
PH YS I CAI REVIEW VOI UME 138, NUMBER 3B 10 MAY 1965

aA. Hypernucleus «Be" and the x-x Interaction*

A. R. BODMER)

Argonne Sationa/ Laboratory, Argonne, Illinois

AND

SHAMSHER ALI)
Department of Theoretical Physics, The University, Manchester, England

(Received 28 December 1964)

The AA. hypernucleusppBe" has been analyzed by use of a four-body o.-o.-A-A. model which allows for dis-
tortion of the core by the A particles. In particular, the dependence of the internal energy of the core on the
rms separation of the a particles is required. This was obtained from three-body O.-n-h. calculations for &Be .
Several types of n-a potentials, whose s-wave phase shifts had been previously obtained, were considered.
Calculations for»Be" were made for a singlet h.-h. Yukawa potential (I) of intrinsic range b = 1.48 F, appro-
priate to the exchange of two pions, and for a hard-core Yukawa potential (II) with a hard-core radius
r, =0.42 F and b=2.66 F, appropriate to a range corresponding to two pion masses for the attractive
Yukawa part. Results are also given for a hard-core meson-theory potential (III) which has r, =0.42 F and
b =1.48 F. Calculations for III were made for»He', and the results were adapted to»Be". For a-o. poten-
tials which give s-wave phase shifts consistent with experiment, it is found that (almost independently of
the details of the A-A. potential) the effects of core distortion account for rather more than a third of the
experimental additional binding energy of 4.5+0.5 MeV which is obtained after the h. separation energy of
pBe has been allowed for. Slightly more than half the contribution due to core distortion comes from the
core energy of &Be . The remainder is due to the further distortion of the core by the second h. , which causes
approximately a 10% decrease in the rms O.-n separation relative to the value for &Be'. The effects of core
distortion weaken the resulting A.-A potential quite appreciably. For b =1.48 F, one obtains the scattering
length a~= —1&0.3 F and the effective range rp&&=3.3~0.6 F, approximately independent of the shape of
the A.-A potential. For II one gets a»= —2.3 p g

0' F and r»=4.9 p. z+" F.The well-depth parameters are
0.45&0.08, 0.675W0.065, and 0.77&0.04 for I, II, and III, respectively. These values are about 35%, 20%,
and 12%, respectively, less than the values obtained for a rigid core with a three-body Be -h-A model. The
Z-h. -vr coupling constant, obtained with III, is close to the value obtained from the singlet A-X interaction
for the same hard-core radius.

1. INTRODUCTION

~)ISTORTION of the core nucleus by the
hyperons in a AA. hypernucleus will give an

apparent binding between the two A particles. This
must be known if reliable information about the A-A.

interaction is to be deduced from the experimental
separation energy of both A particles, with respect to
the ground-state energy of the core nucleus. Because of
the exclusion principle, the relevant A-A interaction for
the ground state is the singlet one. If B~ is the A.

separation energy for the A. hypernucleus, then with a
completely rigid core nucleus the "additional" binding
energy ~B»=8»—28~ may be rather directly related
to the strength of the A-A interaction. This has been
done by Dalitz and Rajasekaran' for a Gaussian interac-
tion with the intrinsic range b= j..48 F, appropriate to
the two-pion-exchange mechanism, and by Tang et at.'
for a hard-core interaction of almost the same intrinsic
range (1.5 F). However, if the core can be distorted by
the A particles, then, even if there were no A.-h. interac-
tion, one might still get an appreciably positive value
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of AB». The core distortion will be a compression
because this is energetically favored; for a rigid core,
the binding due to given A.-E and A-A interactions will

increase as the core size is reduced.
The most favored candidate for the event reported

by Danysz et al.' is»Bem with AB» ——4.5+0.5 MeV
[8« 17&0.5 MeV, Ba(——aBe') =6.5&0.15 MeVj. How-
ever, »Be" is also a possible candidate. For»Be", the
eRects of core distortion are expected to be particularly
important, since the core nucleus Be' is not even bound.
The hypernucleus»Be" has been considered in Refs. 1
and 2, in which a rigid core was assumed. The eRects of
distortion of the Be' core have been considered by
DeloR4 and by Nakamura' for an O.-particle model.
These authors reach contradictory results. Thus
Nakamura finds a large eRect due to core distortion,
whereas DeloR obtains only a small eRect.

Our approach is also based on an n-particle model for
the core, but uses a better trial wave function and, in
particular, improved values for the core energy.
Furthermore, we consider a variety of o-o. interac-
tions and also consider both soft- and hard-core A-A

interactions.
tA'e thus consider a four-body model of »Be",

consisting of two n particles and the two A. particles.

3 M. Danysz et al. , Nucl. Phys. 49, 121 (1963).
4 A. Deloft, Phys. Letters 6, 83 (1963).' H. Nakamura, Phys. Letters 6, 207 (1963).



Here r,~, r,2, and rgq are triangular coordinates: s,&

and r,~ are the A-core separations, and r~~ is the A-A

separation. The function 'Xo is the singlet spin function
for the A particles. The functions g«, (r) and g««(r)
are trial functions. As emphasized by Dalitz and
Rajasekaran, ' it is essential to include the function

g««(r) in order to allow for the effect of A-A correlations
resulting from the short-ranged. and possibly strong
A-A. interaction. As justified below» the trial wave
function C, (R) of the core may be considered as
electively depending only on one VRrlRtlonal parameter
R, which may be taken as the rms separation between
the o, particles.

