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The strength of the A.-A. interaction in the So state is determined by analyzing the double hypernucleus
z&Be"treated as a four-body system of 20.+2k. The O.-n potential chosen its the 'So phase shifts up to a c.m.
energy of about 12 MeV. The n-A. potential is determined from the binding energy of &He, taking into proper
account the size of the alpha particle and the range of the A.-nucleon interaction. With these potentials, the
binding energy of pBe is also given correctly. For the A.-A, part, a potential is used which has a hard core of
radius 0.4 F and an attractive well of exponential shape. The intrinsic range is chosen as 1.5 F, corresponding
to the mechanism of 2-pion exchange. Using a 12-parameter variational function, the A-4 So potential
which yields the observed separation energy of the two g particles in ApBe'o is found to have a well-depth
parameter of 0.732 0.034 0 02~, which is about 10% smaller than the value obtained by treating pABe" as a
three-body system of Be'+23.. The scattering length and effective range are equal to —(1..04-0.2~

' ) and
2.91 0.27~."F, respectively. Also, we found that the Be' core in p&Be" is quite compressed, with the n-a
separation about 12% smaller than the corresponding separation in gBe'.

I. INTRODUCTION

'HK recent discovery of a double hypernucleus, '
best interpreted as qqBe", has made it possible

to gain some information about the strength of the
A-A interaction in the 'So state. Using a three-body
model of Be'+A+A, it was found by the present authors
that, with a hard-core A-A potential having an intrinsic
range of 1.5 F suggested by the mechanism of 2-pion
exchange, the well-depth parameter in the 'So state has
a value of 0.817+0.029, which corresponds to a scat-
tering length of —(1.93 038+' ") F and an effective
range of 2.21~0.17 F.'

The major defect of the three-body model lies in the
fact that the distortion of the Bes core is not taken into
account. Since the Be' nucleus is not even bound, it is
to be expected that the two A particles will cause an
appreciable distortion of the core. Hence, for a more
realistic analysis, one should consider the hypernucleus
&&Be' as a four-body system of 2n+2A. The detailed
structure of the alpha particle does not need to be
considered, since, due to its low compressibility, one
can safely assume that the eBect of the distortion of the
alpha particle mill be a rather unimportant one.

Using the four-body model of 2n+2A for q~Be'0,

analyses have already been made by Below'' and
Nakamura. ' In these analyses, purely attractive A-A

potentials have been used. This is somewhat unrealistic,
since the presence of a short-range repulsion in the

t'Work performed under the auspices of the U. S. Atomic
Energy Commission.

~M. Danysz, K. Garbowska, J. Pniewski, T. Pniewski, J.
Zokrzewski et al. , Phys. Rev. Letters I1, 29 (1963).' Y. C. Tang, R. C. Herndon, and E. W. Schmid, Phys. Letters
10, 358 (1964). With the three-body model, similar analysis has
also been performed by R. H. Dalitz and G. Rajasekaran, Nucl.
Phys. 50, 450 (1964). In their analysis, however, a purely attrac-
tive A.-A potential has been assumed.

3 A. Delo8, Phys. Letters 6, 83 (1963).
'H. Nakamura, Phys. Letters 6, 207 (1963).

nucleon-nucleon potential, usually represented by a
hard core, suggests that a hard core of similar size may
also be present in the A-A potential. ' Moreover, the

potential used in their ca1culations is not su%ciently
repulsive; it yields a-n 'So phase shifts well above the
experimental values. Furthermore, the variational wave
functions they used do not seem to have enough Qexi-

bility to describe in a reliable way the a-A correlation
and the relative motion between the alpha particles.
Thus, in our opinion, their results may not correspond
too well to the real situation and a more detailed

analysis, free of all these uncertainties, is clearly
desired 6

In our investigation with the four-body mode], me

use an a-n potential which 6ts the 'So phase shifts up
to a c.m. energy of about 12 MeU. The n-A. potential is
chosen to yield the binding energy Bq of the A particle
in the hypernucleus AHe', with the alpha-particle size

and the range of the A-nucleon interaction taken

properly into account. For the A.-A. interaction, a hard-

core potential of core radius 0.4 F. and an intrinsic range
1.5 F, corresponding to the mechanism of 2-pion ex-

change, will be used. As for the variational mave

function, we shall adopt a form originally proposed by
Austern and Iano. ' In this form, the trial function is

written as a product of two-particle correlation func-

tions, each depending individually on the interparticle
distance. For each of these functions, the solution of an

appropriate two-body Schrodinger equation is used up
to a certain interparticle separation, which is then
connected to a variational function for larger distances.

