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The relativistic completion of SU(6) discussed in a foregoing paper is extended so as to take account of a
more general form of the meson matrix. Low-frequency phenomena are discussed further. To order e/c all
recoil effects are now included. The 70 fermion representation is brieRy treated.

I. INTRODUCTION

"N a previous paper' we have begun a study of the
- - following question: To what extent is it possible to
impose simultaneously the requirements of Lorentz
covariance and of SU(6) invariance in a theory of
strong interactions? For this purpose a procedure was
described called "relativistic completion. " Given the
question, we gave the minimal requirements necessary
for the interpretation of results obtained so far. In the
present paper we discuss the completion process in
some further detail. Where earlier we had considered its
application only in the presence of axial-vector form
factors (for pseudoscalar mesons) and vector form
factors (for vector mesons), we now include also the
presence of Pauli terms or tensor form factors (for
vector mesons) and pseudoscalar form factors (for
pseudoscalar mesons). ' As a result, we are now able to
give a more general discussion of fermion recoil. As in I,
we find it convenient to discuss these questions first for
interactions of the fundamental SU(6) sextet of
fermions. Thereafter we treat the interaction for the
case of the 56 representation of baryons (Sec. II). In
Sec. III we discuss recoil effects to order v/c. We find in
particular that the relation' g~ ——5g/3 still holds true in
the presence of the tensor and pseudoscalar form factors.
In Sec. III we also comment briefly on the relativistic
completion for the SU(6)-covariant electromagnetic'
and semileptonic interactions. In Sec. IV we indicate
how to construct the completed 70 representation and
the effective vertex for the corresponding baryon (56+)—
meson (35—) decay.

Just as was done in I, we shall consistently use the
following definition: The terms "SU(6) representation"
and "SU(6) invariance" shall refer exclusively to
the structure of one-particle states with zero three-
momentum.

Nevertheless, it was shown in I that the SU(6) theory
can give unique predictions for the structure of certain

M. A. B.Beg and A. Pais, Phys. Rev. 133, B1514 (1965).This
paper will be referred to as I.' For the meson-baryon (spin —,

' and -',) vertex, with baryons on
the mass shell, one of course has only one form factor for the
coupling of pseudoscalar particles and three for the coupling of
vector particles, in the symmetry limit. The inclusion of the
quadrupole form factor for vector mesons involves a "breakdown"
of the completed SU (6).' F. Gursey, A. Pais, and L. A. Radicati, Phys. Rev. Letters 13,
299 (1964) Eq. (8).

4 M. A. B.Beg, B.W. Lee, and A. Pais, Phys. Rev. Letters 13,
514 (1964).' M. A. B.Bdg and A. Pais, Phys. Rev. Letters 14, 51 (1965).

egectiM matrix elements, vertices, etc. ,which involve one
or more particles with nonzero three-momentum. Ex-
amples are the decay matrix element for X*—& 1V+vr,
and its relation to the p-wave vertex X—+ E+nand to.

the s-wave vertex cV —+cV+p, even though all these
quantities vanish if all the particles involved have zero
three-momentum. Such predictions came about through
a fully specified interplay of the SU(6) group (as defined
above) and the Lorentz group, leading to unique
answers in the static limit. When in the following we use
terms like "completed SU(6) structure" we shall mean
that particles are involved which obey the SU(6)-group
requirements as defined above (in other words, they
form supermultiplets) and to which the completion
procedure (boosting) dictated by the Lorentz group has
been applied.

In I it was found necessary to make a sharp distinc-
tion between the applicability of the completion of
SU(6) to eiYective matrix elements on the one hand and
to local Lagrangian field theory on the other. In the
latter case, completed SU(6) can not apply. The origin
of the breakdown of the completion could be pinpointed
as the kinetic energy in the free-particle part of the
Lagrangian. 6

This raises the main dynamical problem now to be
understood. If the effective matrix elements and vertices
discussed above arise from an underlying local field
theory, and if the latter cannot be SU(6) completed,
then why should at least some of these effective matrix
elements, etc. give evidence at all of patterns prescribed
by SU(6), as they apparently do? A possible answer
would appear to be that in strong interactions there
must be a strong damping of high virtual frequencies.
This means for approximate reconciliation of SU(6) and
local field theory was illustrated' by a naive field-
theoretical comparison of the self-energy of a spin-1 and
a spin-0 meson, both belonging to the same SU(6)
supermultiplet.