2. CORE ENERGY

The core energy as a function of E is given by

E „(R)=(C,(R) iT +V iC, (R)),

where V denotes the O.-a potential and T is the
kinetic-energy operator. The energy E (R) was ob-
tained from three-body calculations for the o.-e-A. model
of qBe' by use of the procedures described in Ref. 6.
These are based on the use of the trial function

f «(e,«)f «(r,«)f (t „),in an obvious notation. Thus
for a given V and a de6nite function f «(r) (which
is taken to be a superposition of exponentials), a
Schrodinger eigenvalue problem is obtained for the 0.-~
Inotion which is solved exactly. This solution then gives
the best variational solution for f„(r) and the cor-
responding three body binding energy B-«[f «j appropri-
ate to the assumed function f„«(r) The associate.d
values of E and of R=(r ')'I' may then also be
obtained and from the latter also the rms radius 8 of
the density distribution of the core. For a wide range
of values of R» one finds the linear relation

R=v2a = 0.381(2.48+R), (3)

6 p R godIner and S. Ali, NUcl. Phys. 56, 657 {1964).

In view of the large binding and incompressibility of an
n particle, the A. particles are assumed to affect only the
relative motion of the n particles and not these individ-

ually. This model allows a dynamical treatment of the
Be' core, and therefore also of distortion eRects, and is
a natural extension of a three-body (n-n-il) model of
~Be . This has been treated in detail by the authors. In
particular, this model is remarkably consistent with
o.-o. potentials which give excellent agreement with the
experimental s-wave o;-o. phase shifts. This success
gives confidence in the use of an n-n-A. -A. model for
qqBe' . The total binding energy of the 0; and A particles
relative to each other will be very nearly the separation
energy B~~, since the ground-state energy of Be' is
only 0.1 MeV.

Our calculations are based on the use of the trial
function

+=C.(R)g«. (r.i)g«. (r.2)g««(r««)'&o.

where a is the oscillator size parameter, defined by
Eq. (7), and where R, R, and@ areinfermis. Itis found
that, to a very good approximation, E depends only
on E.. Thus for a given 8, the energy 8 „ is almost
independent of f «(r) and of the strength of the n A-
interaction —for both of which a wide range was
considered. For a given n-A interaction, the binding
energy B«(«Be') and the associated values of R=R«and
of Rex~ which. Rle ieRllzed foi gBe Rle» of coulse» only
obtained for that function f «(r) that maximizes the
three-body energy 8«[f «]. It thus seems very well
justified to consider E =E (R) as a function only of
R and thus to consider the trial function C, (R) as
eRectively depending only on R and, furthermore, to
use for E (R) the results obtained from our calculations
for «Be'. In view of Eq. (3), it is clear that R or u could
equally well be used, instead of E, for the variational
parameter characterizing the core.

It is convenient to expand E (R) about the value
X=A+ to obtain

E .(R)=E (R«) —e, (R—R«)
+e2(R—R«)' —ea(R—R«)'. (4)

A cubic polynomial was found to give satisfactory fits
to the results for E,(R) for all our potentials V „and
for the relevant values of E. The coefficients &I, &2, and
~3 are all positive. This is a reQection of the fact that
E increases more rapidly as R is reduced. It is to be
noted that, because Be' is not bound, E (R) does not
have a minimum for any value of E. For a given V
one may obtain Rq as a function of Bq by varying the
strength of the n-A. interaction used in the three-body
calculations' for ~Be'. The value of Eg for any particular
V „was then chosen so as to give the experimental
value B«(«Be')=6.5 MeV. The core energy in «Be',
which is effectively also the rearrangement energy, is
then E (R«).

The results obtained for E,(R) are shown in Table I.
The n-n potentials and the symbols used to label these
are the same as those in Ref. 6. Thus the hard-core
potentials u to g are defined by

V t'(C»

Vae Vo»

V =4e'/r, r) d.
(5)

The soft repulsive-core poten. tials p to g are given by

(&)= Va exp( —vii'r') —V«exp( q«'r')+4e'—/r (6).
All the potentials have a shape reasonably consistent
with theoretical expectations and have all been chosen
so as to give the ground-state energy (effectively zero)
of Be' correctly. In particular, the hard-core potentials
$Eq. (5)j are thus characterized by the two parameters
c and d, since, if these are given, Vo is then determined

7 The O.-A interaction is obtained as described in Ref. 6. The
{spin-averaged) A-N interaction, having a Vukawa shape with a
range p ~=0.7 I, is folded into the a-particle density distribution.
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TAsLE I. Results for the core energy E (R).

Label

e

f

Hard-core potentials LEq. (5lj
c(F) d(F) U (MeV)

0.6 4 3.68
1.7 7.20
2.6 4 17.24
1.7 3.5 11.10
1.7 45 5.19
1.7 5.0 4 04

Soft-core potentials LEq. (6)j
pg(F ') Ug(MeV) p,g(F ') Ug(MeV)

0.341 30 0.637 96
0.475 160 0.6 300
0.475 160 0.7 750
0.420 165 0.6 700

Eg
(F)

2.816
3.627
4.17
3.432
3.792
3.932

3.423
3.480
3.737
4.162

Cp

(F)

1.427
1.646
1.792
1.594
1.691
1.728

1.591
1.606
1.676
1.790

E~ (Rp)
(MeV)

1.385
0.836
0.580
0.753
0.890
0.932

0.598
1.216
1.035
0.594

3.225
2.634
2.381
2.493
2.766
2.821

3.525
4.536
4.973
4.895
3.974
3.424

2.40
4.656
5.325
5.776
3.013
2.125

2.825
2.914
2.765
2.502

3.205
4.547
4.692
2.833

4.304
6.342
5.395
0.865

61 C2

(MeVF ') (MeVF~) (MeVF ')
E

(MeV)

24.71
42.29
54.98
42.77
39.08
35.19

27.92
40.38
45.34
31.25

by the condition that the ground-state energy of Be'
be given correctly. The s-wave n-n phase shifts for all
our potentials are given in Ref. 6, up to about 12 MeV.