' J. J. de Swart, Phys. Letters 5, 58 (1963).
6 We should also mention here that, in spite of the fact that

these authors have used similar potentials and variational wave
functions, they have obtained contradictory results. Whereas
Deloff concludes that the A.-A interaction is quite attractive,
Nakarnura concludes that the A-A interaction is very weak.

7 N. Austern and P. Iano, Nucl. Phys. 18, 672 (1960).
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To convince ourselves that the wave function de-
scribed above has enough flexibility to yield reliable
results for ~~Be", we shall give in the Appendix' a,

demonstration of the usefulness of this type of tria, l
wave function by considering the nuclear three- and
four-body problems with purely attractive potentials.
There we shall see that the upper and lower bound to
the eigenvalue are quite close together, which indica, tes
that not only is the upper bound very close to the
eigenvalue, but also the trial function with the opti-
mum pa, rameters is a, good approximation to the
eigenfunction.

In the next section, we shall discuss the two-body
potentia, ls to be used in this calculation. It will be seen
that, with the O.-n and n-A potentials used here, the
binding energy of the hypernucleus +Be' is also given
correctly. This is somewhat to be expected, of course,
since the addition of a comparatively weakly bound A

particle should not destroy the alpha-particle feature
of the Be' core. In Sec. III, the double hypernucleus
&&Be" will be analyzed. Using the observed separa, tion
energy h&& equal to 17.5~0.5 MeV of the two A

particles, the strength of the A-A potential in the 50
state can be determined. This latter strength will be
compared with that obtained by us earlier with the
three-body model. Also in this section, we shall give
the va, lue of 8&& calculated for the double hypernucleus
qAHe' with the A-A potential determined from qgBe".
Finally, in Sec. IV, we shall present a discussion of the
results of this investigation.
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Fro. 1. n-a 'S0 phase shifts as a function of incident
energy in the laboratory system.

where 4 (x) is the error function, de6ned as

For the 0,-0. potential, we use a type which has been
used in the investigations of Suh" and Bodmer and
Ali" on the hypernucleus &Be'. It ha, s the form

V (r) = vie exp( —tis'rs) —vg exp( —tt~'r')+ V, (r), (2)

with V, (r) denoting the Coulomb interaction. Using a
rms radius of 1.44 F for the alpha particle, this latter
interaction can be approximately written as"

V, (r) = (4e'/r)C (ir),

II. TWO-BODY POTENTIALS AND pBe'

A. Two-Body Potentials c(~)=
&c/s

exp( —t')dt

The n-A potential is chosen in the same way as in
the calculation of Dalitz and Downs on qHe'. ' Using a
Gaussian shape for the nucleon distribution in the alpha
particle with rms radius of 1.44 F and a A.-nucleon
interaction of a Gaussian form with an intrinsic range
corresponding to the mechanism of 2-pion exchange, we

get
V s(r)= —v s exp( —Xr'),

with X=0.408 F '. The depth e A can be deduced from
the solution of the Schrodinger equation for the motion
of the A. particle relative to the alpha particle. With
B~——3.1 Me V," numerical integration leads to
v A =43.98 MeV, which corresponds to a volume
integral of 940 MeV-F3.

This Appendix is essentially an extension to an earlier investi-
gation [Y. C. Tang, R. C. Herndon, and E. W. Schmid, Phys.
Rev. 134, B743 (1964)j where the nuclear three-body problem
with purely attractive two-body potentials has been considered.
For a similar calculation involving hard-core potentials in nuclear
three- and four-body problems, see Y. C. Tang, E. W. Schmid,
and R. C. Herndon, Nucl. Phys. (to be published).' R. H. Dalitz and B.W. Downs, Phys. Rev. 111,967 (1958).

"R.Levi-Setti, in Proceedings of the International Conference
on Hyperfragments, St. Cergue, Switzerland, 1963 (unpublished).

