant. We
also have the following commutators: T00—

(4'(x)4 (*')}=b(x—x'),
kv ((1J')b" eA")—0+M'4'

+L(Gkl)2+2(Gok)2+Lm2(Ak (1/m)yk)2

+ 'm'(A-' —(1/m)y')'

(1/') e(x),—~(x') =b(.-x'),
BI

(1/i) [G"(x),A ((x')7= blab (x—x') .
Let us emphasize that

[AD g,7
—[Ao GO&7 —[Ao A k7
= [A'87= [A'A'7=o.

That is, A is truly an independent dynamical variable.
Euler's equations are

is gauge-independent and positive dehnite in the integral
spin variables.

T"=pt(1/iBI, AI)p+G—"G;(
+(~ — A )(b.~- A.)+b ('/V [~.,~ 7~)

are again gauge-independent.
Clearly, we have the reductions

0"%=T'%

O~ok@ Tokjg

b4: I ~.((1/i)b" eA4)+M—3&=0

bg: P[y„(—(1/i)8„—eA )+M7=0,
SGI'": G„„=B„A„—B„A„,

bA, : B„GI""—m'A"= —j"—mb"P —8"G

by: 8'y=ma„A~=0,

(3)

(4)

(3)

i.c.) P and P arc thc true energy-momentum densi-
ties of the realizable physical states.

It is now a matter of some algebraic manipulations
to arrive at the equal-time commutation relations,

(6) —z[0."(x),O~ "(x')7= —[0""(x)+0~ "(x )78~b (x—x)

(7) and

(8) i[T"(x)—T"(x')7= —[T'"(x)+T'"(x')78gb(x—x).
Thus, the theory is Lorentz invariant.

We shall now show how this theory goes into the
conventional theory. We define the new variables

bG: B„A~=0.

In particular, let us consider once again the equation

BI,G~' —m'A = —j0—m8'Q —8'G.

It is Ilow consistent witli thc commutation relations

(1/i) [y (x),(—8'y+ mA') (x') 7= b (x—x')

since the left-hand side is also

—(1/i) (1/m) [y(x),8pG(x')7= b(x—x') .

1i,
~ —e i(atm) @p

A „'=A „—(1/m) 8„@

(which are, incidentally, all gauge-invariant quantities).
Then, Eqs. (3)—(8) simplify to

(3')[7„((1/i)8~ eA")+M]—p'=0,

P'[q„(—(1/i) a„—eA'~)+M7 =0,

G„„'=B„A„'—8„A„'=G„„,

B„G'~"— Am'"+ 28 "G= —j'"=—j",
4'y= bu4 i

By introducing the gauge operator G, we have been (4')
able to write down a consistent set of equations and
commutation relations. To proceed further, a natural (5')
query is whether such an extended formalism is Lorentz
invariant, or whether the generators of the inhomo-
geneous Lorentz group of such an extended system obey (7')
the group commutation relations. The easiest way to
investigate this aspect is to look into the commutators
of the energy-momentum densities. "After adding some 8'&=0.

fth l
is worth noting that we still have the gauge condition

equations, we find that the extended energy-momentum
densities derived from the above Lagrangian density B„A'~=0.
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The energy-momentum densities become

Too —P~~o((1/i)go ~A~o)P~+~P~P~+1(Glkl)2
+1(Gloo)2+1(/2((A~k)2+ (Alo)2)

and

To'= P't((1/i) Bp—A p')P'+ G'o'GI,

+m'A "A I,'+ 8' (i/8p'"[yo, y)7$'),

in which expressions p does not appear.
The fundamental commutation relations

In this case, where we have assumed Z„„&=0, Kq.
(10) is consistent with Eq. (8) or (8') only if

Bpg = Bpg =0 (12)
go

as we can also check directly by using the definition of
j&=j'I' and Eqs. (3) and (4) or (3') and (4'). We have
here a conserved (conventionally defined) vector
current theory. This is because we have taken 2;„&=0.
We shall show in a subsequent paper that there are
examples in which (12) is not true.