The coeKcient X, whose values are given in Table I,
is defined (in analogy with the usual compressibility
coefiicient) by E=A 'R'(d'E /dR')rr rr~, where A =8
is the mass number of the core. Thus E has been
obtained from es with the help of Eq. (3). It is interest-
ing that the values of E are comparable to, although
somewhat smaller than, the values (& 100 Mev)
typically quoted for the compressibility coeKcient of
nuclear matter. Of course, our E is not really compar-
able with this, in particular, because E (R) does not
have a minimum since Be' is unbound.

1 2 r2 r2-

p(r) = 1+——exp ——
2+Sf a3 3 a a

(7)

where a is the oscillator-size parameter and the corre-

sponding value of R is given by Eq. (3). The potential

3. A.A.-BINDING ENERGY EXCLUSIVE
OF THE CORE ENERGY

For a given value of E, the binding energy b~~,
which is specifically due to the interactions of the A.

particles with each other and with the Be core, was
obtained with the trial function of Eq. (1). The total
binding energy is B&&=biz—E, and the energy b»
is thus the binding energy exclusive of the internal core
energy and would be the actual separation energy for
a rigid core whose size is characterized by E. The three-
body trial function gs, (r„)gs, (r,s)gss(res) is thus used
to obtain bj, q, the size parameter E of the core entering
only through the A-core potential V+,. This was
obtained by folding a Gaussian A-X interaction, with
an intrinsic range b = 1.48 F appropriate to the two-pion-
exchange mechanism, into the core-density distribution.

For this, an harmonic-oscillator density distribution
was used appropriate to four 1s and four 1p nucleons.

Normalized to unity, this is

Vq, is then

Us, (r) =-
2m@'a"

(a's as)
1+- +— exp ——,(8)

/2 3 /4 /2

with a"=a'+x', where x is the Gaussian range of the
/t Einteract-ion (x=0.697 b) and the relevant volume
integral U8 is eight times the spin-averaged volume
integral of the A.-E interaction,

By numerical solution of the A-core eigenvalue
problem, the value US=1990.1 MeV F' was chosen to
give a binding energy of 6.5 MeV for a single A. to the
core for a= 1.65 F (8=3.64 F). This value of a is close
to the values obtained from three-body calculations for
~Be, with potentials V which give a satisfactory fit
to the e-o. phase shifts. As will become clear below,
the precise value of a is not important so long as V~,
gives approximately the correct binding for a single A.
For other (neighboring) values of a (a= 1.5 and 1.6 F),
the potential Us, is given by Eq. (8) with the above
value of Us which is obtained for a=1.65 F. This
corresponds to a 6xed A.-Ã interaction as is appropriate
for our subsequent calculation of b~~ as a function of E.

Calculations for ~qBe" were made for two types of
A.-A interactions. The first, denoted by I, is a purely
attractive Yukawa potential

U»(r) = I/res(e ""/pr), —

with p '=@2~ '=0.7F) appropriate to the two-pion-
exchange mechanism. Its intrinsic range is j..48 F. The
interaction I may also be characterized by its volume
integral Uq~. The second interaction II is a hard-core
Vukawa potential

Uss(r) = ~ for r(r,
Wss(e ""/fir) for—r)r„(II)

also with p, '=07 F and with r, =0.3 p '=0.42 F. The
intrinsic range of II is 2.66 F.

Some results will also be given for the A.-A potential
obtained from meson theory for even ZA parity. A hard
core of radius r,=0.3p ' was used. For the attractive



part of the potential, which is due to the exchange of
two pion. s, the static meson-theory expressions given by
de Swart' and by de Smart and Iddings' merc used. %C
have neglected the coupling with the ZZ channel.
This is well justified for the s&cglet A-A interaction, if
fxq is not too large (&0.1). The attractive part is th n
proportional to fx44, where fs4 is the Z-4-x coupling
constant. This hard-core potential, denoted by III,
has an intrinsic range mhich is very nearly the same as
that of the Vukama potential I.

The numerical calculation of b~q was made with the
three-body method of Ref. 6 in a manner analogous to
the one described there for qBe'. Its application to the
present problem therefore needs only to be brieAy
sketched. Thus, for any given V~q and V~„one obtains
a Schrodinger equation for the A-A. motion with the
effective h.-A potential V»+V»@&le„V4.7, where
Vq~&'~ is a functional of gq, and Vq, and represents the
eRects due to the presence of the third particle, i.e.,
the core. Then the eigenvalue obtained as a solution of
this Schrodinger eigenvalue problem is the value of
b»fgq„V4, 7 corresponding to the best variational
function gyp appropriate to a given function g~, .

The potentials Vz„obtained from Eq. (8), are fitted
by a superposition of exponentials. For 8~=6.5 MeV,
the A-core eigcnsolutions for the fitted potentials are
then found to give almost the same values of U8
(within 0.05%) as are obtained from the eigensolutions
fol thc ol iglnal potentials Vp . For gg, thc tllrcc-
parameter trial function used is

g4, (r) =e-""+Se I'". (9)

This is expected to be an excellent trial function. Thus a,

variational calculation for the Aeo-body A.-core problem
with the 6tted potential and with the trial function of
Eq. (9) gives a11 cIlcl'gy wllicll is wltlllll 1%of 'tllc exact
value obtained by numerical solution of the eigenvalue
problem for the original potential Vq, .

With the fitted potentials and with f4, (r) of the form
of Eq. (9), one then gets an algebraic expression for
V~q&'&, which, in particular, depends on the variational
parameters u, P, and s. Numerical solution of the A-A

eigenvalue problem with the potential V»+ V»~4& then,

gives the three-body binding energy b»(n, P,s; 2t', lV»).
The maximum of this as a function of the variational
parameters n, p, s then gives the required result

b»(E,W»), which now depends only on E (through
the potential Vq, for a given h-S interaction) and on
the strength lV~~ for a given shape of V~g. The method
is very accura, te not only for a "soft" A-S potential
but also for one with a hard core, since it treats the
A-A correlation exactly.

The results obtained for b»(E,W'») as a function of

E may be represented by the quadratic expression

where b~~, b~, and b2 are functions of W'qh.

