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The AA hypernucleus AABe'® has been analyzed by use of a four-body a-a-A-A model which allows for dis-
tortion of the core by the A particles. In particular, the dependence of the internal energy of the core on the
rms separation of the a particles is required. This was obtained from three-body a-a-A calculations for ABe?.
Several types of a-a potentials, whose s-wave phase shifts had been previously obtained, were considered.
Calculations for \pABe!® were made for a singlet A-A Yukawa potential (I) of intrinsic range b=1.48 F, appro-
priate to the exchange of two pions, and for a hard-core Yukawa potential (II) with a hard-core radius
7e=042 F and b=2.66 F, appropriate to a range corresponding to two pion masses for the attractive
Yukawa part. Results are also given for a hard-core meson-theory potential (III) which has 7.=0.42 F and
b=1.48 F. Calculations for ITI were made for yaAHe¢, and the results were adapted to apBe!. For a- poten-
tials which give s-wave phase shifts consistent with experiment, it is found that (almost independently of
the details of the A-A potential) the effects of core distortion account for rather more than a third of the
experimental additional binding energy of 4.540.5 MeV which is obtained after the A separation energy of
ABe? has been allowed for. Slightly more than half the contribution due to core distortion comes from the
core energy of sBe®. The remainder is due to the further distortion of the core by the second A, which causes
approximately a 109, decrease in the rms a-a separation relative to the value for ABe?. The effects of core
distortion weaken the resulting A-A potential quite appreciably. For 5=1.48 F, one obtains the scattering
length aaa =~ —120.3 F and the effective rangeroaa =~ 3.32£0.6 F, approximately independent of the shape of
the A-A potential. For IT, one gets @ 44 = —2.3_05%8 F and 745 =4.9_.7711 F. The well-depth parameters are
0.45+0.08, 0.675240.065, and 0.77-£0.04 for I, IT, and III, respectively. These values are about 35%, 20%,
and 12%, respectively, less than the values obtained for a rigid core with a three-body Be3-A-A model. The
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2-A-w coupling constant, obtained with III, is close to the value obtained from the singlet A-V interaction

for the same hard-core radius.

1. INTRODUCTION

ISTORTION of the core nucleus by the A
hyperons in a AA hypernucleus will give an
apparent binding between the two A particles. This
must be known if reliable information about the A-A
interaction is to be deduced from the experimental
separation energy of both A particles, with respect to
the ground-state energy of the core nucleus. Because of
the exclusion principle, the relevant A-A interaction for
the ground state is the singlet one. If B, is the A
separation energy for the A hypernucleus, then with a
completely rigid core nucleus the “additional” binding
energy ABay= Baa— 2B, may be rather directly related
to the strength of the A-A interaction. This has been
done by Dalitz and Rajasekaran' for a Gaussian interac-
tion with the intrinsic range b=1.48 F, appropriate to
the two-pion-exchange mechanism, and by Tang et al.?
for a hard-core interaction of almost the same intrinsic
range (1.5 F). However, if the core can be distorted by
the A particles, then, even if there were no A-A interac-
tion, one might still get an appreciably positive value
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of ABjs. The core distortion will be a compression
because this is energetically favored; for a rigid core,
the binding due to given A-NV and A-A interactions will
increase as the core size is reduced.

The most favored candidate for the event reported
by Danysz et al.® is ,aBe® with AByy=4.5+0.5 MeV
[Baa=1740.5 MeV, By(4Be?) =6.50.15 MeV']. How-
ever, ssBe!l is also a possible candidate. For xyBe, the
effects of core distortion are expected to be particularly
important, since the core nucleus Be?® is not even bound.
The hypernucleus 4yBe!® has been considered in Refs. 1
and 2, in which a rigid core was assumed. The effects of
distortion of the Be® core have been considered by
Deloff* and by Nakamura® for an a-particle model.
These authors reach contradictory results. Thus
Nakamura finds a large effect due to core distortion,
whereas Deloff obtains only a small effect.

Our approach is also based on an a-particle model for
the core, but uses a better trial wave function and, in
particular, improved values for the core energy.
Furthermore, we consider a variety of a-o interac-
tions and also consider both soft- and hard-core A-A
interactions.

We thus consider a four-body model of sxBel,
consisting of two a particles and the two A particles.

3 M. Danysz ef al., Nucl. Phys. 49, 121 (1963).
4 A. Deloff, Phys. Letters 6, 83 (1963).
8 H. Nakamura, Phys. Letters 6, 207 (1963).
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In view of the large binding and incompressibility of an
a particle, the A particles are assumed to affect only the
relative motion of the o particles and not these individ-
ually. This model allows a dynamical treatment of the
Be? core, and therefore also of distortion effects, and is
a natural extension of a three-body (a-a-A) model of
ABe€°. This has been treated in detail by the authors.® In
particular, this model is remarkably consistent with
a-a potentials which give excellent agreement with the
experimental s-wave a-a phase shifts. This success
gives confidence in the use of an a-a-A-A model for
aaBe®. The total binding energy of the a and A particles
relative to each other will be very nearly the separation
energy Baa, since the ground-state energy of Be® is
only 0.1 MeV.

Our calculations are based on the use of the trial
function

\I/‘:q)c(R)gAc(rcl)gAc (702)gAA(7AA)1X0- (1)

Here 7,1, 702, and 75 are triangular coordinates: 7.
and 7. are the A-core separations, and 7x is the A-A
separation. The function X, is the singlet spin function
for the A particles. The functions gs.(r) and gaa(r)
are trial functions. As emphasized by Dalitz and
Rajasekaran,! it is essential to include the function
gaa(7) in order to allow for the effect of A-A correlations
resulting from the short-ranged and possibly strong
A-A interaction. As justified below, the trial wave
function ®.(R) of the core may be considered as
effectively depending only on one variational parameter
R, which may be taken as the rms separation between
the « particles.