and

{P't(x),P'(x')) =8(x—x'),

(1/i) [G"o(x),A '(x')]= 8 ob(x —x'),

(1/i) [A"(x),A /(x') ]= —(1/m') 8(5 (x—x')

where
B„J"=0) (10)

are exactly like those in conventional massive
electrodynamics. "

Equations (3')—(6'), the gauge condition B„A'&, and
Tol" are all gauge-independent quantities, since p', A'&,

and G'"" are. Consequently, we can drop 8"G in (6'),
as long as we neglect (7') and (8'). (Remember G is a
gauge operator. It has effects only on gauge-dependent
quantities; but [G,f']= [G,A'"]= [G,G'""]=0.) To
put it differently, if we neglect (7') and (8'), all the
above expressions can be derived from

lt'(y—„(1/i)8&+M)P' ', G'&—"(-B„A„' B„A„—')

+ 'G, 'G'~"-—-', m'A 'A'~+j 'A'o

which is the Lagrangian density we used all along in
massive electrodynamics. Let us repeat what we have
proved: The conventional massive electrodynamics,
derivable" from Z', is a general gauge-invariant theory,
since all field variables, P', A'&, and G'&" are gauge
invariant.

Now it is obvious how the scalar field is used only as
an artifice to introduce gauge invariance of the second
kind. Once this purpose has been served, we can de-
couple it from the rest of the system. The decoupling
cannot be carried out in general, when 2;„&&0.

From (6) and (9), we have

ADDENDUM

Upon completion of this work, it was brought to my
attention that a generalized Stueckelberg formalism
has been proposed. ' We would like to modify that
formulation to fit into our development. Thus, we
replace GB„AI' in—8 by G[B—„A& (~'/—nz)p] In so.

going, the gauge condition (9) becomes

8„A"—(zo/tn)qh =0, (A1)

and the gauge operator G has to satisfy the equation

(8'—x')G=O.

The other changes are that Eq. (8) is replaced by

(A2)

or
B„y~ mB„A—~+ (~'/m)G= 0,

(oI' —~')y+ (~'/m) G= 0, (A3)

upon using (A2)." O~~ acquires an additional term
—(~'/m)G&, but T~ remains unchanged.

The consistency of canonical quantization in the main
text still holds. Lorentz invariance of the theory can be
checked as before.

We would like to make a few remarks when
Z.;„t[f,g]00. From (6), differentiating both sides by
8„, we have
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J~=j"+m84$, 8„(j"+mB"&+BI'G m'A") =—0 (A4)

which we shall call generalized current. We would like
to stress here that the conservation of charge is a
consequence of the antisymmetric property of G&", just
as in electrodynamics the conservation of electric charge
is a result of the antisymmetry of the Geld intensities
Ii&"."No dynamics can change this antisymmetry.

In general, no combination of the terms inside the
parentheses can be made as a conserved local current
density; we must take the whole object. This is, of
course, a consequence of the gauge conditions (A1) and
(A2). In other words, 8"G and A& are not 'conserved'
separately, in contradistinction to the massless case

"E.g. K. Johnson, Nucl. Phys. 25, 435 (1961).
'~ We also have B„j'I"=0; which is to say that we have a con-

served vector current theory. (See below. )
"This point has been emphasized by J. Schwinger in his

Brandeis lectures (Summer, 1964) when he discussed baryon
conservation. It may well be a fundamental property that all
absolute conservation laws (of internal symmetries) share.

"E.C. G. Stueckelberg, Helv. Phys. Acta 11, 299 (1938'); Y.
Fujii, Progr. Theoret. Phys. (Kyoto) 21, 232 (1959); S.
Bonometto, Nuovo Cimento 2S, 1855 (1963); Y. Fujii and S.
Kamefuchi, Nuovo Cimento 33, 1639 (1964); Y. Fujii, Stanford
Report (to be published). See also references quoted in these
papers.