TABLE I. Parameters of the 0!-n potential.

Potential
type

A

C

PA

(F—') (Mev)

0.475 160
0.475 160
0.475 160

PR
(F ')

0.6
0.635
0.7

(MeV)

300
400
750

"K.S. Suh, Phys. Rev. 111,941 (1958).
~' A. R. Bodmer and S. Ali, Nucl. Phys. 56, 657 {1964)."E.Van der Spuy, Nucl. Phys. 11, 615 {1959).

and v is equal to 0.602 F '.
To gain confidence in the validity of the 2n+2A

model for AqBe", we would like to make sure that the
2n+A model works for sBes at least. This means that,
with the n tt potential give-n by Eq. (1) and the nn-
potential yielding the n-a So phase shifts in the low-

energy region, we should get the binding energy of
&Be9 correctly. For this purpose, we shall calculate
with three different a-0. potentials to see how sensitive
the binding energy of &Be' is to the variation in the n-o.

intera, ction. The para, meters of these three potentials
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TABLE II. Results for gBe'.+

C-C
Potential (F-')

0.43
0.43
0.46

2.5
2.4
2.0

8y

(Mev)

—3.0
302—3.6

(F)

2.9
3.0
3.3

(F-i)

0.295
0.280
0.258

5.0
5.0
5.0

(M.V)

—6.0—5.5—4.2

dg

(F)

1.5
1.5
1,5

jv~

(MeV)

—6.71~0.08—6.43~0.08—5,88~0.08

(MeV)

6.81~0.08
6.53~0.08
5.98~0.08

(r f22)i/2

(F)

3.51
3.65
3.88

The statistical accuracy in this table is achieved with 4S 000 estimates in the Monte Carlo calculation.

are listed in Table I and they will be called potentials
A, 8, and C, respectivejy. "

The behavior of the n-n 'SD phase shifts calculated
with these potentials is shown in Fig. 1, where a com-
parison with experimental data" is also made. It is
seen that all three potentials 6t quite well the experi-
mental phases in the c.m. energy range of zero to about
12 MeV, with potential 8 giving the best over-all
agreement.

The A-A potential used in this investigation has the
same spatia] dependence as that used in our previous
study of ApBe' with the three-body model, i.e.,

Vg~(r) = ~, (r&r, )
e3.3, expL ——x(r —r,)], (r) r,)

with r, equal to 0.4 F and ~ equal to 5.059 F '. This
potential has an intrinsic range of 1.5 F, which corre-
sponds to the mechanism of 2-pion exchange. The
depth vgA is a variable parameter in our calculation; it
will be varied to yield the observed separation energy
B&A of the two A particles ill the double hyperriucleus

B. Binding Energy of &Be'

Using the potentials described above, the binding
energy of &Be3 in the 2n+A model will be computed
with a variational method. The variational wave
function adopted is of the form

+=F (r12)G(r13)G(r23) &. ,

where 1 and 2 denote the two alpha particles and 3
denotes the A particle. The function X, represents the
appropriate spin function for the ground state of ABe'.
For the function F (r), we use a form originally proposed
by Austern and Iano, ~ i.e.,

F (r) =Nr(r)/r, (r(dg)
=A rr '~'I exp (—nor)

+Br exp( —Prr)], (r) dr), (6)

"Except for a minor difference in V&(r), potentials A and t."
are the same as potentials q and r of Bodmer and Ali (Ref. 12).

"N. P. Heydenburg and G. M. Temmer, Phys. Rev. 104, 123
(1956); C. W. Reich, J. L. Russell and G. C. Phillips, ibid. 104,
135 (1956); R. ¹ilson, W. K. Jentschke, G. R. Briggs, R. Q.
Kerman, and J. N. Snyder, ibid. 109, 850 (1958); C. M. Jones,
G. C. Phillips, and P. D. Miller, ibid. 117, 525 (1960); N. Berk,
F. E. Steigert, and G. L. Salinger, ibid. 117, 531 (1960); J. R.
Dunning, A. M. Smith, and F. E. Steigert, ibid. 121, 580 (1961).

where uq(r) is a solution of the equation

—(A'/2pi) (d'/dr') Nr(r)+ [V (r) e~]ur(r)—=0, (7)

with py being the reduced mass of the two alpha par-
ticles. The constants Aq and Br in Eq. (6) are adjusted
such that the function F(r) and its first derivative are
continuous at the separation distance dy. There are a
total number of four variational parameters in this
function, namely, nr, Pr, er, and dr. The function G(r)
is defined in an analogous manner, except that p, j is
replaced by p,„the reduced mass of the n and the A

particle, and the potential function in Eq. (7) is replaced
by the potential V q(r). The variational parameters
in this latter function are n„P„e„and d, .