2. CORE ENERGY

The core energy as a function of R is given by
Eaa(R)=<q)c(R) [ Taa+ Vaal(ic(R)> ) (2)

where V.. denotes the a-a potential and T is the
kinetic-energy operator. The energy E.. (R) was ob-
tained from three-body calculations for the a-a-A model
of 3Be® by use of the procedures described in Ref. 6.
These are based on the use of the trial function
Far(#asn) far (asn) faa (7o), in an obvious notation. Thus
for a given Vo, and a definite function fea(r) (which
is taken to be a superposition of exponentials), a
Schrodinger eigenvalue problem is obtained for the a-a
motion which is solved exactly. This solution then gives
the best variational solution for fee(r) and the cor-
responding #hree-body binding energy B[ faa] appropri-
ate to the assumed function f.a(7). The associated
values of E.. and of R=({(r,»)"? may then also be
obtained and from the latter also the rms radius & of
the density distribution of the core. For a wide range
of values of R, one finds the linear relation

R=v2a=0.381(2.48+R), ©)

6 A. R. Bodmer and S. Ali, Nucl. Phys. 56, 657 (1964).
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where a is the oscillator size parameter, defined by
Eq. (7), and where R, R, and @ are in fermis. It is found
that, to a very good approximation, E.. depends only
on R. Thus for a given R, the energy E,. is almost
independent of f.s(r) and of the strength of the a-A
interaction—for both of which a wide range was
considered. For a given a-A interaction, the binding
energy Bj(aBe®) and the associated values of R=R, and
of E.. which are realized for yBe® are, of course, only
obtained for that function fea(r) that maximizes the
three-body energy Ba[ fas] It thus seems very well
justified to consider Eqe=FEaa(R) as a function only of
R and thus to consider the trial function ®.(R) as
effectively depending only on R and, furthermore, to
use for E.q(R) the results obtained from our calculations
for sBe®. In view of Eq. (3), it is clear that R or ¢ could
equally well be used, instead of R, for the variational
parameter characterizing the core.

It is convenient to expand E,.(R) about the value
R=R, to obtain

Eoo(R)=Esa(Ri)—er(R—Ry)
+ €2 (R"-RA)Z— €3 (.R—RA)3 . (4)

A cubic polynomial was found to give satisfactory fits
to the results for E,o(R) for all our potentials V,, and
for the relevant values of R. The coefficients e, €, and
€; are all positive. This is a reflection of the fact that
E ., increases more rapidly as R is reduced. It is to be
noted that, because Be® is not bound, Eq.(R) does not
have a minimum for any value of R. For a given V.,
one may obtain Ry as a function of B, by varying the
strength of the a-A interaction used in the three-body
calculations” for yBe®. The value of Ry for any particular
Vae was then chosen so as to give the experimental
value Ba(yBe®)=6.5 MeV. The core energy in ,Be?,
which is effectively also the rearrangement energy, is
then Eqa(Ry).

The results obtained for Eq.(R) are shown in Table I.
The a-a potentials and the symbols used to label these
are the same as those in Ref. 6. Thus the hard-core
potentials a to g are defined by

Vaa=°° ) r<6;
Vae=—Vo, ¢<r<d; ©)
Vaa=4e/r, r>d.

The soft repulsive-core potentials p to s are given by
Vaa(r)=Vg exp(—urr?)— V4 exp(—ua?)+4¢*/r. (6)

All the potentials have a shape reasonably consistent
with theoretical expectations and have all been chosen
so as to give the ground-state energy (effectively zero)
of Be® correctly. In particular, the hard-core potentials
[Eq. (5)] are thus characterized by the two parameters
¢ and d, since, if these are given, V, is then determined

7 The «-A interaction is obtained as described in Ref. 6. The

(spin-averaged) A-N interaction, having a Yukawa shape with a
range p~1=0.7 F, is folded into the a-particle density distribution.
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TasBLE L. Results for the core energy Eq.qo(R).

Hard-core potentials [Eq. (5)] Ry ap Eqo(Ry) €1 € € K
Label o(F) d(F) Vo(MeV) (F) ) (MeV)  (MeVF) (MeVF2) (MeVF3) (MeV)
a 0.6 4 3.68 2.816 1.427 1.385 3.225 3.525 2.40 24.71
b 1.7 4 7.20 3.627 1.646 0.836 2.634 4.536 4.656 42.29
d 2.6 4 17.24 4.17 1.792 0.580 2.381 4.973 5.325 54.98
e 1.7 3.5 11.10 3.432 1.594 0.753 2.493 4.805 5.776 42.77
S 1.7 4.5 5.19 3.792 1.691 0.890 2.766 3.974 3.013 39.08
g 1.7 5.0 4.04 3.932 1.728 0.932 2.821 3.424 2,125 35.19
Soft-core potentials [Eq. (6)]
wa(FH VaMeV) ur(F1) VepMeV)
P 0.341 30 0.637 96 3.423 1.591 0.598 2.825 3.205 4.304 27.92
q 0.475 160 0.6 300 3.480 1.606 1.216 2.914 4.547 6.342 40.38
r 0.475 160 0.7 750 3.737 1.676 1.035 2.765 4.692 5.395 45.34
s 0.420 165 0.6 700 4.162 1.790 0.594 2.502 2.833 0.865 31.25
by the condition that the ground-state energy of Be? V,,is then
be given correctly. The s-wave a-a phase shifts for all U (@—a) 2 R
our potentials are given in Ref. 6, up to about 12 MeV. Vao(r)=— 8 ['H_ a*—a 4 ar exp (_ ” ®)
The coefficient K, whose values are given in Table I, 2mdi2g’3| a? 3 q'* o)’

is defined (in analogy with the usual compressibility
coefficient) by K=A"R2(B*Eoe/dR?) r—r 1 Where 4=8
is the mass number of the core. Thus K has been
obtained from e, with the help of Eq. (3). It is interest-
ing that the values of K are comparable to, although
somewhat smaller than, the wvalues (100 MeV)
typically quoted for the compressibility coefficient of
nuclear matter. Of course, our X is not really compar-
able with this, in particular, because E..(R) does not
have a minimum since Be? is unbound.