It will be shown in Sec. II that the inclusion of Pauli
terms and of pseudoscalar terms necessitates a more
refined treatment of the relativistic completion for the
12X12 meson matrix already introduced in I. The need
for this refinement can perhaps be made clear by first
considering the following simple problem in SU(2).
Take two 2 representations (spinors) of SU(2). Then it

6 This observation was also made by K. Bardakci, J. Cornwall,
P. Freund, and B.W. Lee, Phys. Rev. Letters 13, 698, 1964.' See I, Sec. III.
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is elementary to construct from these a bilinear form
which behaves as the (adjoint) 3 representation (vector).
This construction is unique. Likewise, take a 6 (sextet)
and a 6* (antisextet) representation of SU(6). The
process of constructing the (adjoint) 35 representation
from these is still elementary and unique. At this point
let us emphasize once more that SU(6) here refers to
zero 3-momentum. Now we wish to bring into play a
second group, the Lorentz group. Thus we now take a
relativistically completed 6 and a similar 6*. These
boosted representations are now not only representa-
tions of SU(6) but also of the Lorentz group.

Problem: Construct out of these boosted representa-
tions the corresponding boosted 35. This is a somewhat
novel problem in that we apply two noncommuting
groups. We wish in particular (extending at this point
the construction of I) to give the more general boosted
form of 35, where the 35 also carries a prescribed parity
(parity itself being defined relative to the (6*,6) sys-
tem). This is the problem we discuss in the next section.

In the course of the derivations in Sec. II, we find it
illuminating to perform an elementary unitary trans-
formation which casts the 12)&12meson matrix derived
in I in the form of a direct sum of two 6/6 matrices;
see Eq. (2.37) below. Each of these 6X6 matrices
separately represents actually a boosted 35 representa-
tion with the required covariance properties under the
proper Lorentz group, but with indefinite properties
under reflection. The joining of these two 6)&6 matrices
then ensures having definite (in our case, odd) parity of
the meson representation.

Quite independently of any SU(6) aspects such a
doubling (from 2X2 to 4X4) is met in the charac-
terization of the representation S~'/ '/ ~ of the I.orentz
group (4-vector) in the SL(2,C) language, ' if one assigns
a de6nite parity to such a representation. Corre-
spondingly, there is only one group SU(6) in the present
game, as is also evident from the fact that the relativistic
completion of the BS does not involve the introduction
of new fields (but only of additional field components
that can be eliminated for q=0). In particular, the
completed SU(6) does not involve parity doubling.

We conclude the Introduction by summarizing the
role of symmetries, exact and approximate, as they
appear in the SU(6) theory.

(1) SU(6): refers to a zero —three-momentum prop-
erty of one-particle states.

(2) Completed SU(6): refers to the way, prescribed
by the homogeneous Lorentz group, in which an SU(6)
representation behaves for nonzero three-momentum.
In general, vertices, S-matrix elements, etc. are dehnable
owly with reference to the completed SU(6).

While orbital angular momentum is alien to the defini-
tion of SU(6), the dictates of Lorentz invariance have
shown that SU(6), by completion, leads nevertheless to
certain Neiqle I"-wave predictions which are in reason-

g See, e.g., R. F. Streater and A. S. Wightman, I'CT, Spiv and
Statistics and All That (W. A. Benjamin, Inc. , New York, 1964).

able agreement with experiment. Our completion pro-
cedures are not the same as saying that an arbitrary
spurion of the type (e il) has been introduced, as is
readily seen in the following. (e q) transforms like the
(1,3) part of a 35. Applied to the P-wave interaction of
mesons with baryons, the spurion language would lead
to the algebraic structure lg(56*5633535). As
35 & 35 contains 35 twice and also 405, it follows that
the spurion device would generally not be unique. LSee
further the end of Sec. II(a).j This uniqueness is main-
tained, however, in the completed SU(6) picture.