The energy difference

is the energy diRerence AB~~ appropriate to a rigid core.
Results for Abye for ~+Be'o with a = y.65 F are shown i

Tables II and III for the interactions I and II, respec-
tively. The associated values of the scattering length
agq are also shown. For obtaining hb~q from our results
for b~q, we used the value by= 6.455 MeV obtained from
a, two-body variational calculation of the A-core binding
energy. This calculation used the trial function of Eq.
(9) for a=1.65 F and the value of Us given above
(which gives 6.5 MCV with the exact eigenvalue solu-
tion). The results of the variational calculations of
b~~ and b~ should then be strictly comparable. In.
particular, the value of hb»(V» 0)=0——14 M.eV
)b»(V»=0)=13.05 MCV) will be given quite ac-
curately, since for V~~= 0 the optimum function
g4. (n=0.725 F ', P=1.60 F ', s= —0.594) is quite close
to the optimum function for the two-body A-core
problem (u=0.75 F ', P=1.80F ', s= —0.6285).

As pointed out in Ref. i, the small positive value of
Abqq for Vq~=o arises because the A. particles are
correlated as a result of the finite mass of the core."
Thus roug1lly thc icduccd Inass cRcctivc for each g
is increased by the presence of the other A., with a
consequent reduction in the kinetic energy. (The value
of hb~q obtained for V~~=0 is, in fact, roughly con-
sistent with an estimate in which the reduced mass used
for the second A corresponds to a core of mass iV,+M4
and the kinetic energy of a single A is taken to be
Tq 8 4MCV. ——Thi.s estimate gives hb»=0 24 MCV.).

Tables II and III also show the rigid-core results
Ab~q for qqHC'. These were obtained in the same way as
for qqBC" for a Gaussian 0:-particle density distribution
with rms radius It' =1.44F and for a Yukama A-S
interaction of range p '=0.7 F. For a A. separation
energy 84(qHC')=3. 1 MCV, the corresponding varia-
tional result with a trial function of the form (9) is
bq ——3.05 MCV, and with this one gets hb»(V» 0)——
=0.28 MeV. This is, as expected, about twice the
value for qqBCM.

The results for hb~q are seen to be quite similar for
~~BC" and q~HC'. This is in agreement with the conclu-
sions of Dalitz and Rajasekaran. ' Furthermore, very
nearly the same results as those in Table I were obtained
in our calculation of b~q for both ~gHC' and q~BC'0 with
different core radii (@=1.5 F for Be' and 8 =1.54 F
for He4) and with V4„. of the corresponding strengths to
give the correct values of Bq. It is clear that hbJ, A is

8 J. J. de Swart, Phys. Letters 5, 58 (1963).
9 J. J. de Sv art and C. Iddings, Phys. Rev. 128, 2810 I'1962).

'0 H the core is in6nitely massive then one has, as expected, the
relation bye =2' for Vpg =0, as has been shorn in Ref. 6. Numer-
ical calculations for pgne' with JI,= ~ reproduce this result.
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rather insensitive to the details of the core size Rs well

as to the value of BA.
Our results for the Vukawa interaction I are in

good RgrccIIlcnt with those obtaiDcd by Dalltz Rnd
Rajasckaran' fear a Gaussian interaction of the same
intrinsic range. In particular, the results for gAA as a
function of bAA are in good agreement. However, for a
given value of AbAA, the values of aAA for the hard-core
gukawa potential II are considerably larger than for I.
This is a reAection of the larger intrinsic range of II,

Calculations for AAHC' have also been made with

the meson-theory poteDtial III. The results are jn good
agreement with those of TRilg 8$ cl. who used R hard-
core potential with only a slightly greater intrinsjc
range and a slightly smaller hard-core radius than for
our potential III. Furthermore, the results for gAA Rs a
function of AbAA are quite similar to those obtained. for
I. Thus for R givcil iDtiiDsic I'RI1gc thc sccNefjsg 18sgi'hs

as R function of AbAA are insensitive to the shape of VAA.

The results for III are shown in Table II, which gives
the values ot fs)( appropriate to the relevant values oi
Dbqq()(qHeo). The resulting relation between Uqz and

fsq is very nearly the same as is obtained for qqBe",
if the relation between fry and hbqo (qqHeo) is adjusted
to AABC" with the Rid of the results for I which were

obtained for both AAHc Rnd AA+c . Table II Rlso shows

the values ot ()!)(g for the corresponding values of fez
for the potential III.

The coe@cient b) in Eq. (10) is positive, since the
binding increases as the core size decreases. For the
Vukawa interaction I, the coefficient b~ as a function of

Ux)( (in MeV P) is given l)y

h(~~~) =4(o)@+5.54X 10-4V,„
—2 ~5X 10 'Ugg'7. (12a)

For the interaction II, the expression obtained. for bl
as a function of the strength Wqq (in MeV) is

i), (W„,) b, (o)I 1+3 31&&10-4(W„W„(o))
+3.66&(10 o(Wpg —Wg.((")'7, (12b)

where tVAA(')=140 MCV is the strength which gives
thc VRluc 66AA=0. 14 McV appI'opI'1Rtc to VAA=0. This
value of lVAA(') is close to that which gives aAA= 0. The
precise value which is used for O'AA& & is, in fact, not very
important. Both (12a) and (12b) thus correspond to
expansions in the strength of the interaction about the
strength appropriate to VAA=O. The value of bj&'&

which, as expected, is very nearly the same for both
(12a) and (12b), is b&(o) = 7.2 MeV F '.

However, the values which we have used for 6&&0)

are, in fact, somewhat different from this; they are
smRUcr and give rise to smaller distortion effects,
They include allowance for the fact that the dependence
of b)()((R,Wq)() on E should be consistent with an
o.-particle description for the core. This will modify
b~&0& from the above value, which is obtained on the
assumption that the core has no structure and is
represented n1crely by a density distribution of the
appropriate mass.