3. AA-BINDING ENERGY EXCLUSIVE
OF THE CORE ENERGY

For a given value of R, the binding energy 0aa,
which is specifically due to the interactions of the A
particles with each other and with the Be® core, was
obtained with the trial function of Eq. (1). The total
binding energy is Baa=bas—Eqq, and the energy bdaa
is thus the binding energy exclusive of the internal core
energy and would be the actual separation energy for
a rigid core whose size is characterized by R. The three-
body trial function gac(7c1)gac(7c2)gaa(?aa) is thus used
to obtain by, the size parameter R of the core entering
only through the A-core potential Vj. This was
obtained by folding a Gaussian A-N interaction, with
an intrinsic range b= 1.48 F appropriate to the two-pion-
exchange mechanism, into the core-density distribution.

For this, an harmonic-oscillator density distribution
was used appropriate to four 1s and four 1p nucleons.
Normalized to unity, this is

1 2 7 7
b o
27r3/2a3 3 a? 02

where @ is the oscillator-size parameter and the corre-
sponding value of R is given by Eq. (3). The potential

p(r)=

with a”=a>+42, where «x is the Gaussian range of the
A-N interaction (x=0.697 b) and the relevant volume
integral Us is eight times the spin-averaged volume
integral of the A-V interaction,

By numerical solution of the A-core eigenvalue
problem, the value Us=1990.1 MeV F? was chosen to
give a binding energy of 6.5 MeV for a single A to the
core for a=1.65 F (R=3.64 F). This value of ¢ is close
to the values obtained from three-body calculations for
AB¢’, with potentials V., which give a satisfactory fit
to the a-a phase shifts. As will become clear below,
the precise value of ¢ is not important so long as Vj,
gives approximately the correct binding for a single A.
For other (neighboring) values of ¢ (¢=1.5 and 1.6 F),
the potential V. is given by Eq. (8) with the above
value of Us which is obtained for ¢=1.65F. This
corresponds to a fixed A-IV interaction as is appropriate
for our subsequent calculation of &4 as a function of R.

Calculations for xxBe® were made for two types of
A-A interactions. The first, denoted by I, is a purely
attractive Yukawa potential

Van(r)=—Wis(e/ur), )

with u™'=p,,=0.7 F, appropriate to the two-pion-
exchange mechanism. Its intrinsic range is 1.48 F. The
interaction I may also be characterized by its volume
integral Uja. The second interaction IT is a hard-core
Yukawa potential

Var(r)= 0 for r<r,
=—Wa(e*/ur) for r>r,, (IT)

also with p1=0.7 F and with ,=0.3 u,~1=0.42 F. The
intrinsic range of II is 2.66 F.

Some results will also be given for the A-A potential
obtained from meson theory for even A parity. A hard
core of radius 7,=0.3u,~! was used. For the attractive
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part of the potential, which is due to the exchange of
two pions, the static meson-theory expressions given by
de Swart® and by de Swart and Iddings® were used. We
have neglected the coupling with the ZZ channel.
This is well justified for the singlet A-A interaction, if
fz= is not too large (£0.1). The attractive part is then
proportional to fsa% where fsa is the Z-A-w coupling
constant. This hard-core potential, denoted by III,
has an intrinsic range which is very nearly the same as
that of the Yukawa potential I.

The numerical calculation of 5,4 was made with the
three-body method of Ref. 6 in a manner analogous to
the one described there for ,Be’. Its application to the
present problem therefore needs only to be briefly
sketched. Thus, for any given V,, and V., one obtains
a Schrodinger equation for the A-A motion with the
effective A-A potential Vaa+Vas®[gac,Vac], where
Vaa® is a functional of ga, and V. and represents the
effects due to the presence of the third particle, i.e.,
the core. Then the eigenvalue obtained as a solution of
this Schrodinger eigenvalue problem is the value of
baalgac,Vac] corresponding to the best variational
function gaa appropriate to a given function g..

The potentials V., obtained from Eq. (8), are fitted
by a superposition of exponentials. For By=6.5 MeV,
the A-core eigensolutions for the fitted potentials are
then found to give almost the same values of Us
(within 0.059,) as are obtained from the eigensolutions
for the original potentials V.. For gu, the three-
parameter trial function used is

grc(r)=ee"+sefr. 9

This is expected to be an excellent trial function. Thus a
variational calculation for the fwo-body A-core problem
with the fitted potential and with the trial function of
Eq. (9) gives an energy which is within 19 of the exact
value obtained by numerical solution of the eigenvalue
problem for the original potential V..

With the fitted potentials and with f.(r) of the form
of Eq. (9), one then gets an algebraic expression for
Vaa®, which, in particular, depends on the variational
parameters «, 3, and s. Numerical solution of the A-A
eigenvalue problem with the potential Va4 Vaa® then
gives the three-body binding energy daa(a,B,s ; R,Wan).
The maximum of this as a function of the variational
parameters «, B, s then gives the required result
baa(R,Was), which now depends only on R (through
the potential V,, for a given A-N interaction) and on
the strength Wy, for a given shape of V4. The method
is very accurate not only for a ‘“soft” A-N potential
but also for one with a hard core, since it treats the
A-A correlation exactly.