(3) Broken completed SU(6): exemplified' by the
precepts of local 6eld theory. The completion does not
work for the free kinetic energy. Thus a local Lagrangian
for which the ir/terac/ior/, is SU(6)-complete will in
higher order give SU(6)-violating effects. For example
it will generate mass splittings within supermultiplets.
An example was given in I, Sec. III. These mass split-
tings are all of the "6rst stage" kind. Recouplings
which could lead to recurrences of SU(6) supermulti-
plets" may perhaps also be generated.

(4) Broken SU(3): the kinetic energy does not in-
trinsically violate SU(3). Note that the requirement of
invariance under' SU(4) (T)XSU(2) (X)XW(Y) is per-
haps a natural physical way to break SU(3) ("second
stage'").

(5) Embeddings of SU(6): SU(6) can readily be
embedded in" " U(6)U(6). For the low-frequency
phenomena which led to the recognition of SU(6) as a
useful group, U(6)U(6) does not play any role of
practical importance. Indeed, U(6) U(6) can have
meaning only if one neglects all fermion masses. The
procedures in I and in the present paper, on the other
hand, do not at any stage require such a drastic neglect
which, moreover, complicates'4 the assignment of rnas-
sive physical particles to specific representations. How-
ever, this group could possibly be relevant for weak
interactions. "

II. THE MESON MATRIX

(a) General Discussion

In this section we consider the general construction
of the meson wave function at Qnite momentum q. This
wave function satisfies the fo/lowing criteria:

(i) It transforms in a well-defined way under
L/3SU(3). For example, the meson matrix of I trans-
forms according to

(1/2, 1/2)(3 co (2, 1)o+ co (1/2, 1/2)gj co (p, p)
(L) ' (3)

(i/2, )/2)/g) / 3
(&, i) (2 1)

' A. Pais, Phys. Rev. Letters 13, 175 (1964).
"Reference 9, footnote 14.
"R. Feynman, M. Gell. -Mann, and G. Zweig, Phys. Rev.

Letters 13, 678 (1964).
I K. Bardakci, J. Cornwall, P. Freund, and B. W. Lee, Phys.

Rev. Letters 13, 698 (1964).
» K.. Bardakci, J. Cornwall, P. Freund, and B.Lee, Phys. Rev.

Letters 14, 48 (1965).
'4 See Ref. 5, footnote 18.
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where the representations of the Lorentz group
are labeled in the usual manners and the notation
S[ /'"' "'"""-» is used for representations of SU(n),
(Xl&)I,P& &X„ 1).

(ii) At q=0 it transforms irreducibly under SU(6)
according to ~(6)(2,1,1,1,1)

(111) It ls characterized by a dc6nltc pallty alld tllls
parity is to be taken as odd.

The construction proceeds most smoothly by starting
With

~(~) f'i/2, 0t g co(~) I, &12,0l

[0,0[o+ 2~ [1/0, 1/s[O+ ~ [1,0] (2 2)

~(q) =a+b70+c"vs+d"v pvs+0""&s» (2 3)

where, in the absence of any preferred direction in
space-time, u, ., e depend only on the 4-vectors q and
e, e being a polarization vector such that g

~ &=0. Hence

a= a(q'), (2.4)

(2 5)

(2.6)

(2 &)

b= b(q')

c'= cl(q')q"+cs(q')e",

d/'= dl(q')qs+ds(qs) es,

0""=&1(q')g""+s&s(q') (0"q"+0"q")

+ ', cp(q')(esq" —-e"q")+e4(q')q"q". (2.8)

Collecting terms we find

m(q) =5K0(q)+mt(q; ep, a),
where

mp(q) =a+by +c (q y)+d y (q 7), (2.10)

Xl(q; ep, a) =cs(e y)+dg 0(e .y)+epesq"~„. , . (2.11)

The parity of the mesons can be adjusted through

y4[OR0(q)y4 ——5R0(—q), Scalar (2.12)

y4[OR0(q)y4 ———BR0(—q), Pseudoscalar (2.13)

y4taltl(q; ep, a)y& ——mtl( —q; ep, —a), Vector (2.14)

r4[SK1(q ep a)| 4—OR1( q —ep, a), Axial-vector. (2.15)