The various expectation values are computed by a
Monte Carlo method which has been described previ-
ously. "The results are shown in Table II,' where E~
denotes the upper bound to the eigenvalue, (ri3')"'
denotes the rms distance of separation between the
two alpha particles, and BA denotes the binding energy
of the A. particle in ~Be . To obtain the values of BA,
a resonant energy of about 0.1 Mev for the ground

e of Bes has been used 's

As demonstrated by the three- and four-body cases
in the Appendix, we expect the upper bound obtained
by this type of trial function to be very close to the
eigenvalue. In this particular case of ~Be', we believe
that the difference between the upper bound and the
eigenvalue is, in all likelihood, less than 0.1 MeV,
which is smaller than the experimental uncertainty in
the value of B~."

From Table II, it is seen that potential 8 yields a
value of 8& which agrees very well with the experi-
mental value of 6.50&0.16 MeV."This is interesting,
since potential B also gives the best agreement with the
experimentally determined n-n 'So phase shifts in the
low-energy region. " In addition, we note that 8+ is
rather sensitive to the variation in the n-n potential.
Although potential A and potential C yield phase
shifts which are not too diRerent, the values of 8~

'6 E. W. Schmid, Nucl. Phys. 32, 82 (1962); E. W. Schmid,
V. C. Tang, and R. C. Herndon, ibid. 42, 95 (1963).

"The computation on gBe' was done on the IBM 7094 com-
puter at the Brookhaven National Laboratory."F. Ajzenberg-Selove and T. Lauritsen, Nucl. Phys. 11, 1
(1959).

'~ For this reason, we have simply identified the total binding
energy as the negative of the upper bound in both &Be' and &&Be".' The same conclusion has also been reached by Bodmer and
Ali (Ref. 12) in their analysis of pBe'.
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TABLE III. Results for gee".~

&Ah 0'f Pf
(MeV) (F ') (F ') (MeV)

910 0.49 2.0 —7.0

d'f 0'g pg eg

(F) (F ') (F ') (MeV)
dg Ah, p@ 8h A
(F) (F-') (F-') (Me V) (F)

3.0 0.29 5.5 —8.0 1.5 0.035 1.8 —23.0

1056 0.52 2.2 —4.0 3.0 0.29 5.0 —8.5 1.5 0.10 1.3 —12.0 1.1

980 0.50 2.0 —5.5 3.0 0.29 5.0 —8.0 1.5 0.060 13 —18.0 1.1

jvU

(MeV)

—16.96
~0.22—17.97
~0.23—19.24
a0.26

~LA

(MeV)

17.06
~0.22

18.07
~0.23
19.34

a0.26

(4 422)1/4

(F)

3.24

3.20

R The statistical uncertainty in this table is achieved with 60 000 estimates in the Monte Carlo calculation.

obtained with these potentials differ by almost
MeV.

%e wish to point out that the arbitrariness in the
choice of the spatial dependence of the o.-o. potential
does not affect the conclusion mentioned above, since
it has been shown by Bodmer and Ali" that, for two
0,-0, potentials of different shape which yield nearly the
same 'So phase shifts, the values of BA in gBe' are also
nearly the same. Thus, this analysis supports strongly
the validity of the 2n+A. model for 18e', which, in
turn, means that the results we shall obtain for ~~Bern
using the 2a+2A model will similarly be quite reliable.

For potential 8, (rip&'" has a value of 3.65 F which
is larger than twice the rms radius of the alpha particle.
This indicates that the two alpha particles do not
overlap appreciably, thus strongly supporting the n-
particle model for the Be' core.