The results obtained for 42 (R,Wj,) as a function of

8 J. J. de Swart, Phys. Letters 5, 58 (1963).
9 J. J. de Swart and C. Iddings, Phys. Rev. 128, 2810 (1962).
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R may be represented by the quadratic expression

bAA(R,WAA) = bAA-"b1(R—RA)+b2(R‘RA)2 ) (10)
where baa, b1, and b, are functions of W,
The energy difference

is the energy difference AByy appropriate to a rigid core.
Results for Abas for saBe'® with ¢=1.65 F are shown in
Tables II and III for the interactions I and II, respec-
tively. The associated values of the scattering length
aaa are also shown. For obtaining Abas from our results
for baa, we used the value by=6.455 MeV obtained from
a two-body variational calculation of the A-core binding
energy. This calculation used the trial function of Eq.
(9) for a=1.65F and the value of U given above
(which gives 6.5 MeV with the exact eigenvalue solu-
tion). The results of the variational calculations of
ban and by should then be strictly comparable. In
particular, the value of Abxa(Vir=0)=0.14 MeV
[64a(Vaa=0)=13.05 MeV] will be given quite ac-
curately, since for Vy=0 the optimum function
gac(@=0.725 F1, 8=1.60 F~, s= —0.594) is quite close
to the optimum function for the two-body A-core
problem (¢=0.75 F-1, 3=1.80 F, s=—0.6285).

As pointed out in Ref. 1, the small positive value of
Abay for Vaa=0 arises because the A particles are
correlated as a result of the finite mass of the core.l?
Thus, roughly, the reduced mass effective for each A
is increased by the presence of the other A, with a
consequent reduction in the kinetic energy. (The value
of Absa obtained for V=0 is, in fact, roughly con-
sistent with an estimate in which the reduced mass used
for the second A corresponds to a core of mass M,+M,
and the kinetic energy of a single A is taken to be
Txy=8.4 MeV. This estimate gives Abyy=0.24 MeV.)

Tables IT and III also show the rigid-core results
Abyy for snHeS. These were obtained in the same way as
for saBe' for a Gaussian a-particle density distribution
with rms radius B,=1.44 F and for a Yukawa A-N
interaction of range p'=0.7F. For a A separation
energy Bja(aHe®)=3.1 MeV, the corresponding varia-
tional result with a trial function of the form (9) is
b4=3.05 MeV, and with this one gets Abys(Viy=0)
=0.28 MeV. This is, as expected, about twice the
value for ,,Bel.

The results for Absa are seen to be quite similar for
aaBe'® and 4pHe®. This is in agreement with the conclu-
sions of Dalitz and Rajasekaran.! Furthermore, very
nearly the same results as those in Table I were obtained
in our calculation of dx4 for both ,yHe® and ;,Bel® with
different core radii (¢=1.5F for Be® and B,=1.54F
for He) and with V. of the corresponding strengths to
give the correct values of B,. It is clear that Abyy, is

10 Tf the core is infinitely massive then one has, as expected, the
}'elatlon baa=2by for V45 =0, as has been shown in Ref. 6. Numer-
ical calculations for A\pAHe® with M= o reproduce this result.
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rather insensitive to the details of the core size as well
as to the value of Bj.

Our results for the Yukawa interaction I are in
good agreement with those obtained by Dalitz and
Rajasekaran! for a Gaussian interaction of the same
intrinsic range. In particular, the results for a;s as a
function of bss are in good agreement. However, for a
given value of Absy, the values of aas for the hard-core
Yukawa potential IT are considerably larger than for I.
This is a reflection of the larger intrinsic range of II.

Calculations for ;s He® have also been made with
the meson-theory potential ITI. The results are in good
agreement with those of Tang et al.* who used a hard-
core potential with only a slightly greater intrinsic
range and a slightly smaller hard-core radius than for
our potential III. Furthermore, the results for ass as a
function of Abss are quite similar to those obtained for
I. Thus for a given intrinsic range the scaitering lengths
as a function of Abxa are insensitive to the shape of V.

The results for III are shown in Table IT, which gives
the values of fsza appropriate to the relevant values of
Abya(saHe®). The resulting relation between Uus and
fza is very nearly the same as is obtained for xsBe",
if the relation between fza and Abaa(aaHe®) is adjusted
to aaBel® with the aid of the results for I which were
obtained for both ysHe® and 44Be!. Table IT also shows
the values of aax for the corresponding values of fza
for the potential III.

The coefficient &; in Eq. (10) is positive, since the
binding increases as the core size decreases. For the
Yukawa interaction I, the coefficient 4, as a function of
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Usa (in MeV F?) is given by

bl(UAA) = b1<0)[1+5_54>< 10_4UAA

—2.55X10~Us2].  (12a)

For the interaction II, the expression obtained for b,
as a function of the strength Wy, (in MeV) is

b1 (Wxa)=b1O[14-3.31X 10~ (W s — W, @)
F3.66 X 10~(War—Was @)¥], (12h)

where Wiy ®=140 MeV is the strength which gives
the value Abaa=0.14 MeV appropriate to V44=0. This
value of W, @ is close to that which gives @y =0. The
precise value which is used for Wy, @ is, in fact, not very
important. Both (12a) and (12b) thus correspond to
expansions in the strength of the interaction about the
strength appropriate to V;y=0. The value of 4,©®
which, as expected, is very nearly the same for both
(12a) and (12b), is 5,0 =7.2 MeV F-L

However, the values which we have used for 4,;©
are, in fact, somewhat different from this; they are
smaller and give rise to smaller distortion effects.
They include allowance for the fact that the dependence
of baa(R,Waa) on R should be consistent with an
a-particle description for the core. This will modify
b, from the above value, which is obtained on the
assumption that the core has no structure and is
represented merely by a density distribution of the
appropriate mass.