Thus if one uses for qBe' the wave function C, (E)
XF(r&,), which is the analog of Eq. (1) for &&Be",

TABLE 11.Results for the Yukawa interaction I. All energies are in MeV, the lengths aAA and pR are in F.

Rigid-core results'

~4A ~4A

(AAHe ) (AABe ) f~A

0.2 —0.43 —0.51 0.2386 0.1

(~AA)
BR

1.69
0.82
4.01
0.48

0.67
0.34
1.905
0.26

-~ potentials

0.32 0.52 0.86 1.06 0.63
0.25 0.27 0.48 0.64 0.54
1.355 1.595 2.425 3.02 2.20
0.21 0.22 0.34 0.44 0.36

1.10
0.39
2.39
0.26

0.88 0,84
0.355 0.76
2.13 3.30
0.255 0.60

0 0.02 0.28 0.14 0.2466 —0.1
+AA

(~AA)
l5A

2.54
1.01
4.38
0.52

1,405
0.43
2.06
0.28

1.03 1.23 1.63 1.87 1.41 1.84 1.62 1.69
0.31 0.34 0.60 0.80 0.67 0.48 0.44 0.95
1.47 1.72 2.65 3.32 2.41 2.55 2.29 3.74
0.23 0.24 0.38 0.48 0.385 0.28 0.28 0.66

100 —0.23 1.27 1.005 0.2551 —0.41 DBAA
+AA
~- (&~~)
5R

3.65
1.26
4.88
0.58

2.37
0.53
2.24
0.31

1.97 2.175 2.64 2.93 2.42
0.38 0.42 0.74 0.99 0.82
1.60 1.855 2.93 3.73 2.67
0.255 0.26 0.41 0.53 0.42

2.81
0.59
2.74
031

2.58 2.81
0.54 1.21
2.47 4.40
0.305 0.75

5.17
1.58
5.59
0.65

0 62 2.56 2.205 0.2638 —0.89
~AA
&. (~AA)
bR

3.68
0.64
2.465
0.34

3.245 3.46 4.01 4.38 3.80 4.135 3.90 4.38
0.46 0.50 0.91 1.24 0.99 0.71 0.66 1.58
1.755 2.02 3.30 4.30 3.00 2.96 2.69 5.43
0.28 0.29 0.46 0.60 0.46 0.34 0.335 0.88

4 50 3 86 0 2723 —1.73 QjPAA 7.24
2.00

(gAA) 6.61
0.73

5.465 4.99 5.21
0.77 0.55 0.60
2.75 1.94 2,22
0.38 0.31 0.32

5.88 6.36 5.67 5.93 5.69 6.57
1.13 1.57 1.21 0.86 0.79 2.12
3.80 5.11 3.44 3,25 2.97 7.07
0.52 0.68 0.51 0.37 0.37 1.Q25

a To obtatu the values of pAA from those for ABAA the value BA =6,455 Mev should be used. For the results for AAHe6 the value bA =3.05 Mev should
be used.
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TABLE III. Results for the hard-core Yukawa interaction II. Energies are in MeV, the diHerence bR is in F.

gag Rigid-core resultsa

(MeV) (F) Ab~ {gee') hbgp(~Be")

100 0.06 —0.75 —0,58

n-o. potential'
a b d t, f g

ABpg 1.62 0.63 0.28 0.475 0.82 1.00
Egg 0.815 0.37 0.275 0.30 0.50 0.65
E (Rpp) 3.74 1.89 1.36 1.60 2.35 2.83
BR 0.45 0.26 0.21 0.22 0.33 0.41

p g

0.58 1.06
0.565 0.42
2.12 2.37
0.34 0.26

r s

0.84 0.74
0.39 0.72
2.12 2.87
0.25 0.53

140 —0.33

150 —0.46

0.00

0.21

0.14 DBpg 2.42 1.375 1.01
Egg 0.89 0.40 0.29

(Egg) 3.97 1.96 1.41
5R 0.475 0.27 0.22

0.33 ABpg 2.63 1.57 1.21
Egg 0.92 0.41 0.30
E (Rgj&,) 4.03 1.98 1.42
SR 0.48 0.27 0.22

1.21 1.58 1.78 1.35
0,32 0.545 0.71 0.61
1.65 2.46 3.01. 2.23
0.23 0.35 0.44 0.36

1.41 1.78 1.99 1.55
0.33 0.56 0.73 0.62
1.66 2.495 3.06 2.26
0.23 0.35 0.45 0.365

1.81 1.59 1.54
0.45 0.41 0.81
2.445 2.19 3.16
0.27 0.26 0.58

2.01 1.79 1.76
0.46 0.42 0.835
2.47 2.21 3.24
0.27 0.27 0.59

250 —2.03 2.62 gag 5.26 4.00 3.595
L'gg 1.26 0.55 0.40
E (Rgg) 4.72 2.235 1.61
bR 0.56 0.31 0.26

3.805 4.265 4.55 4.05
0.435 0.76 1.00 0.83
1.86 2.89 3.62 2.63
0.26 0,41 0.52 0.415

4.45 4.22 4.395
0.61 0.565 1.185
2.73 2.465 4.10
0.31 0.305 0.71

365 —21.51 6.63 6.35 DBpg 9.61 8.03 7.56
F~ 1.87 0.845 0.625
8 „(Rpg) 5.49 2.63 1.91
8R 0.64 0.365 0.30

7.79 8.40 8.79 8.20
0,68 1.16 1.50 1.24
2.18 3.42 4.28 3.11
0.31 0.475 0.60 0.47

8.51 8.26 8.71
0.94 0.87 1.76
3.14 2.86 4.92
0.36 0.36 0.81

a See footnote a to Table II.

b, «) =2., (14)

The values of b~('& now, of course, depend somewhat on
the potential V~~.