III. ANALYSIS OF pgBe"

The trial wave function used for gee" is

0 =F(r„)$ li G(r;,.)$H(r, 4)x„

where 1, 2 denote the n particles and 3, 4 denote the A

particles. The function X, is a singlet spin function
describing the coupling of the A particles into a '50
state. For the functions F(r) and G(r), we adopt the
same forms as those used for gBe'. Also, a similar pro-
cedure is used to define the function H(r); one only
needs to note that, in Kq. (7), pf is to be replaced by
IM,„, the reduced mass of the two A particles, and the
potential function V (r) is to be replaced by the
potential function V41(r). There is a total of twelve
pal'Rllletel's 111 'tile tllal fullctloll 4', llRIllely, ny, pr, df,
er, n„p„e„d„n pal, , e„-, and d1, . Although the number
of variational parameters is rather large, we have found
that it was not overly dificult to find their optimum
values, since the upper bound is rather insensitive to
the variation in about half of these parameters.

The upper bounds to the eigenvalues of q~Be" are
calculated with u-0. potential B for three values of v~~,

namely, 1056, 980, and 910 MeV. The results are given
in Table III" From this table, we see that, for

"The computation on gee'0 was done on the CDC 3600 com-
puter at the Lawrence Radiation Laboratory, Livermore.

e~q=1056 MeV, the four-body model yields an upper
bound of —19.24 MeV which is 1.84 MeV lower than
the corresponding value obtained with the three-body
model. ' This indicates clearly that the effect of the
distortion of the Be' core plays an important role in
the determination of the strength of the A-A interaction.

To have some idea about how close the upper bound
is to the eigenvalue, we have also computed the lower
bound for a~A= 1056 MeV, using a formula of Temple, 2'

i.e.,
& = (&&—(&&'&—(&)')/(& —

&&&)

where H is the Hamiltonian of gpBe", and Ei is the
energy of the first excited state, which, in this case, is
equal to —11.08 MeV, the energy of the double hyper-
nucleus ~~He' computed with this value of vga. ' The
result obtained with the optimum parameters of the
upper bound is El.= —37.4 MeV, which is about 18
MeV lower than the upper bound. Using the experience
we gained from calculations in nuclear three- and four-
body problems with hard-core potentials, "we believe
that a gap of this size between the two bounds means
that the upper bound is about 0.3 MeV away from the
eigenvalue. Since the latter magnitude is only about
ha]f of the experimental uncertainty in Bqq, we shall,
in the following, simply identify the total binding
energy of &&Be'0 as the negative of the value of the
upper bound.

From B~~ of 17.5&0.5 MeV for A~Be", we get, with
the results of Table III,

"G.Temple, Proc. Roy. Soc. (London) 119, 276 (1928).
» Y. C. Tang, E. %. Schmid, and R. C. Herndon, Nucl. Phys.

(to be published).

where the error quoted is that due to the uncertainty
in Bgg and the statistical uncertainty arising from the
Monte Carlo calculation.

The comparison between the results of this calcu-
lation for the well-depth parameter s~~, scattering
length aqua, and effective range (ro)44. with those of our
previous study with the three-body model, ' and those
of Dalitz and Rajasekaran, ' is made in Table IV. From
this table, we note that the values of these quantities
are quite different in the three- and four-body model,
thus indicating strongly that a reliable value for eqA
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TABLE IV. Well-depth parameter, scattering length, and effective range of the h.-A potential.

This analysis

Tang, Herndon, and Schmid'

Dalitz and Rajasekaran'

Model
for pgBe"

2a+2A

Bes+2A.

Be'+2A.

0 732+0.027—0.034

0.817+0.029

0.599~0.048

(F)

04+0 20

1 93+0.51

—(1.76~0.33)

(~0)~~

(F)

2.91—0.27

2,21+0.17

2.10~0.12

a Reference 2.

can be obtained only when the effect of the distortion
of the Be' core is taken into account.

We wish to point out also that the Be' core is quite
compressed. With aqq=944 MeV, the value of (r&P)'~'

is only 3.22 F, which is about 12% less than the corre-
sponding value in &Be'. Fortunately, however, it is
still more than twice the rms radius of the nucleon
distribution in the alpha particle, which means that
the n-particle model for the Be' core in «Be" is still a
rather good one.

The value of Bgq as a function of v« for the double
hypernucleus «He' considered as n+2A. has been
calculated previously. '4 The results are listed in Table
V. Using ~«——944 MeV obtained from the analysis of
~~Be", the value of 8« is 9.33 MeV.