Thus if one uses for ,Be’ the wave function ®,(R)
XF (rac), which is the analog of Eq. (1) for ;;Bel,

Tasre II. Results for the Yukawa interaction I. All energies are in MeV, the lengths as and 6R are in F.

Rigid-core results®

a-a potentials

I\%A%f Ab, Abaa
AA

(F;): ans  (aaHe®) (aaBe)  fsa ama a b d 4 J g ? q r s
- — —0.51 0.2386 0.1 ABj 1.69 0.67 032 052 08 106 0.63 1.10 088 0.84
100 0.2 043 Exn A 0.82 0.34 0.25 0.27 048 0.64 0.54 0.39 0.355 0.76
Eqo(Rap) 401 1905 1.355 1.595 2425 3.02 220 239 213 3.30
S8R 048 026 021 022 034 044 036 026 0.255 0.60
0.14 0.2466 —0.1 ABaa 2.54 1405 1.03 123 163 187 141 184 162 1.69
0 0.02 028 Eap 101 043 031 034 0.60 0.80 0.67 048 0.44 0.95
Eqa(Rpap) 438 206 147 172 265 332 241 255 229 3.74
S8R 0.52 028 023 024 038 048 0385 0.28 0.28 0.66
— 1.005 0.2551 —0.41 ABaa 3.65 237 197 2175 264 293 242 281 258 281
100 0.23 127 Eap 126 053 038 042 074 099 082 059 0.54 1.21
Eoa(Ran) 4.88 224 160 1.855 293 3.73 267 274 247 440
dR 0.58 031 0255 026 041 053 042 031 0305 0.75
— 2.205 0.2638 —0.89 ABja 517 3.68 3.245 346 4.01 438 3.80 4.135 3.90 438
200 0.62 2:56 Eap 1.58 0.64 046 0.50 091 124 099 . 0.71 0.66 1.58
Eoa(Ran) 5.59 2465 1755 2.02 330 430 3.00 296 269 5.43
S8R 0.65 034 028 0.29 046 060 046 034 0.335 0.88
— .S 386 02723 —1.73 ABsa 7.24 5465 499 521 588 636 567 593 569 6.57
300 143 450 Eap 200 077 055 060 113 1.57 121 08 0.79 2.12
Eqo(Rpp) 661 275 194 222 380 511 3.44 325 297 7.07
SR 0.73 038 031 032 052 068 051 037 037 1.025

a To obtain the values of BpA from those for ABAA the value Bj =6.455 MeV should be used. For the results for AAHe® the value b =3.05 MeV should

be used.
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TasLE IIL. Results for the hard-core Yukawa interaction II. Energies are in MeV, the difference 8R is in F.
Waa A Rigid-core results® a-a potentiale

(MeV)  (F)  Abaa(anHe®) Abaa(anBe') a b a e J g b4 q r s

100 0.06 —0.75 —0.58 ABjA 1.62 0.63 028 0475 082 100 0.58 1.06 084 0.74

Epp 0.815 037 0.275 030 050 0.65 0.565 0.42 039 0.72

Eoa(Rar) 374 189 136 1.60 235 283 212 237 212 287

SR 045 026 021 022 033 041 034 026 025 0.53

140 —0.33 0.00 0.14 ABpA 242 1375 101 121 158 178 135 181 1.59 1.54

Lpp 08 040 029 032 0545 0.71 0.61 045 041 0.81

Eao(Rpn) 397 196 141 165 246 301 223 2445 219 3.16

SR 475 027 022 023 035 044 036 027 026 0.8

150 —0.46 0.21 0.33 ABpp 263 157 121 141 178 199 155 201 179 1.76
Epp 092 041 030 033 056 073 062 046 042 0.835

Eoa(Rpn) 403 198 142 166 2495 3.06 226 247 221 3.24

R 048 027 022 023 035 045 0365 027 027 0.5
250 —2.03 2.58 2.62 ABap 526 400 3.595 3.805 4.265 4.55 405 445 422 4395
Epn 126 055 040 0435 076 100 0.83 061 0565 1.185

Eao(Ryn) 472 2235 161 186 289 3.62 2.63 273 2465 4.10

SR 056 031 026 026 041 052 0415 031 0305 0.71

365 —21.51 6.63 6.35 ABjA 961 803 7.56 779 840 879 820 851 826 8.71

Epp 1.87  0.845 0.625 0.68 116 150 124 094 0.87 1.76

Eax(Rpy) 549 263 191 218 342 428 3.11 314 28 492

R 064 0365 030 031 0475 060 047 036 036 0.81

s See footnote a to Table II.

then, for the A separation energy as a function of the
variational parameter R, one has

BA(R)sz(R)_Eaa<R) ) (13)

where ba(R) is obtained by solving the two-body A-core
Schrodinger equation for the wave function F(r) with
the potential Vi, (which depends on R). For R=Ry,
the value of Bx(R) must then be a maximum and one
must have (dBs/dR)r-r,=0 and thus (dbs/dR)r—r,
= (dEae/dR) r-r, Which, by Eq. (4), is equal to — ;.