This modification then ensures that the A-core
system stabilizes at the appropriate value of R~, which
is obtained from the three-body calculations for &Be'.
This is now consistent with our use of the trial wave
function (1) and in particular with our core energies
E (R). Use of Eq. (14) thereby allows for the effect
of the n-particle structure of the core on the R depend-
ence of bqJ, (R,Wqq)

For b2&oi=b2(Vqq=0), we obtain 2.63 MeV F for
I and 2.10 MeV F ' for II; for the corresponding ratios

then, for the A. separation energy as a function of the
variational parameter R, one has

Bg(R) =bg(R) —8 (R), (13)

where bz(R) is obtained by solving the two-body A-core
Schrodinger equation for the wave function F(r) with
the potential Vq, (which depends on R). For R=Rq,
the value of Bq(R) must then be a maximum and one
must have (dBJ,/dR)g ~~ Oand thus——(dbji/dR)~ ~~
= (dE /dR) z z~ which, by Eq. (4), is equal to —e&.

Further, one expects that bi&'i= 2(dbms/dR)~ —
g~

to a very good approximation. This has, in fact, been
checked by explicit calculation. Thus, with the aid of
Eq. (3) one obtains (dbms&/dR) g s~= —3.63 MeV F—'
for @=1.65 F. It will then be seen that the values of
e~ in Table I are somewhat, although not much, less
than ~~5»('). This difference is then to be understood as
due to the o,-particle structure of the core. For any
given t/', we have therefore used

b2&'&/bi&'&, the values are 0.36 F—' and 0.285 F—' +le then
use these ratios together with Eq. (14), i.e., we use
b2(0'= 0.72 ~& and 0.57 e& for I and II, respectively. The
dependence on the strength of Uzz is given by

b2= b "'/+5 54X10 '&i&A —2.55X10 'USA' (15a)

for I, and by

b2= b2"'t 1+3.19X10 '(Wgg —Wgg&'))
—1.28X 10-'(Wxa —

Wag "i)'j (15b)

for IL In, fact, the curvature of bi&q(R, Wi&z) with
respect to R turns out to be fairly small, and, con-
sequently, the core distortion is rather little affected
by b2. Hence, the precise values used for b2 are not too
important. Thus our final results are not much changed
if the dependence of b~ on 8'~q is neglected, or even
if b2 is neglected entirely.

4. A.A, BINDING ENERGY AND THE
A.-A. INTERACTION

The binding energy of both A particles obtained with
the trial function of Eq. (1) is finally given as a function
of the remaining variational parameter R by

B~~(R,W~,i) = bye&(R, Wii~) —E, (R) . (16)

Maximization of this with respect to R then gives the
value of Bqq=Bqi (Rqq, WJi,) together with the core
radius Ri&q and the core energy E,(Rqi,) for qqlle'0.
The energy difference AB+&, which is of principal
interest, is given by

~B~~=A~(R~~, W~i) 2BJ,(Rg), —
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where Bz(R&) is given by Eq. (13) with the values of the
core energy E (Rq) for qHe' given in Table I.

It is instructive to write 3Bqq in the form

~BAA= +4A+Eea(RA)+EX~ ~

The energy difference Dbzz, given by Eq. (11), has
already been discussed. It is the only nonvanishing
contribution for a rigid core. The contribution to
68qq due to core distortion is thus Ej,q(R~)+Eq~,
where

E~~ P~~(—R~~,~~~) 4~(R—~P'~~)]
—PE..(R„)—E..(R,)j. (19)

The energy Ezz is thus the gain in binding energy
which arises from the additional core distortion due to
the second A. It is to be noted that even if there were no
such further distortion, i.e., if R~q=R~ and thus
E~q ——0, then, in addition to Db~q, there would still be
the contribution from the core energy E (Rz) of
qBe'. This is because, from Eq. (13), the term 28' in
Eq. (17) brings E (Rq) in twice, whereas, if there
were no further distortion by the second A, the core
energy of &&Be" would be just E, (Rz).

The results obtained by maximizing 8&z(R,W+z) are
shown in Tables II and III for the interactions I and II,
respectively; 5R=Rq —R~J is the decrease in R when
the second A is added. The values of AB~~ differ
appreciably, although not too much, between different

V, except for the potential a, which has far too little
repulsion and gives n-n phase shifts which are very
considerably larger than the experimental ones. In this
connection, it is to be remembered that all our potentials
give the ground-state resonance energy of Be' correctly
and that Rg for each U~~ was chosen so as to give
8&(&Be') correctly. For the same values of Dbq&, the
results for the core distortion are quite similar for I and
II, the distortion being slightly sma, lier for the hard-core
interaction II.

For a given V, the additional distortion energy
Ep~ increases only slowly with the strength of Vqq
and is mostly somewhat smaller than E (Rq), although
the core energy E (R& &) is mostly substantially
larger than E (Rz). The total distortion energy
Ez&+E (R&) thus also increases only slowly with
the strength of V~~ and is in the region of 1.5—2 MeV,
i.e., it is rather more than one-third of the experimental
value ABgp=4. 5 MeV.

The second h. causes a quite apprecia. ble radial
compression of the core. Thus the decrease 5R is in the
region of 10/~ of Rq, except for potentials a and s for
which it is considerably larger. Clearly, if the values of
Rq and/or R~~ are less than about twice the rms radius
of the n particle (as is the case for potential a and to a
lesser extent for potential p, both of which have too
little repulsion), then an n-particle model for the core
cannot be expected to have too much validity because
of the 1arge overlap of the two e particles.

For the hard-core n-n potentials LEq. (5)j, our
results may be considered as a function of only the
hard-core radius c, the outer square-well radius d being
kept axed—or conversely. Thus for the sequence of
potentials a, b, d, the outer radius d=4 F is kept fixed
and c increases from 0.6 to 2.6 F, while for g, f, b, and e
the hard-core radius c=1./ F is fixed and d decreases
from 5 to 3.5 F. For both these sequences, there is
thus an effective increase in the repulsive part with a
corresponding decrease in the s-wave O,-n phase shifts.