For negative parity we obtain, with a redefinition of
the coeKcients,

(q v)-
JK(q)= i f~yp fAyp — /3P—

goo

+ if'(e y)+if~ — o„. @V, (2.16)

In order to implement discrete operations (C, I', and T)
we take $(1,)"I' '& to be an irreducible representation of
the extended Lorentz group and thus a reducible repre-
sentation of the proper part I+~. The sixteen Dirac
matrices 1, yq, y„, y~y„, 0„„furnish a complete basis for
the representation matrices. Hence they also furnish a
basis for tensors transforming according to $(1,) "I' "
8 S[/.1[1/' ". Suppressing SU(3) indices, the meson
wave function may therefore be written as

where E and V are tensors transforming according to
$(3)(' ') and X)(3)(' 0)

O+ $(3)("),respectively. The relative
weight of singlet and octet in V is determined by
constraint (ii). This constraint also implies

f'(/ 00') =f'(/ oo'),

f A(apps) fV(0002) ~

(2,17)

(2.18)

We postpone the proof of Eq. (2.17) and (2.18) until
Sec. III(c) below. From now on the symbols f~, fr, f",
fv will be used only for the values on the mass shell.

We are thus led to a one-parameter family of 12X12
matrices as the requisite wave functions, the parameter
being (f r/f"). The wave functions can be rendered
unique only by imposing symmetries above and beyond
SU(6). Such a symmetry was indeed implicit in I. The
meson matrix quoted in I is in fact odd under the yq
transformation. There is no reason to exclude parts even
under ys and the corresponding even-to-odd ratio is the
free parameter (fr/f v). The signi6cance of this parame-
ter will be brought out more fully in Sec. III; at the
moment it is suflicient to point out that all the SU(6)
predictions hitherto quoted in the literature are inde-
pendent of the value of this parameter and thus are not
affected by giving it an explicit value.

In the introduction we noted that our treatment is not
equivalent to a spurion picture. We can now state more
precisely what this inequivalence consists of. The
following can be shown: (a) The double occurrence of
35 in 3535 leads, and leads only to the arbitrariness in
the ratio (fr/fv) mentioned above; (b) the completed
SU(6) picture corresponds furthermore to the absence of
contributions due to 4QS.

w" (p) =I+' "(y), X=—(i a 2) =1, 2, 12.
DNA (p) (2.19)

i = 1, 2 refers to spin up, down, respectively; 2 = 1, 2, 3
is the contragredient SU(3) index, and a is the index
which doubles the number of components. The sub-
script +(—) refers to particle (antiparticle) states. We
have used the explicit representation"

isA (p) —/V (p) o .p iA
xi.pp+M

(2.20)

)0 II-' "(p)=hp) 0 I+""(p), vs=i (221)
[,S 0

"See I Eqs. (22), (23). 3f is the common sextet mass, pp—(pP+2/[I) 1/0

(b) Vertices in the Restricted Case

We 6rst recapitulate some results obtained in I,
referring to the treatment of the 35 given in I as the
restricted case.

In order to describe the 6 representation, we intro-
duced in I a 12-component wave function w" (y), where
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We define the adjoint wave function wz(p) by

t&» (y) = (t&&(y) F4)i. (2.22)

by introducing the S„matrix. The same is true for the
interaction with the S6 which can be written as"

Bia„t(ps)B"a'(pi)OR, "(q); ), t4, v, 4=1, 2, 12. (2.32)
In this paper we work with four Hermitian Dirac
matrices y„, p, = 1, , 4. The following explicit repre-
sentation is convenient:

(2.23)p26 & Y4 p3& Q 7&++3/4 ~

With the help of the bilinear product t&&&,(ps)wa(pi) we
construct the 12X12 matrix OR„"(q) for a meson
supermultiplet with common mass p, oo by imposing the
following conditions.

(i) The quantity

te"(y)'= (St&&(y) )", (2.33)

(2.34)S=2 "'(f4+Vs)
Correspondingly,

(2.24)~i(ys)~"(yi)OR, "(q), q=ys pl
(2.35)

(2.36)

OR„"(q)'= (SOR(q)S)„",

S=y4S~y4.
shall have all the Lorentz-covariance properties of a
meson-fermion vertex.