Further, one expects that 6,=—2(dbs/dR)r-z,
to a very good approximation. This has, in fact, been
checked by explicit calculation. Thus, with the aid of
Eq. (3) one obtains (dbs/dR)r—r,=—3.63 MeV F-!
for ¢=1.65 F. It will then be seen that the values of
€ in Table I are somewhat, although not much, less
than 3b,®, This difference is then to be understood as
due to the a-particle structure of the core. For any
given V., we have therefore used

b1(0)=261. (14)

The values of 5;® now, of course, depend somewhat on
the potential Vya.

This modification then ensures that the A-core
system stabilizes at the appropriate value of R,, which
is obtained from the three-body calculations for ,Be®.
This is now consistent with our use of the trial wave
function (1) and in particular with our core energies
Eqo(R). Use of Eq. (14) thereby allows for the effect
of the a-particle structure of the core on the R depend-
ence of daa(R,Wan).

For 0@ =5y(V4=0), we obtain 2.63 MeV F-2 for
I and 2.10 MeV F~2for IT; for the corresponding ratios

02 /b, ® the values are 0.36 F~* and 0.285 F—1. We then
use these ratios together with Eq. (14), i.e., we use
b;©=0.72 & and 0.57 ¢ for I and II, respectively. The
dependence on the strength of V3, is given by

by=byO[14-5.54X 104U, — 2.55X 107U 2]  (15a)
for I, and by

by=0yO[143.19X 10-3(W sy — W3, @)
—1.28X 1075 (Waa—Wan®@)*]  (15b)

for II. In fact, the curvature of bxa(R,Wjs) with
respect to R turns out to be fairly small, and, con-
sequently, the core distortion is rather little affected
by b,. Hence, the precise values used for b, are not too
important. Thus our final results are not much changed
if the dependence of ; on Wiy is neglected, or even
if b is neglected entirely.

4. AA BINDING ENERGY AND THE
A-A INTERACTION

The binding energy of both A particles obtained with
the trial function of Eq. (1) is finally given as a function
of the remaining variational parameter R by

Bar(R,W 3a) = 0aa (R, W pn) — Eaa(R) . (16)

Maximization of this with respect to R then gives the
value of Baa=Baa(Raa,Wia) together with the core
radius Rax and the core energy Eoq(Rss) for aaBel.
The energy difference AB,s, which is of principal
interest, is given by

ABAA=BAA(RAA,WAA)_ZBA(.RA) 3 (17)
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where By (R,) is given by Eq. (13) with the values of the
core energy Fq.o(Ry) for 4Be? given in Table I.
It is instructive to write ABy, in the form

ABja= Abss+Eaa(Ra)+Esa. (18)

The energy difference Absa, given by Eq. (11), has
already been discussed. It is the only nonvanishing
contribution for a rigid core. The contribution to
ABja due to core distortion is thus Exa(Ra)+Eaa,
where

Epp="[baa(Raa,Wan) —ban(Ra,Wan)]
"'[Eaa<RAA)—Eaa(RA)]. (19)

The energy Eaa is thus the gain in binding energy
which arises from the additional core distortion due to
the second A. It is to be noted that even if there were no
such further distortion, ie., if Raa=Rj and thus
Exp=0, then, in addition to Absa, there would still be
the contribution from the core energy Eqo(Ra) of
aBed. This is because, from Eq. (13), the term 2B, in
Eq. (17) brings Eao(Ra) in twice, whereas, if there
were no further distortion by the second A, the core
energy of y,Bel® would be just Eqq(Ry).

The results obtained by maximizing Bxa(R,Wsa) are
shown in Tables IT and III for the interactions I and IT,
respectively ; 6R=Rs—Rjs is the decrease in R when
the second A is added. The values of ABj, differ
appreciably, although not too much, between different
V ey €xcept for the potential ¢, which has far too little
repulsion and gives a-o phase shifts which are very
considerably larger than the experimental ones. In this
connection, it is to be remembered that all our potentials
give the ground-state resonance energy of Be® correctly
and that Ry for each Vs was chosen so as to give
B (aBe®) correctly. For the same values of Aby,, the
results for the core distortion are quite similar for I and
11, the distortion being slightly smaller for the hard-core
interaction II.

For a given V.., the additional distortion energy
Ejy increases only slowly with the strength of Vau
and is mostly somewhat smaller than E..(R}), although
the core energy FEao(Ras) is mostly substantially
larger than Eq.(R)). The total distortion energy
EjsztEqa(Ry) thus also increases only slowly with
the strength of V4 and is in the region of 1.5—2 MeV,
i.e., it is rather more than one-third of the experimental
value AByy=4.5 MeV.

The second A causes a quite appreciable radial
compression of the core. Thus the decrease 8R is in the
region of 109, of Ry, except for potentials ¢ and s for
which it is considerably larger. Clearly, if the values of
Ry and/or Ry, are less than about twice the rms radius
of the a particle (as is the case for potential ¢ and to a
lesser extent for potential p, both of which have too
little repulsion), then an a-particle model for the core
cannot be expected to have too much validity because
of the large overlap of the two a particles.

BODMER AND S.
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For the hard-core a-a potentials [Eq. (5)], our
results may be considered as a function of only the
hard-core radius ¢, the outer square-well radius ¢ being
kept fixed—or conversely. Thus for the sequence of
potentials a, b, d, the outer radius d=4 F is kept fixed
and ¢ increases from 0.6 to 2.6 F, while for g, f, b, and e
the hard-core radius ¢=1.7 F is fixed and d decreases
from 5 to 3.5 F. For both these sequences, there is
thus an effective increase in the repulsive part with a
corresponding decrease in the s-wave a-a phase shifts.

Consequently, both sequences correspond to a de-
creasing core compressibility and, correspondingly, as
may be seen from Table I, e, €5, and R, increase along
these sequences, while E..(Rs) and e, and therefore
also by and by, decrease. If b; and b, decrease, while at
the same time e¢; and e; increase, then core distortion
will become less. This is, in fact, the case for both
sequences and, in particular, our results for a given
Vs have a reasonable behavior as a function of ¢ or d.