IV. CONCLUSION

In this investigation, we determine the strength of
the A-A interaction by ana)yzing the double hyper-
nucleus «Be' considered as a four-body system of
2n+2A. The A.-A potential used as a hard core of radius
0.4 F and an attractive well of exponential shape. The
intrinsic range is chosen as 1.5 F, corresponding to the
mechanism of 2-pion exchange. Using the observed
separation energy of the two A particles in «Be", we
find that the well-depth parameter of the A.-A potential
in the 'So state has a value of 0.732 0.034+'-" . This
value is about 10% smaller than that obtained when
&+Be" is considered as a three-body system of Be'+2A, '
which indicates that the effect of the distortion of the
Be' core is quite essential in the determination of the
strength of the A-A. interaction from the binding energy
of «Be".

The value of the well-depth parameter determined
here is still somewhat overestimated due to two factors.
First, the distortion of the two alpha particles in «Be"
is not considered. Second, our trial wave function yields
and upper bound which is estimated to be about 0.3
MeV higher than the eigenvalue. If both of these
factors are properly taken into account, there wi]l

'4 The value of B« for v+&=1056 MeV has already been given
in Ref. 2. In that calculation, the n-h. potential is slightly different
from that used here. Also, the trial wave function used has a
different form. However, we believe that the results for BgA are
very nearly the same as those which would be obtained if we had
used the o,-A. potential and the type of trial function of this
investigation.

TABLE V. Values of 8« for AgHe'. ~

(Mev)

750
950

1056
1120

Bh.h.

(MeV)

7.27%0.07
9.40&0.09

11,08~0.11
12.28+0.13

a Number of estimates used in the Monte Carlo calculation is 40 000.

"B.W. Downs and R, H. Dalitz, Phys. Rev. 114, 593
(1959)."H. Nakamura, Progr. Theoret. Phys. (Kyoto) 30, 84
(1963).' R. C. Herndon, Y. C. Tang, and E. W. Schmid, Phys. Rev.
(to be published).

2s For a discussion on this point, see R. H. Dalitz, in pro-
ceedings of the International Conference on Hyperfragments,
St. Cergue, Switzerland, 1963 (unpublished).

probably be a small reduction of about 3 to 4% in the
value of the well-depth parameter, which is not too
significant, however, since this reduction is even smaller

than the uncertainty in the well-depth parameter
arising from the experimental uncertainty in the value

of 8«of «Be
Due to the relative weakness of the average A-

nucleon interaction, it is generally believed that there
is no I=1 bound state for qH'. 25 Since, in the double

hypernucleus «H' or «e', the average A.-nucleon

interaction is the same as that in the I= 1 configuration
of AH' and the A-A. well-depth parameter is smaller

than the nucleon-nucleon we]l-depth parameter in the
'50 state, we would expect that there is no bound

system of «H' or «e'.26 For the double hypernucleus
pgH4, the situation is not so simple, and a detailed
calculation using the A-A potential determined here
and the A-nucleon potential determined previously' is

really required in order to decide whether or not there
exists a bound state for «H4.

Finally, we wish to mention that Danysz et al.' have

pointed out that the double hypernuclear event which

they discovered might be interpreted as «Be" with

separation energy 19.0~0.6 MeV relative to Be'+2A..
If this interpretation is adopted, then a modified

alialysis is required, which, however, would not be
expected to change appreciably the value of vAA ar-
i.ived at ig this jnvestigation.
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fi(r) or fs(r), which are

f, (r) =N(r)/r, (r(d)
=Ar "& '&/exp( —nr)

+&exp( —Pr)j, (r&d) (A4)

and
Vs(r) = —Vpg exp( —Kgr')

V, (r) = —Vp, exp( —~,r),

(A1)

with Vpg=51.5 MeV, /(~=0. 3906 F 2, V0, =96.937
Mev, and ~,=1.156 F '. The potential Vg(r) was used
in a calculation by Baker et cl.30 on the nuclear three-
body problem, while the potential V,(r) is an average
of the potential in the triplet-even and singlet-even
states used by Rarita and Present in a study on the
nuclear two-, three-, and four-body systems. "