(ii) For q=0, the only nonvanishing combination of
PS and V 6elds which may occur in 5K are given by
M e, o&= (i,A), &()

= (j,B), where

We get
-M&+& e(q)

OR„"(q)'=
0

(2.37)
M& & e(q)

It may also be noted that the odd parity of the mesons
makes the no-fermion recoil approximation go entirely
via N e(q). For an even parity BS the interaction would
have gone via M„s(q).

It is quite instructive to consider the meson matrix
also in a different representation dedned by

Note that

M e=ib;&PAB+(rr s),'VAB (2.25)
In this equation, 0 is a 6X6 null matrix, while

rsMteaM e=PABPBA+(eVAB)(eVAB) (2.26) (o &k&g ),4'

M&+& e(q) = Wi PA + (o.„&+&e„);~VA (2.38)
(iii) OR shall be such that Eq. (2.24) contains only

V(V) and PS(PV) vertices. This condition confines us
to the restricted case and implies that yq '5tt;ps= —5';.

The conditions (i)—(iii) determine OR uniquely and
one has"

Here

We have

goo

o„&+&=e, ai. 1.

M&+&„e(0)=M&—&.'(0) =M,e.

(2.39)

(2.40)

——N '(q), M„e(q)-
OR."(q)= -M.'(q), N J'(q)

In the primed representation one can introduce the
(2.27) adjoint of OR' as follows. "

OR."(q)'= [74'OR(q)'74'j. "' ~4'=vs (2 41)
&go

M «(q)= —b 'PAB+(a s)"VAB
goo

(2.28) Equation (2.41) is equivalent to

M'"&.'(q) =M&+&.'(q) . (2.42)

.(~ q)"
Na'(q) =i PAB+b "eoVAB

goo
(229) One checks /using also Eq. (2.40)] that this definition

of adjoint reduces to the one employed in Eq. (2.26) for
q=0. Ke now have

Note that
M '(0) =MJ', N.e(0) =0. (2.30) —,'M&+& e(q)M&+&e (q)=-,'M& & e(q)M& &t& (q)

Equation (2.30) contains the implementation required
by SU(6).

Let us now go to the no-fermion-recoil approximation.
Here we still use Eq. (2.21) and (2.24) but we now put

&aA (p) ~ u 4 aA (0) (2.31)

Thus in this approximation the interaction proceeds
exclusively via N e(q), which contains the s-wave
vector interaction and the p-wave pseudoscalar inter-
action ir4 a prescribed mixture. This comes about be-
cause of the interplay of SU(6) and the Lorentz group.
The former prescribes the mixture of V and PS in the
6X6 matrix MJ'. The latter requires us to boost the 35

"Apart from some slight differences in the phase conventions,
Eq. (2.9) is identical with I Eq. (27) with g1 ——g&

-—ge ——i.

(f2

(4 VAB) (s VBA) PAB PBA (2 43)
goo

This is the boosted SU(6) invariant encountered in
Eq. (2.26); and it is a Lorentz scalar. On the mass shell
the right-hand side of Eq. (2.43) reduces to Eq. (2.26).

(c) Vertices in the General Case

We next discuss the vertices without restricting the
behavior of OR„"(I7) under the ys transformation. This
we call the general case. Thus we start again with Eq.
"Pote aNed ie manuscript. The meaning of 8"&' and its adjoint

is given in detail in M. A. B.Beg and A. Pais, Phys. Rev. Letters
14, 267 (1965).

"This corresponds to OR„"(q)= (y4OR(q)~4j„".
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(2.19)—(2.25), but now also admit, in addition to V(V)
and PS(PV) vertices, V(T) and PS(PS) vertices for the
same set of mesons. The procedure followed is a straight
extension of the one used in I Sec. III. We shall 6rst
consider the vertex for the sextet in interaction with our
set of mesons.

The e6ective coupling again takes the form as in
Eq. (2.24) but where now

t'~.'(q), &-'(q) ~
m„(q) =l

(C.p (q), D.s(q) i
(2.44)

8,~(q)= if" Pg~+ —f"(e c)Vg~+if~Pg~
goo

+—{go{e.c)Vg~ —oo(e q) Vg~} (2.46)
Ppo

e.g2,}'(q)= if" —Pg~—f~ooV—g~
poo

e (q&c)
V,~, (2.45)

ppo

I' F {2.57)

E(+) '(q) =E(+' '(q),

L("-'(q) =~("-'(q).