It is interesting to observe that, for a given Vja,
the energy difference ABja is reasonably sensitive, in
particular, to ¢ for fixed d. This would allow, in principle,
a test of the a-a-A-A model of ,,Bel® if Va, were
reasonably well known, for example, from ;,He®, for
which distortion effects are expected to be much less
important than for ,,Be'.

Of course, experimental errors in Byx would make any
such conclusion correspondingly uncertain. Thus if,
for example, one had ABs(arHe®)=2.51+0.5 MeV,
then one would get for the interaction I the value
Uar=200+35 MeV F3, With ABAA(AABGIO)=4.5:§:0.S
MeV, one then gets ¢=1.0_0st'°F for d=4F. The
errors are too large for this value of ¢ to be a significant
result, and it would certainly be consistent with a Ve
which gives reasonable phase shifts. If there were no
errors in the value ABxa(aaHe®)=2.5 MeV, then one
would get ¢=1.0+0.4 F. This would be more significant
since it is somewhat, although not too much, on the
small side and would correspond to rather too little
repulsion for V.. The corresponding results for IT are
quite similar.

We now discuss the results obtained for the A-A
interaction. For the hard-core a-a potentials, an
acceptable fit to the experimental a-a phase shifts is
obtained with d~4.040.5 F, ¢c=1.7 F, and with c=1.7
+0.3 F, d=4 F; the potential b (that of Van der Spuy
and Pienaar') gives about the best over-all agreement.
The considerations of Ref. 6 for ,Be?, where the A is
regarded as a nuclear probe (realized by assuming that
the a-A potential for yBe? is the same as that obtained
from ,He?’), give a-a potentials consistent with these
but within narrower limits, namely, ¢=1.7740.1F,
d=4F and d=4.17+0.2 F, ¢=1.7 F. For the soft-core
potentials [Eq. (6)] both ¢ and r give reasonable
phase shifts, and analysis of yBe? suggests that a best
potential would be one with an intermediate range

U E, Van der Spuy and H. J. Pienaar, Nucl. Phys. 7, 397 (1958).
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TABLE IV. Results for the A-A interaction.

A-A aAr 7oAA L aa(RA)+EAn
potential Strength®* () () SAA (MeV)
I rigid core 330425 — (1.79_0.30T04) 2.54_g,90102 0.64 -£0.05
with core distortion 233443 —(0.89_9.0510%) 3.70_9.5510-% 0.45 +0.08 1.724£0.23
I rigid core 312415 — (4.85_,,171-8%) 3.61_g,9510:32 0.81 +0.04
with core distortion 260425 — (2.30_,5410:80) 4,93 _g.7511:07 0.6754-0.065 1.654:0.25
111 rigid core 0.27540.002 — (2.36_9,4510-58) 2.18_o.151018 0.87 +0.03
with core distortion 0.267+0.0035 — (1.13_,710:38) 3.08_9, 451060 0.77 +0.04 as for I

a This is Upa(MeV F3) for I, Wap(MeV) for 11, and fzp for IILL

(ur=0.65 F1) for the repulsive core. The best soft-core
potentials give only slightly larger values of ABja
than the best hard-core potentials. One may then
consider the potentials b, f, ¢, » to span a reasonable
range of acceptable potentials.

The corresponding results obtained with ABjy=4.5
#0.5 MeV are shown in Table IV. The quantities 7oxs
and saa are the effective range and the well-depth
parameter, respectively. The uncertainty in the choice
of V4 contributes about half as much to the error in
the potential strengths as does the error in ABs. The
results for the hard-core, meson-theory potential ITT
have been obtained from those for I by use of the
relation between fza and Uaa, which is given implicitly
in Table II. This procedure seems well justified, since I
and III have very nearly the same intrinsic range and
since associated values of fza and Uaa, which give the
same Ab,y, are then also expected to give similar core
distortions. Moreover, I and II, which have different
intrinsic ranges, give quite similar core distortions for
the same value of Abss.

The fact that the energy FEao(Ra)+Esr due to
distortion seems rather insensitive to the shape of Vi,
for a given value of Absy implies that our results for
the core distortion may be used to determine the
parameters for any shape of Vaa, if the appropriate
rigid-core results for Abas have been calculated.

The inherent error of our four-body calculation of
ABy, for a given V. is expected to be fairly small and
less than the error due to uncertainties in the choice
of Vao This is because, on the one hand, the major
part of the distortion energy is Eqq(Ra), which is given
reliably by the three-body calculations for ;Be’. On
the other hand, for obtaining the additional distortion
energy Eja, reliable values have been used for the
internal energy Eq..(R) of the core. This is confirmed
by the consistency of our results for different a-c
potentials. Furthermore, by use of Eq. (14), the o-
particle structure of the core has been taken into account
consistently. Also, both the slow variation of E,, with
the strength Wy and also explicit calculations imply
that the precise dependence of baa(R,Wjs) on Wiy,
given through Egs. (13) and (15), is not crucial.

No account has been taken of the possibility that the
o particles, individually, may be compressed by the
presence of the A particles. This effect would lead to

larger distortion energies than we have obtained with
a four-body model and to correspondingly smaller
strengths for Vaa. However, distortion of the individual
a particles is expected to be rather small, in view of the
expected small compressibility of the a particle. This
seems to be confirmed by the quantitative success of
the a-a-A model for yBe®.