Consequently, both sequences correspond to a de-
creasing core compressibility and, correspondingly, as
may be seen from Table I, e2, e3, and R& increase along
these sequences, while E (Rz) and e~, and therefore
also bj and b2, decrease. If bi and b2 decrease, while at
the same time e2 and e3 increase, then core distortion
will become less. This is, in fact, the case for both
sequences and, in particular, our results for a given
Vqq have a reasonable behavior as a function of c or d.

It is interesting to observe that, for a given V~~,
the energy difference AB+z is reasonably sensitive, in
particular, to c for fixed d. This would allow, in principle,
a test of the n-n-A. -A model of ~qBe", if V~q were
reasonably well known, for example, from ~qHe', for
which distortion effects are expected to be much less
important than for q,~Be".

Of course, experimental errors in 8&+ would make any
such conclusion correspondingly uncertain. Thus if,
for example, one had 68qq(qqHe')=2. 5&0.5 MeV,
then one would get for the interaction I the value
Uqq= 200&35 MeV F'. With ABqq(qqBe")=4 5+0 5. .
MeV, one then gets c=1.0 os+" F for d=4F. The
errors are too large for this value of c to be a significant
result, and it would certainly be consistent with a V„
which gives reasonable phase shifts. If there were no
errors in the value ABqq(q~He') =2.5 MeV, then one
would get c= 1.0+0.4 F. This would be more significant
since it is somewhat, although not too much, on the
small side and would correspond to rather too little
repulsion for V . The corresponding results for II are
quite similar.

We now discuss the results obtained for the A.-A.

interaction. For the hard-core n-o. potentials, an
acceptable fit to the experimental n-n phase shifts is
obtained with d=4.0&0.5 F, c= 1.7 F, and with c=1.7
+0.3 F, d= 4 F; the potential b (that of Van der Spuy
and Pienaar") gives about the best over-all agreement.
The considerations of Ref. 6 for qBe', where the A is
regarded as a nuclear probe (realized by assuming that
the n-A. potential for qBe' is the same as that obtained
from qHe'), give u npotenti-als consistent with these
but within narrower limits, namely, c=1.77+0.1F,
0= 4 F and d=4.1'7&0.2 F, c= 1.2 F. For the soft-core
potentials (Eq. (6)) both g and r give reasonable
phase shifts, and analysis of &Be' suggests that a best
potential would be one with an intermediate range

1 E. Van der Spuy and H. J. Pienaar, Nucl. Phys. 7, 397 (1958).
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TABLE IV. Results for the A-A interaction.

A-A
potential

rigid core
with core distortion
rigid core
with core distortion
rigid core
with core distortion

Strength'

330~25
233&43
312+15
260~25

0.275~0.002
0.267a0.0035

(1 79 +0.44)
—(0.89 0.28~ »)

(4 85 +1.65)

(2 30 +0.80)

(2 36 0 48+0 68)
—(113 o 27~88)

2 54 +0.24

3 70 +0.82

3.61 0.28+0 82

4, 93 +l.oz

2 1g 0
+0.19

3.08 0.46~'

0.64 ~0.05
0.45 &0,08
0.81 ~0.04
0.675~0.065
0.87 %0.03
0.77 +0.04

li: (Ap)+Lgg
(MeV)

1.72~0.23

1.65~0.25

as for I

a Tgi8 i8 Ugg(Mev F11) fOr I, Wgg(Mev) fOr II, and fg11 fOr III.

(p~=0.65 F ') for the repulsive core. The best soft-core
potentials give only slightly larger values of AB»
than the best hard-core potentials. One may then
consider the potentials b, f, q, r to span a reasonable
range of acceptable potentials.

The corresponding results obtained with AB~q ——4.5
&0.5 MeV are shown in Table IV. The quantities rpgg

and sqq are the effective range and the well-depth
parameter, respectively. The uncertainty in the choice
of V contributes about half as much to the error in
the potential strengths as does the error in Ah~~. The
results for the hard-core, meson-theory potential III
have been obtained from those for I by use of the
relation between fqq and Uqg, which is given implicitly
in Table II. This procedure seems well justified, since I
and III have very nearly the same intrinsic range and
since associated values of fqq and U~q, which give the
same hb~~, are then also expected to give similar core
distortions. Moreover, I and II, which have different
intrinsic ranges, give quite similar core distortions for
the same value of Ab~q.

The fact that the energy E, (Rz)+Ezz due to
distortion seems rather insensitive to the shape of V~~
for a given value of Ab« implies that our results for
the core distortion may be used to determine the
parameters for any shape of V&&, if the appropriate
rigid-core results for Ab~q have been calculated.

The inherent error of our four-body calculation of
AB~~ for a given V is expected to be fairly small and
less than the error due to uncertainties in the choice
of V . This is because, on the one hand, the major
part of the distortion energy is E (Rz), which is given
reliably by the three-body calculations for &Be'. On
the other hand, for obtaining the additional distortion
energy E&z, reliable values have been used for the
internal energy E,(R) of the core. This is confirmed

by the consistency of our results for different 0.-0.

potentials. Furthermore, by use of Eq. (14), the o-
particle structure of the core has been taken into account
consistently. Also, both the slow variation of E~~ with
the strength 8"~~ and also explicit calculations imply
that the precise dependence of bye(R, Wqq) on Wqq,
given through Eqs. (13) and (15), is not crucial.

No account has been taken of the possibility that the
o. particles, individually, may be compressed by the
presence of the A. particles. This effect would lead to

larger distortion energies than we have obtained with
a four-body model and to correspondingly smaller
strengths for V~q. However, distortion of the individual
n particles is expected to be rather small, in view of the
expected small compressibility of the o. particle. This
seems to be confirmed by the quantitative success of
the Q.-n-A model for qBe'.