The trial function employed is of the type described
in Sec. II. Its spatial part is given by

(A3)

with E equal to three for the triton and four for the
alpha particle. For the function f(r), we use either

APPENDIX A: TESTS ON THE
TRIAL FUNCTION

To show that the type of trial function used in this
investigation is capable of yielding an upper bound
very close to the eigenvalue Eo, we present here the
results of a calculation with purely attractive two-body
potentials for the nuclear three- and four-body prob-
lems. In this calculation, both the upper bound Eg and
the lower bound EJ are computed. For the upper bound,
we employ the usual Rayleigh-Ritz method, while, for
the lower bound, Temple's formula given by Eq. (9)
is adopted"

Two-body potentials of both Gaussian and expo-
nential dependence have been used. They have the
forms

fs(r) =u(r)/r, (r&d)
=-Ar "&N '&(exp( —nr)+Bexp( —Pr)

+Cexp( —yr)], (r)d), (AS)

where u(r) is a solution of the equation

—(As/m)(d'/dr')u+[V(r) —eju=o, (A6)

with V(r) representing either V, (r) or V, (r). When the
function fi(r) is used, the constants A and 8 are
adjustedsuch that the function fi(r) andits firstderiva-
tive are continuous at the separation distance d. There
are a total of four variational parameters in this func-
tion, namely, n, P, e, and d. When fs(r) is used, the
additional constant C is utilized to insure that its
second derivative is also continuous at the separation
distance. In this latter function, there are five vari-
ational parameters, namely, n, P, p, e, and d.

The significance of the factor r 'I( ') has been ex-
plained previously"'~; hence, we shall not go into it
further here. It suffices to say that, if our trial function
represents the eigenfunction closely, then the vari-
ationally determined value of Ot' should be approxi-
mately equal to the value of n' given by

n'={/2m/E(X 1)~'j—(Ei—~o))'" (A7)

where (Ei—Es) is the separation energy of a single
nucleon from the rest of the system.

A. l. The Three-Body System (Triton)

In Table VI, we show the results obtained for the
three-body system. To get the values of El; values of
El equal to the eigenvalues of the two-body system
are used. With V, (r) and V, (r), these values are calcu-
lated to be —0.40 and —0.35 MeV, respectively.

TABLE VI. Results for the three-body system. ~

Two-body Trial
potential function

Op™~parameters of EU
n P y e d

(F ') (F ') (F ') (MeV) (F)

Op™mparameters of E~
n P y g d

%' ') (F ') (F ') (M V) (&)

~U
(MeV) (Mev)

Vg

Vg
V.
Ue

fb
f2
fb
f2

0.288 5.15
0.270 0.80
0.260 1.60
0.243 0,62

—2.0 1.5
1.18 —0.3 1.5

0 1.2
1.24 —0.1 1.2

0.292 2.55
0.265 0.80 1.20
0.250 1.60
0.253 0.62 1.26

—0.6 1.8
—0.6 1.5
—1.0 1.2
—0.5 1.2

—9.74p~0.05
—9.745~0.04
—7.65p&0.05
—7.654+0.04

—10.04~0.06
—9.99~0.05
—7.84+0.08
—7.79+0.07

a The numbers of estimates used are 80000 and 40000 for the cases with Vg(r) and Ve(r), respectively.
b These results have been given previously $Y. C. Tang, R. C. Herndon, and E. W. Schmid, Phys. Rev. 134, B743 (1964)j. Here, we have corrected a

small mistake made before in computing the statistical uncertainty of EL ~

'91or a discussion on the variational methods, see Ref. 23.
ss 6. A. Baker, Jr., J. L. Gammel, B. J. Hill, and J. G. Wills, Phys. Rev. 125, 1754 (1962).
» W. Rarita and R. D. Present, Phys. Rev. 51, 788 (1.937).
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From the Table VI, it is seen that the difference in
the values of the upper bound obtained with f, (r) and
fs(r) is rather unimportant, being much smaller than
the statistical uncertainty arising from the Monte Carlo
calculation. In the case of the lower bound, the differ-
ence is small but more signi6cant. For both potentials,
the improvement in the lower bound calculated with
fs(r) over that with fr(r) is about 10 times the corre-
sponding improvement in the upper bound.