The rigid-core results for our interactions I, II, and
III (Table IV) have already been commented on. The
results for I and III, which have the same intrinsic
range, show that, also with core distortion, the scatter-
ing length and effective range are fairly well determined
for a given intrinsic range, independently of the shape
of the interaction. The well-depth parameter then
increases as the hard-core radius becomes larger.
Because of the larger intrinsic range of II, the values
of asx and reaa are correspondingly larger than the
values for I and III. However, sxs is quite similar for
IT and III, both of which have the same hard-core
radius.

Table IV shows that the effect of core distortion
weakens the resulting A-A interaction quite appreciably ;
in particular, the well-depth parameter is quite sub-
stantially reduced. The singlet A-A interaction then
turns out to be considerably weaker than the singlet
A-N interaction. In fact, the results obtained for the
latter'?!® are quite similar to those obtained for the
A-A interaction, but with a rigid core for ,4Be®,

Clearly, the evidence is strongly against a bound
singlet state of the A-A system. Neither is a bound
triplet state to be expected, since it seems likely that
the triplet is weaker than the singlet interaction, in
view of the fact that this is the case for the closely
related A-N interaction. Furthermore, the three-body
system (either ,aH? or sa%®) is also not expected to be
bound. Thus not only is the relevant A-N interaction
for 4oH? considerably weaker than for the loosely bound
hypertriton 4H3, but also the singlet A-A interaction is
much weaker than the triplet #-p interaction which is
relevant for JH?. In fact, the average A-N force for
aaH? is the same as for the T'=1 state of H?® which is
not expected to be bound.!

The interpretation of a4 in terms of the meson-theory

2 B. W. Downs and R. H. Dalitz, Phys. Rev. 114, 593 (1959).
BR. C. Herndon, Y. C. Tang, and E. W. Schmid, Phys. Rev.
137, B294 (1965).
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potentials has been discussed, in particular for even A
parity, by Dalitz," by de Swart® and by Dalitz and
Rajasekaran.! Our results for the meson-theory interac-
tion IIT (which is appropriate to even ZA parity) show
that the value of f3, is quite close to the comparable
value fzx=0.276 (for fzz=0) which is obtained from
the singlet A-N interaction.® (The attractive part of
this, due to the exchange of two pions, has the same
shape as for V4 but is proportional to fzs2fyx®) This
is in agreement with the conclusions of Dalitz and
Rajasekaran! which were based on the values of @sa.

However, as has been emphasized especially by
Dalitz,'* any results deduced for fzs are very sensitive
to the value used for the hard-core radius. (Thus for
7’c=0.35p,,,_1 and fzz=0, one has sz=0.30 for (179N
=—1F.) This is because of the strong cancellation
between the effects of the hard-core repulsion and the
short-range attraction due to the exchange of two pions.
One must therefore have some understanding of the
relation between the hard-core radii for the A-V and
A-A potentials if one is to reliably relate the attractive
parts of these potentials. Furthermore, for V,y, one
can have, for example, exchange of single K mesons,
which is not possible for V.

Finally, if the event described in Ref. 3 is interpreted

14 R. H. Dalitz, Phys. Letters 5, 53 (1963).
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as aaBel, then the conclusions about the A-A interaction
will have to be modified accordingly. As pointed out by
Dalitz,* the appropriate value ABjy=4.54+1.0 MeV
for asBe! is quite similar to the value for the most
probable interpretation 4,Be™. With a rigid Be® core for
asBell, a A-A-core model will yield very nearly the same
results for Vs as are obtained for ,,Be® with a rigid
core. Since the odd neutron in Be® has a separation
energy of only 1.7 MeV, an a-e-» model might be
expected to be quite good for Be? with a rms separation
between the « particles which is rather larger than for
ABe?. The contribution to ABxa (saBe') due to distortion
may then be expected to be somewhat more than half
of that for 43Be?, in view of our results for Eqq(R;)
and for Eas. The results for the A-A interaction will
then be roughly intermediate between those obtained
for saBe!® with a rigid core, on the one hand, and with
core distortion included, on the other.
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"The decay modes of the #° meson have been investigated in the Lawrence Radiation Laboratory 72-in.
hydrogen bubble chamber. The 5’s were produced in the reaction 7t+p — xt+p+n at 1225 and 1275
MeV/c and were studied by analysis of all four-prong and two-prong+~ events. There appears to be a
discrepancy in the measured branching ratio R=T,(000)/T',(+—0) as compared with theoretical predic-
tions based on various models relating R to the spectrum of T'»0 in #* — x*#~#0, The theoretical predictions
calculated from the observed spectrum are uniformly higher than the observed value R=0.904-0.24. For
the Brown and Singer theory of a T'=0, S=0 dipion resonance, we find #,=407_,,;+25 MeV, I'=117+15
MeV, R (predicted) =1.49=£0.07. The fit to the linear matrix-element expansion, a= —0.4140.06, predicts
R=1.63+0.02 (the amplitude f=1+ay where y=2 T7o/Trope,—1). A fit may be obtained to both the
spectrum and the branching ratio with an amplitude f= (1—0.41y)e!-6v, indicating that, although the
magnitude of f is essentially smooth, a rapid variation in phase seems to be required to fit the branching

ratio.

CCORDING to the accepted quantum numbers
0—+=JP¢ for the n meson, the final state reached
in the decay 7 — atr—#® must have T'=1, JP=0". For

* Work supported in part by the U. S. Atomic Energy Com-
mission under Contract Nos. AT (11-1)-881 and AT(11-1)-123.

this state, the most general decay amplitude is!

M= (71 72) s f (wi,we,03)+ (c.p.), (1)
where (c.p.) means cyclic permutation of the indices
1, 2, 3; =, is the isotopic spin vector of pion 7; and f is

1 K. C. Wali, Phys. Rev. Letters 9, 120 (1962).