"It' can therefore be identified as the mass of the scalar field.
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(a'=0). On the other hand, (jo+rrsBesk+c7eG r—rs'Ao)

does not allow for any reahstic physical interpretation
as a local current density. The third term B&G is not a
physical quantity. The fourth term —ePA& is actually
the mass term of the vector particle; to look. at it as a
part of a current density is just too artificial. Thus, we
have to conclude that when the scalar 6eld acquires a
bare mass, no physically meaningful conserved local
current density ca,n be constructed (when 2;„&=0,
Beano= 0 follows).

(A3) is modified into

where

Together with (A1) and (A2), we have

8qj"=mJ,

which is the counterpart of (10) in the massless case.
We can define

Jo{x)= jo(x)+rasa D{x—x')J (x'),

—8'a= 1,

as a conserved current density'.

8 J~=O.
but it is nonlocal.
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An effective-range theory for systems of many coupled two-body channels is given using the S/B formal-
ism. The eBective-range expansion is carried out in the amplitudes M;; (where 3f is essentially the matrix
T ' with the right-hand cut removed). Quite in analogy with the single-channel eRective-range theory, the
diagonal elements 3II;; are given by an expression quadratic in k;, the relative momentum in channel i. The
effective ranges E;; are given by certain principal-value integrals which depend on the position of the left-
hand singularities in the corresponding channels and can be taken to be energy-independent to the same
extent as in the one-channel theory. The nondiagonal elements 3E;;, in general, have a weak energy de-
pendence and can approximately be treated as constants. A two-channel computer experiment is performed
to test these proposals in detail. Three different situations for the left-hand cut are considered: (i) a set of
monopoles, (ii) a set of dipoles, and (iii) the left-hand cut produced by the exchange of scalar particles in the
"crossed" t reactions. For a large number of situations considered, the simple features proposed for the
multichannel effective range theory were found to exist. The above formahsm is similar to the multichannel
eBective-range theory of Ross and Shaw in the potential model.

I. INTRODUCTION
~

~ ~

K wish to discuss the energy dependence of the
partial-wave amplitudes for many coupled two-

body channels. We assume that these amplitudes satisfy
the coupled X/D partial-wave dispersion relations. The
purpose is to obtain a simple efI'ective-range theory by
removIng the right-liRnd cuts explIcItly Rnd Rppl oxlmat-
ing the rest of the scattering matrix that contains only
the left-hand singularities. We assume that only e
channels need be considered explicitly. The inverse of
the nXss scattering matrix T(=SD ') can be written
from unitarity as T-'=M(s) —s'p(s) (s is the square of
the total energy in the center-of-mass system), where

*Supported in part by the U. S. Air Force through Air Force
0$ce of Scienti6c Research Contract AF 49(638)-1389.

t Supported in part by the O'. S. Atomic Energy Commission.
The major portion of this work was done while the author was at
the Institute of Theoretical Physics, Stanford University, Stan-
ford, California.

p(s) is a diagonal right-hand cut function. The matrix M
is both real and symmetric to the right of the left-hand
singularities. Over an approximately small physical
region of energy, therefore, an effective-range expansion
in M can be carried out.

We propose an effective range formula for M, M(s)
=8—'(s) —I'(s), where B{s) contains the unphysical
singularities of the scattering amplitude T and P{s) is
a diagonal matrix and contains most of the energy
dependence of M(s). If the left-hand singularities
carried by M(s) do not lie very close to the energy
region of interest, a further simphGcation in the
eGective-range formula for M follows. The nondi;agonal
effective ranges in this situation are small (the effective-
range matrix R is approximately diagonal), and for
small value of k2 (see the computer experiment in
Sec. III) we have the linear relationship M=M(0)
+-,'R&k' —k'(0) j. The diagonal effective ranges can be