The above-mentioned results lead us to conclude
that if the sole purpose is to obtain a good upper bound,
then the function fr(r) is flexible enough for most
problems. On the other hand, if one is interested in a
trial function which can give a very good approximation
to the eigenfunction, then it might be worthwhile to
consider the function fs(r). From Table VI, it is evident
that fs(r) represents the eigenfunction even better than
ft(r), since the optimum parameters of the upper and
lower bound are closer to each other for fs(r) than they
are for ft(r).

From the closeness of the two bounds and the way
they improve when f&(r) is changed to fs(r), we believe
strongly that the eigenvalue is equal to —9.77~0.04
MeV when the potential is V, (r), and equal to
—7.67+0.04 MeV when the potential is V,(r).ss"

Using the values of Eo predicted, we can calculate n'
from Eq. (A7), which turns out to be equal to 0.274
and 0.242 F ', for the cases with V, (r) and V, (r),
respectively. Comparing with the values of n given in
Table VI, we note that the values of 0.' are almost
identical to those of n for the upper bound with the
trial function fs(r), which is another indication that
the function fs(r) with the optimum parameters of the
upper bound is a very good approximation to the
eigenfunction.

Upper bound:

0.=0.293 F ', /=3.0 F ',
e= —4.0 MeV, d=1.2 F,

EU ———31.45+0.14 MeV,

number of estimates=60 000; (A8)

3'It is interesting to point out that, by improving the inde-
pendent-pair method of H. J. Mang and W. Wild [Z. Physik 154,
182 (1959)] for light nuclei, R. Folk [Bull. Am. Phys. Soc. 10,
112 (1965)]has obtained a value for E0 with the potential V, (r)
which is almost identical with our value here."In a previous publication [Phys. Rev. 134, B743 (1964)], we
have made a statement that our result for Ep with V, (r) is not
too consistent with the result obtained by Kalos [M. H. Kalos,

A.2. The Four-Body System (Alpha Particle)

The results obtained for the four-body system with
the potential V, (r) and the trial function ft(r) are as
follows:

Lower bound:

n=0.295 F " P=-1.66 F '

e= —2.7 MeV, d=1.2 F,
EI,———31.81&0.18 MeV,

number of estimates = 120 000. (A9)

Phys. Rev. 128, 1791 (1962)] using a different method. This
statement was made as the consequence of a misinterpretation of
Kalos' result. Upon a careful reexamination, we have instead
come to the conclusion that the results of Kalos' and our calcu-
lations are entirely consistent with each other.

To get the values of E~ and EL,, the Coulomb potential
between the two protons has been taken into con-
sideration. Also, the value of E~ used is —7.67 MeV,
which is the eigenvalue for the triton predicted in a
previous paragraph.

From Eqs. (A8) and (A9), we note that the gap
between the two bounds is 0.36 MeV, which is only
about 1% of the magnitude of the upper bound. This
indicates that, as in the three-body case, the function
ft(r) is capable of yielding a very good upper bound.
In fact, even without further calculation with a more
Aexible function, we can safely predict that the eigen-
value is —31.50&0.14 MeV.

As in the three-body case, the self-consistency con-
dition (A7) is quite well satisfied. The value of rr'

calculated with the value of Eo given above is 0.309
F ', which is rather close to the value of a obtained
from the variational calculation.

Our investigation with the nuclear three- and four-
body problems shows, therefore, that, with purely
attractive potentials, the trial function p of Eq. (A3)
with ft(r) can not only yield a very good upper bound
but also give a good representation of the eigenfunction.
When the potential has a hard core, the situation is
somewhat more complicated, since, from a recent
study, " we have found that a trial function of this
type does not describe the eigenfunction too well when
three or more particles are close to each other. However,
we have also noted in that same study that the proba-
bility of such close-packing of particles is not large
enough to affect the upper bound to an appreciable
extent, although it is large enough to depress the lower
bound quite considerably. Thus, together with the
results of this investigation, we conclude that, in the
case with hard-core potentials, the type of trial wave
function used here is capable of giving a proper de-
scription of the eigenfunction except for a rather small
region in the configuration space. Since this latter
defect does not inhuence the upper bound very much,
it is still safe to assert that the upper bound produced
by this trial function is a good approximation to the
eigenvalue.