The rigid-core results for our interactions I, II, and
III (Table IV) have already been commented on. The
results for I and III, which have the same intrinsic
range, show that, also with core distortion, the scatter-
ing length and effective range are fairly well determined
for a given intrinsic range, independently of the shape
of the interaction. The well-depth parameter then
increases as the hard-core radius becomes larger.
Beca,use of the larger intrinsic range of II, the values
of aqq and rpgp are correspondingly larger than the
values for I and III. However, sg~ is quite similar for
II and III, both of which have the same hard-core
radius.

Table IV shows that the effect of core distortion
weakens the resulting A-A. interaction quite appreciably;
in particular, the well-depth parameter is quite sub-
stantially reduced. The singlet A.-A interaction then
turns out to be considerably weaker than the singlet
A-V interaction. In fact, the results obtained. for the
latter"" are quite similar to those obtained for the
A-A. interaction, but with a rigid core for qqBe".

Clearly, the evidence is strongly against a bound
singlet state of the A-A. system. Neither is a bound
triplet state to be expected, since it seems likely that
the triplet is weaker than the singlet interaction, in
view of the fact that this is the case for the closely
related A-.V interaction. Furthermore, the three-body
system (either zzH' or z&N') is also not expected to be
bound. Thus not only is the relevant A.-S interaction
for zzH' considerably weaker than for the loosely bound
hypertriton ~H', but also the singlet A-A interaction is
much weaker than the triplet e-p interaction which is
relevant for qH'. In fact, the average A-Ã force for
~~H' is the same as for the T=1 state of ~H' which is
not expected to be bound. "

The interpretation of u~~ in terms of the meson-theory

"B.W. Downs and R. H. Dalitz, Phys. Rev. 114, 593 (1959)."R.C. Herndon, Y. C. Tang, and E. %'. Schmid, Phys. Rev,
1ST, B294 (1965).
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potentials has been discussed, in particular for even ZA.

parity, by Dalitz, '4 by de Swart' and by Dalitz and
Rajasekaran. ' Our results for the meson-theory interac-
tion III (which is appropriate to even ZA parity) show
that the value of fzz is quite close to the comparable
value fzs=0.276 (for fez=0) which is obtained from
the singlet A-S interaction. ' (The attractive part of
this, due to the exchange of two pions, has the same
shape as for Vqq but is proportional to fz~'f~~'. ) This
is in agreement with the conclusions of Dalitz and
Rajasekaran' which were based on the values of azz.

However, as has been emphasized especially by
Dalitz, "4 any results deduced for fzz are very sensitive
to the value used for the hard-core radius. (Thus for
r,=0.35@, ' and fez=0, one ha, s fzq=0. 30 for aqua

= —1 F.) This is because of the strong cancellation
between the e6ects of the hard-core repulsion and the
short-range attraction due to the exchange of two pions.
One must therefore have some understanding of the
relation between the hard-core radii for the A-S and
A-A potentials if one is to reliably relate the attractive
parts of these potentials. Furthermore, for Vq~, one
can have, for example, exchange of single E mesons,
which is not possible for V~q.

Finally, if the event described in Ref. 3 is interpreted

"R.H. Dalitz, Phys. Letters 5, 53 (1963).

as A~Be", then the conclusions about the A.-A interaction
will have to be modified accordingly. As pointed out by
Dalitz, " the appropriate value ABAq=4. 5+1.0 MeV
for +&Be" is quite similar to the value for the most
probable interpretation ~qBe' . With a rigid Be' core for
&&Be", a A-A-core model will yield very nearly the same
results for V~~ as are obtained for A~Be" with a rigid
core. Since the odd neutron in Be' has a separation
energy of only 1.7 MeV, an n-n-e model might be
expected to be quite good for Be' with a rms separation
between the o, particles which is rather larger than for
sBe'. The contribution to 68qs(sqBe") due to distortion
may then be expected to be somewhat more than half
of that for qqBe", in view of our results for E (Rs)
and for E~q. The results for the A-A. interaction will
then be roughly intermediate between those obtained
for AqBe" with a rigid core, on the one hand, and with
core distortion included, on the other.
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The decay modes of the q0 meson have been investigated in the Lawrence Radiation Laboratory 72-in.
hydrogen bubble chamber. The p's were produced in the reaction 7i.++p —+7r++p+p at 1225 and 1275
Me&/c and were studied by analysis of all four-prong and two-prong+y events. There appears to be a
discrepancy in the measured branching ratio R=l „(000)/F„(+—0) as compared with theoretical predic-
tions based on various models relating R to the spectrum of T 0 in g ~ m.+7r mo. The theoretical predictions
calculated from the observed spectrum are uniformly higher than the observed value R=0.90~0.24, For
the 3rown and Singer theory of a T=O, S=O dipion resonance, we find m =407»+'5 MeV, +=117~15
Me&, R(predicted) = 1.49+0.07. The fit to the linear matrix-element expansion, a = —0.41+0.06, predicts
R= 1.63~0.02 (the amplitude f= 1+ay where y =2 T~0/T 0,„—1). A 6t may be obtained to both the
spectrum and the branching ratio with an amplitude f= (1—0.41y)e'6'&, indicating that, although the
magnitude of f is essentially smooth, a rapid variation in phase seems to be required to Gt the branching
ratio.

CCORDING to the accepted quantum numbers
P~=J for the g meson, the final state reached

in the decay g —& x+~ m must have T= 1, J =0 . For

ork supported in part by the U. S. Atomic Energy Com-
D~ission under Contract Nos. AT(11-1)-881 and AT(11-1)-123.

this state, the most general decay amplitude is'

iV= (et ~ ~s) ~sf(rer)rds)ros)+ (c.p.), (1)
where (c.p.) means cyclic permutation of the indices
1, 2, 3; e; is the isotopic spin vector of pion i; and f is

' K. C. Wah, Phys. Rev. Letters 9, 120 (1962).