(2.58)

(2.59)
Thus,

-', E+ (q)E+ (q) =-,'E-. (q)E'- (q)

With the help of Eq. (2.49)—(2.57) we now give the
following interpretation to the general meson matrix in
SU(6). Each of the four 6X6 matrices E(+) '(q).
1.(+)„&(q) are boosted BS's with respect to the pmper
Lorentz group, as long as the Eqs. (2.54) and (2.57) are
satisfied. For then we have the zero-momentum-limit
property for both the E's and the I.'s given in Eqs.
(2.55) and (2.56), which is what we mean by SU(6).
While this identi6cation is particularly transparent in
the representation Eq. (2.49) for the meson matrix, this
interpretation is actually independent of any particular
representation. The same results would have been found
had we applied the reasoning to the separate matrices
A, 8, C, D in Eq. (2.44).

We again defineio the adjoint of OR' by Eq. (2.41).
Hence,

C ~(q)=B ~(q), but with f~~ f~; f"—) f", (2.47)—

D ~(q) =A ('(q), but with f~q f~. fr & —fr (—2.4—8).
A more transparent form of the meson matrix is ob-
tained if one again makes the unitary transformation
given in Eq. (2.33)—(2.36). This yields

g2

=lf I' ( V")( V")-
Poo

lJ-")-'(q)L")I"(q)= lL( )-'(q)L( )I (q)

g2
=

l fol (o}qV& ) (o V&")+P&"Pp (2.61)
2

poo

(2.49)

+fv{e„(+)o„)Vg~, (2.50)

tT (6)
q

L(+) ~((7)= aif~P~~+i fr V~~
ppo

(2 51)

+&+) P(q} P&+)
P(q})BR„'(q)'=

L ' '.'(q), E' '-'(q)

~ (k)q
E(+' 8(q) = Wi f" Pgs—

poo

Equation (2.60) ls tllc SRIIlc Rs Eq. (2.43). EqllR'tloll

(2.61) represents a second Lorentz scalar which is a
boosted SU(6) invariant. On the mass shell, Eqs. (2.60)
and. (2.61) are of course identical apart from a constant
factor.

Note that the case fo ——0 corresponds to the notion of
"minimal vertex" introduced earlier. ' We now must ask
in what respects the case fi/0, fo/0 differs from the
restricted case. This is done in the next section.

III. RECOIL EFFECTS

a-;A, '+) =0-), i„k, 3=1, 2, 3, cycl;

~.4&+) —~0 .

E(6) }I(q)—f1~(k) P(q)

(2.52)

(2.53)

The meson matrix Eq. (2.45) may be used to write
down an effective meson-baryon coupling'~ with com-
pleted SU(6) structure and more general than the
collpllllg exhlblted lll Eq. (2.32),

MBtl„.(y )8" '(yi)5R. "(q) . (3.1)

f =f =f1 ~(2.54)

E'+' '(0) =fIM. I'.

Next we note that

(2.55)

1.(+).'(0)= foiV, S, (2.56)

Thus, if Eq. (2.54) is fulfilled, we have in particular
It is instructive to investigate this coupling in the

brick. -wall frame defined by yi+yo ——0. In this frame the
vertex depends only on the single momentum q and the
I}/c limit is uniquely specified by the requirement that
we retain terms only up to the 6rst power in

l ql. On
dimensional grounds, these I}/c terms occur either in the
«rm lql/goo or lql/~oo Terms of the latter set are
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fermion recoil terms which do not survive in a purely
static theory.

Our interpretation of SU(6) theory' is not complete
without a discussion of these recoil terms. In order to
bring out their structure we reduce Eq. (3.1) and exhibit
the relevant couplings through a phenomenological
static interaction density. It is sufFicient to consider the
couplings of protons to xo and po, other couplings are
easily obtained by the methods of Refs. 4 and 5. For
these couplings we have

ge)P PP0 + (1/jioo)gmegP'(rP (&X[)0)

+ (1/jioo)gAp"(rp V')ro, (3 2)

At zero three-momentum the 70 baryons are de-
scribed by an SU(6} tensor 4[ ~]&. Here and below, the
bracket [ ] denotes antisymmetry with regard to the
enclosed indices. 0' must satisfy

+[e[)]v+@[vel j)+@[Pvt~ =0 (4.1)

This representation has the SU(3)(8)SU(2) content'
70= (1,2)+ (8,2)+ (10,2)+ (8,4). We find the following
explicit form:

v2
+[a8]0 oABcX( jj)0+ [2)P[AB] cX( ()jo

+6 3

which contains three strong-interaction coupling con-
stants given by

/[BC]A (jo) j )p[CA]B (kj)yJ

+y(ABC) [(j])e+p(AB]C (e'jk) (4 2)

g.i= Lf'+(j 00/2~00)f'j,

g =5/3[(jioo/2~00)f +f j
gA =5/3Lf'+ (uoo/2~00)f'j

(3.3)
0(=[',A, P= jB, y=kC.

(3.4)
The first line gives the (1,2) part. 0ABc is the SU(3)

(3 5) Levi-Civita symbol, and

5ge)/3 (3.6)

(a) Note that since f"=f~ and fB=fr, one retains
the relationship'

1
(

e' 0Xj+0j0X j)
6

(4.3)

also in the presence of fermion recoil. However, the ratio
f~/f~ is not determined by SU(6) and thus g „, is a
parameter independent of g, i.

(b) The arbitrariness of g„„o/g, ) in the SU(6) scheme
is essentially the same as the arbitrariness of the
isovector magnetic-moment-to-charge ratio, i.e. [)(((p)—ji([0)]/e=5]i(p)/3e. (Of course, the vanishing photon
mass and considerations of gauge invariance make the
two problems distinct in other respects. )

Unless SU(6) is supplemented by further dynamical
assumptions, the theory does not give a unique pre-
diction for the magnitude of j((p). This is precisely why
it was not assumed in earlier work that the effective
electric-charge operator and the effective magnetic-
moment operator are members of the same 55 repre-
sentation' of SU(6); and similarly for weak currents. '

IV. COMPLETION FOR OTHER REPRESENTATIONS

(1) Completed SU(6) and the Representation '70-

As a further application of completion we consider
the 70 . This case is of interest for two reasons. First,
the 70 is a likely candidate" for the assignment of
higher baryon resonances. Secondly, it is of interest to
see how our methods apply to the (70, 56+; 35 ) vertex
which describes the decay of the 70 . In particular we
shall see how the meson matrix has to be handled for a
coupling to fermion supermultiplets of opposite relative
parity.

is the spin--, function with the appropriate symmetry;
0" is the SU(2) Levi-Civita symbol, and x' is a Pauli
spinor. The second line describes (8,2). )P[AB]c is an
SU(3) octet tensor and satisfies a relation analogous to
Eq. (4.1). The third line is (10,2), and P( ) is totally
symmetric, while

~tt'i] &-
+2

(4 4)

Ellx"""II=Ellx"'"ll = 2,

Ellx"j"ll=4 ZII4"'"ll=»

(4.5)

where the summations go in each case over the range of
all tensor indices.

We can now go from +& &» to the completed descrip-
tion by a procedure similar to that'r for the 56. The
vertex is given by

+'[i.].(po)&(""'(ui) (vo~(q) )." (4.6)

Here (y09R(q) )," is defined with the help of yo as given
in Eq. (2.21) and DR as given in Eq. (2.27). Thus

Finally, the last line of Eq. (4.2) gives the (8,4). ([AB]c
has the same SU(3) properties as does)P[AB] c, and x('j)
is totally symmetric. Our de6nitioos satisfy the right
relative normalization conditions; we have

"See Ref. 9 and M. A. B.Bdg and V. Singh, Phys. Rev. Letters
13, 509 (1964);L Gyuk and S.F.Tuan, Phys. Rev. Letters 14, 121
(1965); F. J. Dyson (private communication).

'0 Here again ), y, p, g = 1, ~ 12.
(Vo~(q) )."= ~-'(q), D-'(q)

-A -'(q), &-'(q)—
(4.7)


